simh-testsetgenerator/NOVA/nova_cpu.c
Bob Supnik 701f0fe028 Notes For V2.8
1. New Features

1.1 Directory and documentation

- Only common files (SCP and libraries) are in the top level
  directory.  Individual simulator files are in their individual
  directories.
- simh_doc.txt has been split up.  simh_doc.txt now documents
  only SCP.  The individual simulators are documented in separate
  text files in their own directories.
- mingw_build.bat is a batch file for the MINGW/gcc environment
  that will build all the simulators, assuming the root directory
  structure is at c:\sim.
- Makefile is a UNIX make file for the gcc environment that will
  build all the simulators, assuming the root directory is at
  c:\sim.

1.2 SCP

- DO <file name> executes the SCP commands in the specified file.
- Replicated registers in unit structures can now be declared as
  arrays for examine, modify, save, and restore.  Most replicated
  unit registers (for example, mag tape position registers) have
  been changed to arrays.
- The ADD/REMOVE commands have been replaced by SET unit ONLINE
  and SET unit OFFLINE, respectively.
- Register names that are unique within an entire simulator do
  not have to be prefaced with the device name.
- The ATTACH command can attach files read only, either under
  user option (-r), or because the attached file is ready only.
- The SET/SHOW capabilities have been extended.  New forms include:

	SET <dev> param{=value}{ param ...}
	SET <unit> param{=value}{ param ...}
	SHOW <dev> {param param ...}
	SHOW <unit> {param param ...}

- Multiple breakpoints have been implemented.  Breakpoints are
  set/cleared/displayed by:

	BREAK addr_list{[count]}
	NOBREAK addr_list
	SHOW BREAK addr_list

1.3 PDP-11 simulator

- Unibus map implemented, with 22b RP controller (URH70) or 18b
  RP controller (URH11) (in debug).
- All DMA peripherals rewritten to use map.
- Many peripherals modified for source sharing with VAX.
- RQDX3 implemented.
- Bugs fixed in RK11 and RL11 write check.

1.4 PDP-10 simulator

- ITS 1-proceed implemented.
- Bugs fixed in ITS PC sampling and LPMR

1.5 18b PDP simulator

- Interrupts split out to multiple levels to allow easier
  expansion.

1.5 IBM System 3 Simulator

- Written by Charles (Dutch) Owen.

1.6 VAX Simulator (in debug)

- Simulates MicroVAX 3800 (KA655) with 16MB-64MB memory, RQDX3,
  RLV12, TSV11, DZV11, LPV11, PCV11.
- CDROM capability has been added to the RQDX3, to allow testing
  with VMS hobbyist images.

1.7 SDS 940 Simulator (not tested)

- Simulates SDS 940, 16K-64K memory, fixed and moving head
  disk, magtape, line printer, console.

1.8 Altair Z80

- Revised from Charles (Dutch) Owen's original by Peter Schorn.
- MITS 8080 with full Z80 simulation.
- 4K and 8K BASIC packages, Prolog package.

1.9 Interdata

The I4 simulator has been withdrawn for major rework.  Look for
a complete 16b/32b Interdata simulator sometime next year.

2. Release Notes

2.1 SCP

SCP now allows replicated registers in unit structures to be
modelled as arrays.  All replicated register declarations have
been replaced by register array declarations.  As a result,
save files from prior revisions will generate errors after
restoring main memory.

2.2 PDP-11

The Unibus map code is in debug.  The map was implemented primarily
to allow source sharing with the VAX, which requires a DMA map.
DMA devices work correctly with the Unibus map disabled.

The RQDX3 simulator has run a complete RSTS/E SYSGEN, with multiple
drives, and booted the completed system from scratch.

2.3 VAX

The VAX simulator will run the boot code up to the >>> prompt.  It
can successfully process a SHOW DEVICE command.  It runs the HCORE
instruction diagnostic.  It can boot the hobbyist CD through SYSBOOT
and through the date/time dialog and restore the hobbyist CD, using
standalone backup.  On the boot of the restored disk, it gets to the
date/time dialog, and then crashes.

2.4 SDS 940

The SDS 940 is untested, awaiting real code.

2.5 GCC Optimization

At -O2 and above, GCC does not correctly compile the simulators which
use setjmp-longjmp (PDP-11, PDP-10, VAX).  A working hypothesis is
that optimized state maintained in registers is being used in the
setjmp processing routine.  On the PDP-11 and PDP-10, all of this
state has been either made global, or volatile, to encourage GCC to
keep the state up to date in memory.  The VAX is still vulnerable.

3. Work list

3.1 SCP

- Better ENABLE/DISABLE.

3.2 PDP-11 RQDX3

Software mapped mode, RCT read simulation, VMS debug.
2011-04-15 08:33:38 -07:00

914 lines
30 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* nova_cpu.c: NOVA CPU simulator
Copyright (c) 1993-2001, Robert M. Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
cpu Nova central processor
07-Dec-01 RMS Revised to use breakpoint package
30-Nov-01 RMS Added extended SET/SHOW support
10-Aug-01 RMS Removed register in declarations
17-Jul-01 RMS Moved function prototype
26-Apr-01 RMS Added device enable/disable support
05-Mar-01 RMS Added clock calibration
22-Dec-00 RMS Added Bruce Ray's second terminal
15-Dec-00 RMS Added Charles Owen's CPU bootstrap
08-Dec-00 RMS Changes from Bruce Ray
-- fixed trap test to include Nova 3
-- fixed DIV and DIVS divide by 0
-- fixed RETN to set SP from FP
-- fixed IORST to preserve carry
-- added "secret" Nova 4 PSHN/SAVEN instructions
-- added plotter support
15-Oct-00 RMS Fixed bug in MDV test, added stack, byte, trap instructions
14-Apr-98 RMS Changed t_addr to unsigned
15-Sep-97 RMS Added read and write breakpoints
The register state for the NOVA CPU is:
AC[0:3]<0:15> general registers
C carry flag
PC<0:14> program counter
The NOVA has three instruction formats: memory reference, I/O transfer,
and operate. The memory reference format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0| op | AC |in| mode| displacement | memory reference
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
<0:4> mnemonic action
00000 JMP PC = MA
00001 JMS AC3 = PC, PC = MA
00010 ISZ M[MA] = M[MA] + 1, skip if M[MA] == 0
00011 DSZ M[MA] = M[MA] - 1, skip if M[MA] == 0
001'n LDA ACn = M[MA]
010'n STA M[MA] = ACn
<5:7> mode action
000 page zero direct MA = zext (IR<8:15>)
001 PC relative direct MA = PC + sext (IR<8:15>)
010 AC2 relative direct MA = AC2 + sext (IR<8:15>)
011 AC3 relative direct MA = AC3 + sext (IR<8:15>)
100 page zero indirect MA = M[zext (IR<8:15>)]
101 PC relative indirect MA = M[PC + sext (IR<8:15>)]
110 AC2 relative indirect MA = M[AC2 + sext (IR<8:15>)]
111 AC3 relative indirect MA = M[AC3 + sext (IR<8:15>)]
Memory reference instructions can access an address space of 32K words.
An instruction can directly reference the first 256 words of memory
(called page zero), as well as 256 words relative to the PC, AC2, or
AC3; it can indirectly access all 32K words. If an indirect address
is in locations 00020-00027, the indirect address is incremented and
rewritten to memory before use; if in 00030-00037, decremented and
rewritten.
*/
/* The I/O transfer format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0 1 1| AC | opcode |pulse| device | I/O transfer
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The IOT instruction sends the opcode, pulse, and specified AC to the
specified I/O device. The device may accept data, provide data,
initiate or cancel operations, or skip on status.
The operate format is:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1|srcAC|dstAC| opcode |shift|carry|nl| skip | operate
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
\______/ \___/ \___/ | | | |
| | | | | | +--- reverse skip sense
| | | | | +--- skip if C == 0
| | | | +--- skip if result == 0
| | | +--- don't load result
| | +--- carry in (load as is,
| | set to Zero,
| | set to One,
| | load Complement)
| +--- shift (none,
| left one,
| right one,
| byte swap)
+--- operation (complement,
negate,
move,
increment,
add complement,
subtract,
add,
and)
The operate instruction can be microprogrammed to perform operations
on the source and destination AC's and the Carry flag.
Some notes from Bruce Ray:
1. DG uses the value of the autoindex location -before- the
modification to determine if additional indirect address
levels are to be performed. Most DG emulators conform to
this standard, but some vendor machines (i.e. Point 4 Mark 8)
do not.
2. Infinite indirect references may occur on unmapped systems
and can "hang" the hardware. Some DG diagnostics perform
10,000s of references during a single instruction.
3. Nova 3 adds the following instructions to the standard Nova
instruction set:
trap instructions
stack push/pop instructions
save/return instructions
stack register manipulation instructions
unsigned MUL/DIV
4. Nova 4 adds the following instructions to the Nova 3 instruction
set:
signed MUL/DIV
load/store byte
secret (undocumented) stack instructions [PSHN, SAVN]
5. Nova, Nova 3 and Nova 4 unsigned mul/div instructions are the
same instruction code values on all machines.
*/
/* This routine is the instruction decode routine for the NOVA.
It is called from the simulator control program to execute
instructions in simulated memory, starting at the simulated PC.
It runs until 'reason' is set non-zero.
General notes:
1. Reasons to stop. The simulator can be stopped by:
HALT instruction
breakpoint encountered
infinite indirection loop
unknown I/O device and STOP_DEV flag set
I/O error in I/O simulator
2. Interrupts. Interrupts are maintained by four parallel variables:
dev_done device done flags
dev_disable device interrupt disable flags
dev_busy device busy flags
int_req interrupt requests
In addition, int_req contains the interrupt enable and ION pending
flags. If ION and ION pending are set, and at least one interrupt
request is pending, then an interrupt occurs. Note that the 16b PIO
mask must be mapped to the simulator's device bit mapping.
3. Non-existent memory. On the NOVA, reads to non-existent memory
return zero, and writes are ignored. In the simulator, the
largest possible memory is instantiated and initialized to zero.
Thus, only writes need be checked against actual memory size.
4. Adding I/O devices. These modules must be modified:
nova_defs.h add interrupt request definition
nova_cpu.c add IOT mask, PI mask, and routine to dev_table
nova_sys.c add pointer to data structures to sim_devices
*/
#include "nova_defs.h"
#define INCA(x) (((x) + 1) & AMASK)
#define DECA(x) (((x) - 1) & AMASK)
#define SEXT(x) (((x) & SIGN)? ((x) | ~DMASK): (x))
#define STK_CHECK(x,y) if (((x) & 0377) < (y)) int_req = int_req | INT_STK
#define IND_STEP(x) M[x] & A_IND; \
if (((x) & 077770) == AUTO_INC) \
M[x] = (M[x] + 1) & 0177777; \
else if (((x) & 077770) == AUTO_DEC) \
M[x] = (M[x] - 1) & 0177777; \
x = M[x] & AMASK
#define UNIT_V_MDV (UNIT_V_UF) /* MDV present */
#define UNIT_MDV (1 << UNIT_V_MDV)
#define UNIT_V_STK (UNIT_V_UF+1) /* stack instr */
#define UNIT_STK (1 << UNIT_V_STK)
#define UNIT_V_BYT (UNIT_V_UF+2) /* byte instr */
#define UNIT_BYT (1 << UNIT_V_BYT)
#define UNIT_IOPT (UNIT_MDV | UNIT_STK | UNIT_BYT)
#define UNIT_NOVA3 (UNIT_MDV | UNIT_STK)
#define UNIT_NOVA4 (UNIT_MDV | UNIT_STK | UNIT_BYT)
#define UNIT_V_MSIZE (UNIT_V_UF+3) /* dummy mask */
#define UNIT_MSIZE (1 << UNIT_V_MSIZE)
uint16 M[MAXMEMSIZE] = { 0 }; /* memory */
int32 AC[4] = { 0 }; /* accumulators */
int32 C = 0; /* carry flag */
int32 saved_PC = 0; /* program counter */
int32 SP = 0; /* stack pointer */
int32 FP = 0; /* frame pointer */
int32 SR = 0; /* switch register */
int32 dev_done = 0; /* device done flags */
int32 dev_busy = 0; /* device busy flags */
int32 dev_disable = 0; /* int disable flags */
int32 iot_enb = -1; /* IOT enables */
int32 int_req = 0; /* interrupt requests */
int32 pimask = 0; /* priority int mask */
int32 pwr_low = 0; /* power fail flag */
int32 ind_max = 16; /* iadr nest limit */
int32 stop_dev = 0; /* stop on ill dev */
int32 old_PC = 0; /* previous PC */
extern int32 sim_int_char;
extern int32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_boot (int32 unitno);
extern int32 ptr (int32 pulse, int32 code, int32 AC);
extern int32 ptp (int32 pulse, int32 code, int32 AC);
extern int32 tti (int32 pulse, int32 code, int32 AC);
extern int32 tto (int32 pulse, int32 code, int32 AC);
extern int32 tti1 (int32 pulse, int32 code, int32 AC);
extern int32 tto1 (int32 pulse, int32 code, int32 AC);
extern int32 clk (int32 pulse, int32 code, int32 AC);
extern int32 plt (int32 pulse, int32 code, int32 AC);
extern int32 lpt (int32 pulse, int32 code, int32 AC);
extern int32 dsk (int32 pulse, int32 code, int32 AC);
extern int32 dkp (int32 pulse, int32 code, int32 AC);
extern int32 mta (int32 pulse, int32 code, int32 AC);
int32 nulldev (int32 pulse, int32 code, int32 AC);
extern t_stat sim_activate (UNIT *uptr, int32 delay);
/* IOT dispatch table */
struct ndev dev_table[64] = {
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, /* 0 - 7 */
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ INT_TTI, PI_TTI, &tti }, { INT_TTO, PI_TTO, &tto }, /* 10 - 17 */
{ INT_PTR, PI_PTR, &ptr }, { INT_PTP, PI_PTP, &ptp },
{ INT_CLK, PI_CLK, &clk }, { INT_PLT, PI_PLT, &plt },
{ 0, 0, &nulldev }, { INT_LPT, PI_LPT, &lpt },
{ INT_DSK, PI_DSK, &dsk }, { 0, 0, &nulldev }, /* 20 - 27 */
{ INT_MTA, PI_MTA, &mta }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, /* 30 - 37 */
{ 0, 0, &nulldev }, {INT_DKP, PI_DKP, &dkp },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, /* 40 - 47 */
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ INT_TTI1, PI_TTI1, &tti1 }, { INT_TTO1, PI_TTO1, &tto1 }, /* 50 - 57 */
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, /* 60 - 67 */
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, /* 70 - 77 */
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev } };
/* CPU data structures
cpu_dev CPU device descriptor
cpu_unit CPU unit descriptor
cpu_reg CPU register list
cpu_mod CPU modifiers list
*/
UNIT cpu_unit = { UDATA (NULL, UNIT_FIX + UNIT_BINK + UNIT_MDV,
MAXMEMSIZE) };
REG cpu_reg[] = {
{ ORDATA (PC, saved_PC, 15) },
{ ORDATA (AC0, AC[0], 16) },
{ ORDATA (AC1, AC[1], 16) },
{ ORDATA (AC2, AC[2], 16) },
{ ORDATA (AC3, AC[3], 16) },
{ FLDATA (C, C, 16) },
{ ORDATA (SP, SP, 16) },
{ ORDATA (FP, FP, 16) },
{ ORDATA (SR, SR, 16) },
{ ORDATA (PI, pimask, 16) },
{ FLDATA (ION, int_req, INT_V_ION) },
{ FLDATA (ION_DELAY, int_req, INT_V_NO_ION_PENDING) },
{ FLDATA (STKOVF, int_req, INT_V_STK) },
{ FLDATA (PWR, pwr_low, 0) },
{ ORDATA (INT, int_req, INT_V_ION+1), REG_RO },
{ ORDATA (BUSY, dev_busy, INT_V_ION+1), REG_RO },
{ ORDATA (DONE, dev_done, INT_V_ION+1), REG_RO },
{ ORDATA (DISABLE, dev_disable, INT_V_ION+1), REG_RO },
{ FLDATA (STOP_DEV, stop_dev, 0) },
{ FLDATA (MDV, cpu_unit.flags, UNIT_V_MDV), REG_HRO },
{ FLDATA (ISTK, cpu_unit.flags, UNIT_V_STK), REG_HRO },
{ FLDATA (IBYT, cpu_unit.flags, UNIT_V_BYT), REG_HRO },
{ DRDATA (INDMAX, ind_max, 16), REG_NZ + PV_LEFT },
{ ORDATA (OLDPC, old_PC, 15), REG_RO },
{ ORDATA (WRU, sim_int_char, 8) },
{ ORDATA (IOTENB, iot_enb, 32), REG_HRO },
{ NULL } };
MTAB cpu_mod[] = {
{ UNIT_IOPT, UNIT_NOVA4, "NOVA4", "NOVA4", NULL },
{ UNIT_IOPT, UNIT_NOVA3, "NOVA3", "NOVA3", NULL },
{ UNIT_IOPT, UNIT_MDV, "MDV", "MDV", NULL },
{ UNIT_IOPT, 0, "none", "NONE", NULL },
{ UNIT_MSIZE, 4096, NULL, "4K", &cpu_set_size },
{ UNIT_MSIZE, 8192, NULL, "8K", &cpu_set_size },
{ UNIT_MSIZE, 12288, NULL, "12K", &cpu_set_size },
{ UNIT_MSIZE, 16384, NULL, "16K", &cpu_set_size },
{ UNIT_MSIZE, 20480, NULL, "20K", &cpu_set_size },
{ UNIT_MSIZE, 24576, NULL, "24K", &cpu_set_size },
{ UNIT_MSIZE, 28672, NULL, "28K", &cpu_set_size },
{ UNIT_MSIZE, 32768, NULL, "32K", &cpu_set_size },
{ 0 } };
DEVICE cpu_dev = {
"CPU", &cpu_unit, cpu_reg, cpu_mod,
1, 8, 15, 1, 8, 16,
&cpu_ex, &cpu_dep, &cpu_reset,
NULL, NULL, NULL };
t_stat sim_instr (void)
{
extern int32 sim_interval;
int32 PC, IR, i;
t_stat reason;
void mask_out (int32 mask);
extern int32 clk_sel, clk_time[4];
/* Restore register state */
PC = saved_PC & AMASK; /* load local PC */
C = C & CBIT;
mask_out (pimask); /* reset int system */
reason = 0;
sim_rtc_init (clk_time[clk_sel]); /* init calibration */
/* Main instruction fetch/decode loop */
while (reason == 0) { /* loop until halted */
if (sim_interval <= 0) { /* check clock queue */
if (reason = sim_process_event ()) break; }
if (int_req > INT_PENDING) { /* interrupt? */
int32 MA, indf;
int_req = int_req & ~INT_ION;
old_PC = M[INT_SAV] = PC;
if (int_req & INT_STK) { /* stack overflow? */
int_req = int_req & ~INT_STK; /* clear */
MA = STK_JMP; } /* jmp @3 */
else MA = INT_JMP; /* intr: jmp @1 */
for (i = 0, indf = 1; indf && (i < ind_max); i++) {
indf = IND_STEP (MA); } /* indirect loop */
if (i >= ind_max) {
reason = STOP_IND_INT;
break; }
PC = MA; } /* end interrupt */
if (sim_brk_summ && sim_brk_test (PC, SWMASK ('E'))) { /* breakpoint? */
reason = STOP_IBKPT; /* stop simulation */
break; }
IR = M[PC]; /* fetch instr */
PC = (PC + 1) & AMASK;
int_req = int_req | INT_NO_ION_PENDING; /* clear ION delay */
sim_interval = sim_interval - 1;
/* Operate instruction */
if (IR & I_OPR) { /* operate? */
int32 src, srcAC, dstAC;
srcAC = I_GETSRC (IR); /* get reg decodes */
dstAC = I_GETDST (IR);
switch (I_GETCRY (IR)) { /* decode carry */
case 0: /* load */
src = AC[srcAC] | C;
break;
case 1: /* clear */
src = AC[srcAC];
break;
case 2: /* set */
src = AC[srcAC] | CBIT;
break;
case 3: /* complement */
src = AC[srcAC] | (C ^ CBIT);
break; } /* end switch carry */
switch (I_GETALU (IR)) { /* decode ALU */
case 0: /* COM */
src = src ^ DMASK;
break;
case 1: /* NEG */
src = ((src ^ DMASK) + 1) & CMASK;
break;
case 2: /* MOV */
break;
case 3: /* INC */
src = (src + 1) & CMASK;
break;
case 4: /* ADC */
src = ((src ^ DMASK) + AC[dstAC]) & CMASK;
break;
case 5: /* SUB */
src = ((src ^ DMASK) + AC[dstAC] + 1) & CMASK;
break;
case 6: /* ADD */
src = (src + AC[dstAC]) & CMASK;
break;
case 7: /* AND */
src = src & (AC[dstAC] | CBIT);
break; } /* end switch oper */
/* Operate, continued */
switch (I_GETSHF (IR)) { /* decode shift */
case 0: /* nop */
break;
case 1: /* L */
src = ((src << 1) | (src >> 16)) & CMASK;
break;
case 2: /* R */
src = ((src >> 1) | (src << 16)) & CMASK;
break;
case 3: /* S */
src = ((src & 0377) << 8) | ((src >> 8) & 0377) |
(src & CBIT);
break; } /* end switch shift */
switch (I_GETSKP (IR)) { /* decode skip */
case 0: /* nop */
if ((IR & I_NLD) && (cpu_unit.flags & UNIT_STK)) {
int32 indf, MA; /* Nova 3 or 4 trap */
old_PC = M[TRP_SAV] = (PC - 1) & AMASK;
MA = TRP_JMP; /* jmp @47 */
for (i = 0, indf = 1; indf && (i < ind_max); i++) {
indf = IND_STEP (MA); } /* resolve ind */
if (i >= ind_max) { /* indirect loop? */
reason = STOP_IND_TRP;
break; }
PC = MA; /* new PC */
break; }
break;
case 1: /* SKP */
PC = (PC + 1) & AMASK;
break;
case 2: /* SZC */
if (src < CBIT) PC = (PC + 1) & AMASK;
break;
case 3: /* SNC */
if (src >= CBIT) PC = (PC + 1) & AMASK;
break;
case 4: /* SZR */
if ((src & DMASK) == 0) PC = (PC + 1) & AMASK;
break;
case 5: /* SNR */
if ((src & DMASK) != 0) PC = (PC + 1) & AMASK;
break;
case 6: /* SEZ */
if (src <= CBIT) PC = (PC + 1) & AMASK;
break;
case 7: /* SBN */
if (src > CBIT) PC = (PC + 1) & AMASK;
break; } /* end switch skip */
if ((IR & I_NLD) == 0) { /* load? */
AC[dstAC] = src & DMASK;
C = src & CBIT; } /* end if load */
} /* end if operate */
/* Memory reference instructions */
else if (IR < 060000) { /* mem ref? */
int32 src, MA, indf;
MA = I_GETDISP (IR); /* get disp */
switch (I_GETMODE (IR)) { /* decode mode */
case 0: /* page zero */
break;
case 1: /* PC relative */
if (MA & DISPSIGN) MA = 077400 | MA;
MA = (MA + PC - 1) & AMASK;
break;
case 2: /* AC2 relative */
if (MA & DISPSIGN) MA = 077400 | MA;
MA = (MA + AC[2]) & AMASK;
break;
case 3: /* AC3 relative */
if (MA & DISPSIGN) MA = 077400 | MA;
MA = (MA + AC[3]) & AMASK;
break; } /* end switch mode */
if (indf = IR & I_IND) { /* indirect? */
for (i = 0; indf && (i < ind_max); i++) { /* count */
indf = IND_STEP (MA); } /* resolve indirect */
if (i >= ind_max) { /* too many? */
reason = STOP_IND;
break; } }
/* Memory reference, continued */
switch (I_GETOPAC (IR)) { /* decode op + AC */
case 001: /* JSR */
AC[3] = PC;
case 000: /* JMP */
old_PC = PC;
PC = MA;
break;
case 002: /* ISZ */
src = (M[MA] + 1) & DMASK;
if (MEM_ADDR_OK (MA)) M[MA] = src;
if (src == 0) PC = (PC + 1) & AMASK;
break;
case 003: /* DSZ */
src = (M[MA] - 1) & DMASK;
if (MEM_ADDR_OK (MA)) M[MA] = src;
if (src == 0) PC = (PC + 1) & AMASK;
break;
case 004: /* LDA 0 */
AC[0] = M[MA];
break;
case 005: /* LDA 1 */
AC[1] = M[MA];
break;
case 006: /* LDA 2 */
AC[2] = M[MA];
break;
case 007: /* LDA 3 */
AC[3] = M[MA];
break;
case 010: /* STA 0 */
if (MEM_ADDR_OK (MA)) M[MA] = AC[0];
break;
case 011: /* STA 1 */
if (MEM_ADDR_OK (MA)) M[MA] = AC[1];
break;
case 012: /* STA 2 */
if (MEM_ADDR_OK (MA)) M[MA] = AC[2];
break;
case 013: /* STA 3 */
if (MEM_ADDR_OK (MA)) M[MA] = AC[3];
break; } /* end switch */
} /* end mem ref */
/* IOT instruction */
else { /* IOT */
int32 dstAC, pulse, code, device, iodata;
dstAC = I_GETDST (IR); /* decode fields */
code = I_GETIOT (IR);
pulse = I_GETPULSE (IR);
device = I_GETDEV (IR);
if (code == ioSKP) { /* IO skip? */
switch (pulse) { /* decode IR<8:9> */
case 0: /* skip if busy */
if ((device == DEV_CPU)? (int_req & INT_ION) != 0:
(dev_busy & dev_table[device].mask) != 0)
PC = (PC + 1) & AMASK;
break;
case 1: /* skip if not busy */
if ((device == DEV_CPU)? (int_req & INT_ION) == 0:
(dev_busy & dev_table[device].mask) == 0)
PC = (PC + 1) & AMASK;
break;
case 2: /* skip if done */
if ((device == DEV_CPU)? pwr_low != 0:
(dev_done & dev_table[device].mask) != 0)
PC = (PC + 1) & AMASK;
break;
case 3: /* skip if not done */
if ((device == DEV_CPU)? pwr_low == 0:
(dev_done & dev_table[device].mask) == 0)
PC = (PC + 1) & AMASK;
break; } /* end switch */
} /* end IO skip */
/* IOT, continued */
else if (device == DEV_MDV) {
switch (code) { /* case on opcode */
case ioNIO: /* frame ptr */
if (cpu_unit.flags & UNIT_STK) {
if (pulse == iopN) FP = AC[dstAC] & AMASK;
if (pulse == iopC) AC[dstAC] = FP; }
break;
case ioDIA: /* load byte */
if (cpu_unit.flags & UNIT_BYT)
AC[dstAC] = (M[AC[pulse] >> 1] >>
((AC[pulse] & 1)? 0: 8)) & 0377;
else AC[dstAC] = 0;
break;
case ioDOA: /* stack ptr */
if (cpu_unit.flags & UNIT_STK) {
if (pulse == iopN) SP = AC[dstAC] & AMASK;
if (pulse == iopC) AC[dstAC] = SP; }
break;
case ioDIB: /* push, pop */
if (cpu_unit.flags & UNIT_STK) {
if (pulse == iopN) { /* push */
SP = INCA (SP);
if (MEM_ADDR_OK (SP)) M[SP] = AC[dstAC];
STK_CHECK (SP, 1); }
if (pulse == iopC) { /* pop */
AC[dstAC] = M[SP];
SP = DECA (SP); }
if ((pulse == iopP) && /* Nova 4 pshn */
(cpu_unit.flags & UNIT_BYT)) {
SP = INCA (SP);
if (MEM_ADDR_OK (SP)) M[SP] = AC[dstAC];
if (SP > M[042]) int_req = int_req | INT_STK ;
}
}
break;
case ioDOB: /* store byte */
if (cpu_unit.flags & UNIT_BYT) {
int32 MA, val;
MA = AC[pulse] >> 1;
val = AC[dstAC] & 0377;
if (MEM_ADDR_OK (MA)) M[MA] = (AC[pulse] & 1)?
((M[MA] & ~0377) | val):
((M[MA] & 0377) | (val << 8)); }
break;
case ioDIC: /* save, return */
if (cpu_unit.flags & UNIT_STK) {
if (pulse == iopN) { /* save */
SP = INCA (SP);
if (MEM_ADDR_OK (SP)) M[SP] = AC[0];
SP = INCA (SP);
if (MEM_ADDR_OK (SP)) M[SP] = AC[1];
SP = INCA (SP);
if (MEM_ADDR_OK (SP)) M[SP] = AC[2];
SP = INCA (SP);
if (MEM_ADDR_OK (SP)) M[SP] = FP;
SP = INCA (SP);
if (MEM_ADDR_OK (SP)) M[SP] = (C >> 1) |
(AC[3] & AMASK);
AC[3] = FP = SP & AMASK;
STK_CHECK (SP, 5); }
if (pulse == iopC) { /* retn */
old_PC = PC;
SP = FP & AMASK;
C = (M[SP] << 1) & CBIT;
PC = M[SP] & AMASK;
SP = DECA (SP);
AC[3] = M[SP];
SP = DECA (SP);
AC[2] = M[SP];
SP = DECA (SP);
AC[1] = M[SP];
SP = DECA (SP);
AC[0] = M[SP];
SP = DECA (SP);
FP = AC[3] & AMASK; }
if ((pulse == iopP) && /* Nova 4 saven */
(cpu_unit.flags & UNIT_BYT)) {
int32 frameSz = M[PC] ;
PC = INCA (PC) ;
SP = INCA (SP);
if (MEM_ADDR_OK (SP)) M[SP] = AC[0];
SP = INCA (SP);
if (MEM_ADDR_OK (SP)) M[SP] = AC[1];
SP = INCA (SP);
if (MEM_ADDR_OK (SP)) M[SP] = AC[2];
SP = INCA (SP);
if (MEM_ADDR_OK (SP)) M[SP] = FP;
SP = INCA (SP);
if (MEM_ADDR_OK (SP)) M[SP] = (C >> 1) |
(AC[3] & AMASK);
AC[3] = FP = SP & AMASK ;
SP = (SP + frameSz) & AMASK ;
if (SP > M[042]) int_req = int_req | INT_STK;
}
}
break;
case ioDOC:
if ((dstAC == 2) && (cpu_unit.flags & UNIT_MDV)) {
uint32 mddata, uAC0, uAC1, uAC2;
uAC0 = (unsigned int32) AC[0];
uAC1 = (unsigned int32) AC[1];
uAC2 = (unsigned int32) AC[2];
if (pulse == iopP) { /* mul */
mddata = (uAC1 * uAC2) + uAC0;
AC[0] = (mddata >> 16) & DMASK;
AC[1] = mddata & DMASK; }
if (pulse == iopS) { /* div */
if ((uAC0 >= uAC2) || (uAC2 == 0))
C = CBIT;
else { C = 0;
mddata = (uAC0 << 16) | uAC1;
AC[1] = mddata / uAC2;
AC[0] = mddata % uAC2; } } }
if ((dstAC == 3) && (cpu_unit.flags & UNIT_BYT)) {
int32 mddata;
if (pulse == iopC) { /* muls */
mddata = (SEXT (AC[1]) * SEXT (AC[2])) +
SEXT (AC[0]);
AC[0] = (mddata >> 16) & DMASK;
AC[1] = mddata & DMASK; }
if (pulse == iopN) { /* divs */
if (AC[2] == 0) C = CBIT;
else { mddata = (SEXT (AC[0]) << 16) | AC[1];
AC[1] = mddata / SEXT (AC[2]);
AC[0] = mddata % SEXT (AC[2]);
if ((AC[1] > 077777) || (AC[1] < -0100000))
C = CBIT;
else C = 0;
AC[0] = AC[0] & DMASK; } } }
break; } /* end case code */
} /* end if mul/div */
/* IOT, continued */
else if (device == DEV_CPU) { /* CPU control */
switch (code) { /* decode IR<5:7> */
case ioDIA: /* read switches */
AC[dstAC] = SR;
break;
case ioDIB: /* int ack */
AC[dstAC] = 0;
int_req = (int_req & ~INT_DEV) |
(dev_done & ~dev_disable);
iodata = int_req & (-int_req);
for (i = DEV_LOW; i <= DEV_HIGH; i++) {
if (iodata & dev_table[i].mask) {
AC[dstAC] = i; break; } }
break;
case ioDOB: /* mask out */
mask_out (pimask = AC[dstAC]);
break;
case ioDIC: /* io reset */
reset_all (0); /* reset devices */
break;
case ioDOC: /* halt */
reason = STOP_HALT;
break; } /* end switch code */
switch (pulse) { /* decode IR<8:9> */
case iopS: /* ion */
int_req = (int_req | INT_ION) & ~INT_NO_ION_PENDING;
break;
case iopC: /* iof */
int_req = int_req & ~INT_ION;
break; } /* end switch pulse */
} /* end CPU control */
else if ((dev_table[device].mask == 0) ||
(dev_table[device].mask & iot_enb)) { /* normal device */
iodata = dev_table[device].routine (pulse, code, AC[dstAC]);
reason = iodata >> IOT_V_REASON;
if (code & 1) AC[dstAC] = iodata & 0177777; }
else reason = stop_dev;
} /* end if IOT */
} /* end while */
/* Simulation halted */
saved_PC = PC;
return reason;
}
/* Null device */
int32 nulldev (int32 pulse, int32 code, int32 AC)
{
return stop_dev << IOT_V_REASON;
}
/* New priority mask out */
void mask_out (int32 newmask)
{
int32 i;
dev_disable = 0;
for (i = DEV_LOW; i <= DEV_HIGH; i++) {
if (newmask & dev_table[i].pi)
dev_disable = dev_disable | dev_table[i].mask; }
int_req = (int_req & ~INT_DEV) | (dev_done & ~dev_disable);
return;
}
/* Reset routine */
t_stat cpu_reset (DEVICE *dptr)
{
int_req = int_req & ~(INT_ION | INT_STK);
pimask = 0;
dev_disable = 0;
pwr_low = 0;
sim_brk_types = sim_brk_dflt = SWMASK ('E');
return SCPE_OK;
}
/* Memory examine */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE) return SCPE_NXM;
if (vptr != NULL) *vptr = M[addr] & DMASK;
return SCPE_OK;
}
/* Memory deposit */
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE) return SCPE_NXM;
M[addr] = val & DMASK;
return SCPE_OK;
}
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 mc = 0;
t_addr i;
if ((val <= 0) || (val > MAXMEMSIZE) || ((val & 07777) != 0))
return SCPE_ARG;
for (i = val; i < MEMSIZE; i++) mc = mc | M[i];
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
return SCPE_OK;
MEMSIZE = val;
for (i = MEMSIZE; i < MAXMEMSIZE; i++) M[i] = 0;
return SCPE_OK;
}
/* Bootstrap routine for CPU */
#define BOOT_START 00000
#define BOOT_LEN (sizeof (boot_rom) / sizeof (int))
static const int32 boot_rom[] = {
0062677, /* IORST ;reset all I/O */
0060477, /* READS 0 ;read SR into AC0 */
0024026, /* LDA 1,C77 ;get dev mask */
0107400, /* AND 0,1 ;isolate dev code */
0124000, /* COM 1,1 ;- device code - 1 */
0010014, /* LOOP: ISZ OP1 ;device code to all */
0010030, /* ISZ OP2 ;I/O instructions */
0010032, /* ISZ OP3 */
0125404, /* INC 1,1,SZR ;done? */
0000005, /* JMP LOOP ;no, increment again */
0030016, /* LDA 2,C377 ;place JMP 377 into */
0050377, /* STA 2,377 ;location 377 */
0060077, /* OP1: 060077 ;start device (NIOS 0) */
00101102, /* MOVL 0,0,SZC ;test switch 0, low speed? */
0000377, /* C377: JMP 377 ;no - jmp 377 & wait */
0004030, /* LOOP2: JSR GET+1 ;get a frame */
0101065, /* MOVC 0,0,SNR ;is it non-zero? */
0000017, /* JMP LOOP2 ;no, ignore */
0004027, /* LOOP4: JSR GET ;yes, get full word */
0046026, /* STA 1,@C77 ;store starting at 100 */
/* ;2's complement of word ct */
0010100, /* ISZ 100 ;done? */
0000022, /* JMP LOOP4 ;no, get another */
0000077, /* C77: JMP 77 ;yes location ctr and */
/* ;jmp to last word */
0126420, /* GET: SUBZ 1,1 ; clr AC1, set carry */
/* OP2: */
0063577, /* LOOP3: 063577 ;done? (SKPDN 0) - 1 */
0000030, /* JMP LOOP3 ;no -- wait */
0060477, /* OP3: 060477 ;y -- read in ac0 (DIAS 0,0) */
0107363, /* ADDCS 0,1,SNC ;add 2 frames swapped - got 2nd? */
0000030, /* JMP LOOP3 ;no go back after it */
0125300, /* MOVS 1,1 ;yes swap them */
0001400, /* JMP 0,3 ;rtn with full word */
0000000 /* 0 ;padding */
};
t_stat cpu_boot (int32 unitno)
{
int32 i;
extern int32 saved_PC;
for (i = 0; i < BOOT_LEN; i++) M[BOOT_START + i] = boot_rom[i];
saved_PC = BOOT_START;
return SCPE_OK;
}