simh-testsetgenerator/PDP10/pdp10_ksio.c
Bob Supnik 701f0fe028 Notes For V2.8
1. New Features

1.1 Directory and documentation

- Only common files (SCP and libraries) are in the top level
  directory.  Individual simulator files are in their individual
  directories.
- simh_doc.txt has been split up.  simh_doc.txt now documents
  only SCP.  The individual simulators are documented in separate
  text files in their own directories.
- mingw_build.bat is a batch file for the MINGW/gcc environment
  that will build all the simulators, assuming the root directory
  structure is at c:\sim.
- Makefile is a UNIX make file for the gcc environment that will
  build all the simulators, assuming the root directory is at
  c:\sim.

1.2 SCP

- DO <file name> executes the SCP commands in the specified file.
- Replicated registers in unit structures can now be declared as
  arrays for examine, modify, save, and restore.  Most replicated
  unit registers (for example, mag tape position registers) have
  been changed to arrays.
- The ADD/REMOVE commands have been replaced by SET unit ONLINE
  and SET unit OFFLINE, respectively.
- Register names that are unique within an entire simulator do
  not have to be prefaced with the device name.
- The ATTACH command can attach files read only, either under
  user option (-r), or because the attached file is ready only.
- The SET/SHOW capabilities have been extended.  New forms include:

	SET <dev> param{=value}{ param ...}
	SET <unit> param{=value}{ param ...}
	SHOW <dev> {param param ...}
	SHOW <unit> {param param ...}

- Multiple breakpoints have been implemented.  Breakpoints are
  set/cleared/displayed by:

	BREAK addr_list{[count]}
	NOBREAK addr_list
	SHOW BREAK addr_list

1.3 PDP-11 simulator

- Unibus map implemented, with 22b RP controller (URH70) or 18b
  RP controller (URH11) (in debug).
- All DMA peripherals rewritten to use map.
- Many peripherals modified for source sharing with VAX.
- RQDX3 implemented.
- Bugs fixed in RK11 and RL11 write check.

1.4 PDP-10 simulator

- ITS 1-proceed implemented.
- Bugs fixed in ITS PC sampling and LPMR

1.5 18b PDP simulator

- Interrupts split out to multiple levels to allow easier
  expansion.

1.5 IBM System 3 Simulator

- Written by Charles (Dutch) Owen.

1.6 VAX Simulator (in debug)

- Simulates MicroVAX 3800 (KA655) with 16MB-64MB memory, RQDX3,
  RLV12, TSV11, DZV11, LPV11, PCV11.
- CDROM capability has been added to the RQDX3, to allow testing
  with VMS hobbyist images.

1.7 SDS 940 Simulator (not tested)

- Simulates SDS 940, 16K-64K memory, fixed and moving head
  disk, magtape, line printer, console.

1.8 Altair Z80

- Revised from Charles (Dutch) Owen's original by Peter Schorn.
- MITS 8080 with full Z80 simulation.
- 4K and 8K BASIC packages, Prolog package.

1.9 Interdata

The I4 simulator has been withdrawn for major rework.  Look for
a complete 16b/32b Interdata simulator sometime next year.

2. Release Notes

2.1 SCP

SCP now allows replicated registers in unit structures to be
modelled as arrays.  All replicated register declarations have
been replaced by register array declarations.  As a result,
save files from prior revisions will generate errors after
restoring main memory.

2.2 PDP-11

The Unibus map code is in debug.  The map was implemented primarily
to allow source sharing with the VAX, which requires a DMA map.
DMA devices work correctly with the Unibus map disabled.

The RQDX3 simulator has run a complete RSTS/E SYSGEN, with multiple
drives, and booted the completed system from scratch.

2.3 VAX

The VAX simulator will run the boot code up to the >>> prompt.  It
can successfully process a SHOW DEVICE command.  It runs the HCORE
instruction diagnostic.  It can boot the hobbyist CD through SYSBOOT
and through the date/time dialog and restore the hobbyist CD, using
standalone backup.  On the boot of the restored disk, it gets to the
date/time dialog, and then crashes.

2.4 SDS 940

The SDS 940 is untested, awaiting real code.

2.5 GCC Optimization

At -O2 and above, GCC does not correctly compile the simulators which
use setjmp-longjmp (PDP-11, PDP-10, VAX).  A working hypothesis is
that optimized state maintained in registers is being used in the
setjmp processing routine.  On the PDP-11 and PDP-10, all of this
state has been either made global, or volatile, to encourage GCC to
keep the state up to date in memory.  The VAX is still vulnerable.

3. Work list

3.1 SCP

- Better ENABLE/DISABLE.

3.2 PDP-11 RQDX3

Software mapped mode, RCT read simulation, VMS debug.
2011-04-15 08:33:38 -07:00

551 lines
16 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* pdp10_ksio.c: PDP-10 KS10 I/O subsystem simulator
Copyright (c) 1993-2001, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
uba Unibus adapters
23-Sep-01 RMS New IO page address constants
07-Sep-01 RMS Revised device disable mechanism
25-Aug-01 RMS Enabled DZ11
21-Aug-01 RMS Updated DZ11 disable
01-Jun-01 RMS Updated DZ11 vectors
12-May-01 RMS Fixed typo
The KS10 uses the PDP-11 Unibus for its I/O, via adapters. While
nominally four adapters are supported, in practice only 1 and 3
are implemented. The disks are placed on adapter 1, the rest of
the I/O devices on adapter 3.
In theory, we should maintain completely separate Unibuses, with
distinct PI systems. In practice, this simulator has so few devices
that we can get away with a single PI system, masking for which
devices are on adapter 1, and which on adapter 3. The Unibus
implementation is modeled on the Qbus in the PDP-11 simulator and
is described there.
The I/O subsystem is programmed by I/O instructions which create
Unibus operations (read, read pause, write, write byte). DMA is
the responsibility of the I/O device simulators, which also implement
Unibus to physical memory mapping.
The priority interrupt subsystem (and other privileged functions)
is programmed by I/O instructions with internal devices codes
(opcodes 700-702). These are dispatched here, although many are
handled in the memory management unit or elsewhere.
The ITS instructions are significantly different from the TOPS-10/20
instructions. They do not use the extended address calculation but
instead provide instruction variants (Q for Unibus adapter 1, I for
Unibus adapter 3) which insert the Unibus adapter number into the
effective address.
*/
#include "pdp10_defs.h"
#include <setjmp.h>
#define eaRB (ea & ~1)
#define GETBYTE(ea,x) ((((ea) & 1)? (x) >> 8: (x)) & 0377)
#define UBNXM_FAIL(pa,op) \
n = iocmap[GET_IOUBA (pa)]; \
if (n >= 0) ubcs[n] = ubcs[n] | UBCS_TMO | UBCS_NXD; \
pager_word = PF_HARD | PF_VIRT | PF_IO | \
((op == WRITEB)? PF_BYTE: 0) | \
(TSTF (F_USR)? PF_USER: 0) | (pa); \
ABORT (PAGE_FAIL)
/* Unibus adapter data */
int32 ubcs[UBANUM] = { 0 }; /* status registers */
int32 ubmap[UBANUM][UMAP_MEMSIZE] = { 0 }; /* Unibus maps */
int32 int_req = 0; /* interrupt requests */
/* Map IO controller numbers to Unibus adapters: -1 = non-existent */
static int iocmap[IO_N_UBA] = { /* map I/O ext to UBA # */
-1, 0, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
static const int32 ubabr76[UBANUM] = {
INT_UB1 & (INT_IPL7 | INT_IPL6), INT_UB3 & (INT_IPL7 | INT_IPL6) };
static const int32 ubabr54[UBANUM] = {
INT_UB1 & (INT_IPL5 | INT_IPL4), INT_UB3 & (INT_IPL5 | INT_IPL4) };
extern d10 *ac_cur;
extern d10 pager_word;
extern int32 flags, pi_l2bit[8];
extern UNIT cpu_unit;
extern jmp_buf save_env;
extern d10 Read (a10 ea);
extern void pi_eval ();
extern t_stat dz_rd (int32 *data, int32 addr, int32 access);
extern t_stat dz_wr (int32 data, int32 addr, int32 access);
extern int32 dz_enb;
extern t_stat pt_rd (int32 *data, int32 addr, int32 access);
extern t_stat pt_wr (int32 data, int32 addr, int32 access);
extern int32 pt_enb;
extern t_stat lp20_rd (int32 *data, int32 addr, int32 access);
extern t_stat lp20_wr (int32 data, int32 addr, int32 access);
extern int32 lp20_inta (void);
extern t_stat rp_rd (int32 *data, int32 addr, int32 access);
extern t_stat rp_wr (int32 data, int32 addr, int32 access);
extern int32 rp_inta (void);
extern t_stat tu_rd (int32 *data, int32 addr, int32 access);
extern t_stat tu_wr (int32 data, int32 addr, int32 access);
extern int32 tu_inta (void);
extern t_stat tcu_rd (int32 *data, int32 addr, int32 access);
t_stat ubmap_rd (int32 *data, int32 addr, int32 access);
t_stat ubmap_wr (int32 data, int32 addr, int32 access);
t_stat ubs_rd (int32 *data, int32 addr, int32 access);
t_stat ubs_wr (int32 data, int32 addr, int32 access);
t_stat rd_zro (int32 *data, int32 addr, int32 access);
t_stat wr_nop (int32 data, int32 addr, int32 access);
t_stat uba_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat uba_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat uba_reset (DEVICE *dptr);
d10 ReadIO (a10 ea);
void WriteIO (a10 ea, d10 val, int32 mode);
/* Unibus adapter data structures
uba_dev UBA device descriptor
uba_unit UBA units
uba_reg UBA register list
*/
UNIT uba_unit[] = {
{ UDATA (NULL, UNIT_FIX, UMAP_MEMSIZE) },
{ UDATA (NULL, UNIT_FIX, UMAP_MEMSIZE) } };
REG uba_reg[] = {
{ ORDATA (INTREQ, int_req, 32), REG_RO },
{ ORDATA (UB1CS, ubcs[0], 18) },
{ ORDATA (UB3CS, ubcs[1], 18) },
{ NULL } };
DEVICE uba_dev = {
"UBA", uba_unit, uba_reg, NULL,
UBANUM, 8, UMAP_ASIZE, 1, 8, 32,
&uba_ex, &uba_dep, &uba_reset,
NULL, NULL, NULL };
/* PDP-11 I/O structures */
struct iolink { /* I/O page linkage */
int32 low; /* low I/O addr */
int32 high; /* high I/O addr */
int32 *enb; /* enable flag */
t_stat (*read)(); /* read routine */
t_stat (*write)(); }; /* write routine */
/* Table of I/O devices and corresponding read/write routines
The expected Unibus adapter number is included as the high 2 bits */
struct iolink iotable[] = {
{ IO_UBA1+IOBA_RP, IO_UBA1+IOBA_RP+IOLN_RP,
NULL, &rp_rd, &rp_wr }, /* disk */
{ IO_UBA3+IOBA_TU, IO_UBA3+IOBA_TU+IOLN_TU,
NULL, &tu_rd, &tu_wr }, /* mag tape */
{ IO_UBA3+IOBA_DZ, IO_UBA3+IOBA_DZ+IOLN_DZ,
&dz_enb, &dz_rd, &dz_wr }, /* terminal mux */
{ IO_UBA3+IOBA_LP20, IO_UBA3+IOBA_LP20+IOLN_LP20,
NULL, &lp20_rd, &lp20_wr }, /* line printer */
{ IO_UBA3+IOBA_PT, IO_UBA3+IOBA_PT+IOLN_PT,
&pt_enb, &pt_rd, &pt_wr }, /* paper tape */
{ IO_UBA1+IOBA_UBMAP, IO_UBA1+IOBA_UBMAP+IOLN_UBMAP,
NULL, &ubmap_rd, &ubmap_wr }, /* Unibus 1 map */
{ IO_UBA3+IOBA_UBMAP, IO_UBA3+IOBA_UBMAP+IOLN_UBMAP,
NULL, &ubmap_rd, &ubmap_wr }, /* Unibus 3 map */
{ IO_UBA1+IOBA_UBCS, IO_UBA1+IOBA_UBCS+IOLN_UBCS,
NULL, &ubs_rd, &ubs_wr }, /* Unibus 1 c/s */
{ IO_UBA3+IOBA_UBCS, IO_UBA3+IOBA_UBCS+IOLN_UBCS,
NULL, &ubs_rd, &ubs_wr }, /* Unibus 3 c/s */
{ IO_UBA1+IOBA_UBMNT, IO_UBA1+IOBA_UBMNT+IOLN_UBMNT,
NULL, &rd_zro, &wr_nop }, /* Unibus 1 maint */
{ IO_UBA3+IOBA_UBMNT, IO_UBA3+IOBA_UBMNT+IOLN_UBMNT,
NULL, &rd_zro, &wr_nop }, /* Unibus 3 maint */
{ IO_UBA3+IOBA_TCU, IO_UBA3+IOBA_TCU+IOLN_TCU,
NULL, &tcu_rd, &wr_nop }, /* TCU150 */
{ 00100000, 00100000, NULL, &rd_zro, &wr_nop }, /* Mem sys stat */
{ 0, 0, 0, NULL, NULL } };
/* Interrupt request to interrupt action map */
int32 (*int_ack[32])() = { /* int ack routines */
NULL, NULL, NULL, NULL, NULL, NULL, &rp_inta, &tu_inta,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, &lp20_inta, NULL, NULL, NULL, NULL, NULL };
/* Interrupt request to vector map */
int32 int_vec[32] = { /* int req to vector */
0, 0, 0, 0, 0, 0, VEC_RP, VEC_TU,
0, 0, 0, 0, 0, 0, 0, 0,
VEC_DZRX, VEC_DZTX, 0, 0, 0, 0, 0, 0,
VEC_PTR, VEC_PTP, VEC_LP20, 0, 0, 0, 0, 0 };
/* IO 710 (DEC) TIOE - test I/O word, skip if zero
(ITS) IORDI - read word from Unibus 3
returns TRUE if skip, FALSE otherwise
*/
t_bool io710 (int32 ac, a10 ea)
{
d10 val;
if (ITS) AC(ac) = ReadIO (IO_UBA3 | ea); /* IORDI */
else { /* TIOE */
val = ReadIO (ea); /* read word */
if ((AC(ac) & val) == 0) return TRUE; }
return FALSE;
}
/* IO 711 (DEC) TION - test I/O word, skip if non-zero
(ITS) IORDQ - read word from Unibus 1
returns TRUE if skip, FALSE otherwise
*/
t_bool io711 (int32 ac, a10 ea)
{
d10 val;
if (ITS) AC(ac) = ReadIO (IO_UBA1 | ea); /* IORDQ */
else { /* TION */
val = ReadIO (ea); /* read word */
if ((AC(ac) & val) != 0) return TRUE; }
return FALSE;
}
/* IO 712 (DEC) RDIO - read I/O word, addr in ea
(ITS) IORD - read I/O word, addr in M[ea]
*/
d10 io712 (a10 ea)
{
return ReadIO (ea); /* RDIO, IORD */
}
/* IO 713 (DEC) WRIO - write I/O word, addr in ea
(ITS) IOWR - write I/O word, addr in M[ea]
*/
void io713 (d10 val, a10 ea)
{
WriteIO (ea, val & 0177777, WRITE); /* WRIO, IOWR */
return;
}
/* IO 714 (DEC) BSIO - set bit in I/O address
(ITS) IOWRI - write word to Unibus 3
*/
void io714 (d10 val, a10 ea)
{
d10 temp;
val = val & 0177777;
if (ITS) WriteIO (IO_UBA3 | ea, val, WRITE); /* IOWRI */
else {
temp = ReadIO (ea); /* BSIO */
temp = temp | val;
WriteIO (ea, temp, WRITE); }
return;
}
/* IO 715 (DEC) BCIO - clear bit in I/O address
(ITS) IOWRQ - write word to Unibus 1
*/
void io715 (d10 val, a10 ea)
{
d10 temp;
val = val & 0177777;
if (ITS) WriteIO (IO_UBA1 | ea, val, WRITE); /* IOWRQ */
else {
temp = ReadIO (ea); /* BCIO */
temp = temp & ~val;
WriteIO (ea, temp, WRITE); }
return;
}
/* IO 720 (DEC) TIOEB - test I/O byte, skip if zero
(ITS) IORDBI - read byte from Unibus 3
returns TRUE if skip, FALSE otherwise
*/
t_bool io720 (int32 ac, a10 ea)
{
d10 val;
if (ITS) { /* IORDBI */
val = ReadIO (IO_UBA3 | eaRB);
AC(ac) = GETBYTE (ea, val); }
else { /* TIOEB */
val = ReadIO (eaRB);
val = GETBYTE (ea, val);
if ((AC(ac) & val) == 0) return TRUE; }
return FALSE;
}
/* IO 721 (DEC) TIONB - test I/O word, skip if non-zero
(ITS) IORDBQ - read word from Unibus 1
returns TRUE if skip, FALSE otherwise
*/
t_bool io721 (int32 ac, a10 ea)
{
d10 val;
if (ITS) { /* IORDBQ */
val = ReadIO (IO_UBA1 | eaRB);
AC(ac) = GETBYTE (ea, val); }
else { /* TIONB */
val = ReadIO (eaRB);
val = GETBYTE (ea, val);
if ((AC(ac) & val) != 0) return TRUE; }
return FALSE;
}
/* IO 722 (DEC) RDIOB - read I/O byte, addr in ea
(ITS) IORDB - read I/O byte, addr in M[ea]
*/
d10 io722 (a10 ea)
{
d10 val;
val = ReadIO (eaRB); /* RDIOB, IORDB */
return GETBYTE (ea, val);
}
/* IO 723 (DEC) WRIOB - write I/O byte, addr in ea
(ITS) IOWRB - write I/O byte, addr in M[ea]
*/
void io723 (d10 val, a10 ea)
{
WriteIO (ea, val & 0377, WRITEB); /* WRIOB, IOWRB */
return;
}
/* IO 724 (DEC) BSIOB - set bit in I/O byte address
(ITS) IOWRBI - write byte to Unibus 3
*/
void io724 (d10 val, a10 ea)
{
d10 temp;
val = val & 0377;
if (ITS) WriteIO (IO_UBA3 | ea, val, WRITEB); /* IOWRBI */
else {
temp = ReadIO (eaRB); /* BSIOB */
temp = GETBYTE (ea, temp);
temp = temp | val;
WriteIO (ea, temp, WRITEB); }
return;
}
/* IO 725 (DEC) BCIOB - clear bit in I/O byte address
(ITS) IOWRBQ - write byte to Unibus 1
*/
void io725 (d10 val, a10 ea)
{
d10 temp;
val = val & 0377;
if (ITS) WriteIO (IO_UBA1 | ea, val, WRITEB); /* IOWRBQ */
else {
temp = ReadIO (eaRB); /* BCIOB */
temp = GETBYTE (ea, temp);
temp = temp & ~val;
WriteIO (ea, temp, WRITEB); }
return;
}
/* Read and write I/O devices.
These routines are the linkage between the 64b world of the main
simulator and the 32b world of the device simulators.
*/
d10 ReadIO (a10 ea)
{
int32 n, pa, val;
struct iolink *p;
pa = (int32) ea; /* cvt addr to 32b */
for (p = &iotable[0]; p -> low != 0; p++ ) {
if ((pa >= p -> low) && (pa < p -> high) &&
((p -> enb == NULL) || *p -> enb)) {
p -> read (&val, pa, READ);
pi_eval ();
return ((d10) val); } }
UBNXM_FAIL (pa, READ);
}
void WriteIO (a10 ea, d10 val, int32 mode)
{
int32 n, pa;
struct iolink *p;
pa = (int32) ea; /* cvt addr to 32b */
for (p = &iotable[0]; p -> low != 0; p++ ) {
if ((pa >= p -> low) && (pa < p -> high) &&
((p -> enb == NULL) || *p -> enb)) {
p -> write ((int32) val, pa, mode);
pi_eval ();
return; } }
UBNXM_FAIL (pa, mode);
}
/* Evaluate Unibus priority interrupts */
int32 pi_ub_eval ()
{
int32 i, lvl;
for (i = lvl = 0; i < UBANUM; i++) {
if (int_req & ubabr76[i])
lvl = lvl | pi_l2bit[UBCS_GET_HI (ubcs[i])];
if (int_req & ubabr54[i])
lvl = lvl | pi_l2bit[UBCS_GET_LO (ubcs[i])]; }
return lvl;
}
/* Return Unibus device vector
Takes as input the request level calculated by pi_eval
If there is an interrupting Unibus device at that level, return its vector,
otherwise, returns 0
*/
int32 pi_ub_vec (int32 rlvl, int32 *uba)
{
int32 i, masked_irq;
for (i = masked_irq = 0; i < UBANUM; i++) {
if ((rlvl == UBCS_GET_HI (ubcs[i])) && /* req on hi level? */
(masked_irq = int_req & ubabr76[i])) break;
if ((rlvl == UBCS_GET_LO (ubcs[i])) && /* req on lo level? */
(masked_irq = int_req & ubabr54[i])) break; }
*uba = (i << 1) + 1; /* store uba # */
for (i = 0; (i < 32) && masked_irq; i++) { /* find hi pri req */
if ((masked_irq >> i) & 1) {
int_req = int_req & ~(1u << i); /* clear req */
if (int_ack[i]) return int_ack[i]();
return int_vec[i]; } } /* return vector */
return 0;
}
/* Unibus adapter map routines */
t_stat ubmap_rd (int32 *val, int32 pa, int32 mode)
{
int32 n = iocmap[GET_IOUBA (pa)];
if (n < 0) ABORT (STOP_ILLIOC);
*val = ubmap[n][pa & UMAP_AMASK];
return SCPE_OK;
}
t_stat ubmap_wr (int32 val, int32 pa, int32 mode)
{
int32 n = iocmap[GET_IOUBA (pa)];
if (n < 0) ABORT (STOP_ILLIOC);
ubmap[n][pa & UMAP_AMASK] = UMAP_POSFL (val) | UMAP_POSPN (val);
return SCPE_OK;
}
/* Unibus adapter control/status routines */
t_stat ubs_rd (int32 *val, int32 pa, int32 mode)
{
int32 n = iocmap[GET_IOUBA (pa)];
if (n < 0) ABORT (STOP_ILLIOC);
if (int_req & ubabr76[n]) ubcs[n] = ubcs[n] | UBCS_HI;
if (int_req & ubabr54[n]) ubcs[n] = ubcs[n] | UBCS_LO;
*val = ubcs[n] = ubcs[n] & ~UBCS_RDZ;
return SCPE_OK;
}
t_stat ubs_wr (int32 val, int32 pa, int32 mode)
{
int32 n = iocmap[GET_IOUBA (pa)];
if (n < 0) ABORT (STOP_ILLIOC);
if (val & UBCS_INI) {
reset_all (5); /* start after UBA */
ubcs[n] = val & UBCS_DXF; }
else ubcs[n] = val & UBCS_RDW;
if (int_req & ubabr76[n]) ubcs[n] = ubcs[n] | UBCS_HI;
if (int_req & ubabr54[n]) ubcs[n] = ubcs[n] | UBCS_LO;
return SCPE_OK;
}
/* Unibus adapter read zero/write ignore routines */
t_stat rd_zro (int32 *val, int32 pa, int32 mode)
{
*val = 0;
return SCPE_OK;
}
t_stat wr_nop (int32 val, int32 pa, int32 mode)
{
return SCPE_OK;
}
t_stat uba_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
int32 uba = uptr - uba_unit;
if (addr >= UMAP_MEMSIZE) return SCPE_NXM;
*vptr = ubmap[uba][addr];
return SCPE_OK;
}
t_stat uba_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
int32 uba = uptr - uba_unit;
if (addr >= UMAP_MEMSIZE) return SCPE_NXM;
ubmap[uba][addr] = (int32) val & UMAP_MASK;
return SCPE_OK;
}
t_stat uba_reset (DEVICE *dptr)
{
int32 i, uba;
int_req = 0;
for (uba = 0; uba < UBANUM; uba++) {
ubcs[uba] = 0;
for (i = 0; i < UMAP_MEMSIZE; i++) ubmap[uba][i] = 0; }
pi_eval ();
return SCPE_OK;
}