1. New Features 1.1 Directory and documentation - Only common files (SCP and libraries) are in the top level directory. Individual simulator files are in their individual directories. - simh_doc.txt has been split up. simh_doc.txt now documents only SCP. The individual simulators are documented in separate text files in their own directories. - mingw_build.bat is a batch file for the MINGW/gcc environment that will build all the simulators, assuming the root directory structure is at c:\sim. - Makefile is a UNIX make file for the gcc environment that will build all the simulators, assuming the root directory is at c:\sim. 1.2 SCP - DO <file name> executes the SCP commands in the specified file. - Replicated registers in unit structures can now be declared as arrays for examine, modify, save, and restore. Most replicated unit registers (for example, mag tape position registers) have been changed to arrays. - The ADD/REMOVE commands have been replaced by SET unit ONLINE and SET unit OFFLINE, respectively. - Register names that are unique within an entire simulator do not have to be prefaced with the device name. - The ATTACH command can attach files read only, either under user option (-r), or because the attached file is ready only. - The SET/SHOW capabilities have been extended. New forms include: SET <dev> param{=value}{ param ...} SET <unit> param{=value}{ param ...} SHOW <dev> {param param ...} SHOW <unit> {param param ...} - Multiple breakpoints have been implemented. Breakpoints are set/cleared/displayed by: BREAK addr_list{[count]} NOBREAK addr_list SHOW BREAK addr_list 1.3 PDP-11 simulator - Unibus map implemented, with 22b RP controller (URH70) or 18b RP controller (URH11) (in debug). - All DMA peripherals rewritten to use map. - Many peripherals modified for source sharing with VAX. - RQDX3 implemented. - Bugs fixed in RK11 and RL11 write check. 1.4 PDP-10 simulator - ITS 1-proceed implemented. - Bugs fixed in ITS PC sampling and LPMR 1.5 18b PDP simulator - Interrupts split out to multiple levels to allow easier expansion. 1.5 IBM System 3 Simulator - Written by Charles (Dutch) Owen. 1.6 VAX Simulator (in debug) - Simulates MicroVAX 3800 (KA655) with 16MB-64MB memory, RQDX3, RLV12, TSV11, DZV11, LPV11, PCV11. - CDROM capability has been added to the RQDX3, to allow testing with VMS hobbyist images. 1.7 SDS 940 Simulator (not tested) - Simulates SDS 940, 16K-64K memory, fixed and moving head disk, magtape, line printer, console. 1.8 Altair Z80 - Revised from Charles (Dutch) Owen's original by Peter Schorn. - MITS 8080 with full Z80 simulation. - 4K and 8K BASIC packages, Prolog package. 1.9 Interdata The I4 simulator has been withdrawn for major rework. Look for a complete 16b/32b Interdata simulator sometime next year. 2. Release Notes 2.1 SCP SCP now allows replicated registers in unit structures to be modelled as arrays. All replicated register declarations have been replaced by register array declarations. As a result, save files from prior revisions will generate errors after restoring main memory. 2.2 PDP-11 The Unibus map code is in debug. The map was implemented primarily to allow source sharing with the VAX, which requires a DMA map. DMA devices work correctly with the Unibus map disabled. The RQDX3 simulator has run a complete RSTS/E SYSGEN, with multiple drives, and booted the completed system from scratch. 2.3 VAX The VAX simulator will run the boot code up to the >>> prompt. It can successfully process a SHOW DEVICE command. It runs the HCORE instruction diagnostic. It can boot the hobbyist CD through SYSBOOT and through the date/time dialog and restore the hobbyist CD, using standalone backup. On the boot of the restored disk, it gets to the date/time dialog, and then crashes. 2.4 SDS 940 The SDS 940 is untested, awaiting real code. 2.5 GCC Optimization At -O2 and above, GCC does not correctly compile the simulators which use setjmp-longjmp (PDP-11, PDP-10, VAX). A working hypothesis is that optimized state maintained in registers is being used in the setjmp processing routine. On the PDP-11 and PDP-10, all of this state has been either made global, or volatile, to encourage GCC to keep the state up to date in memory. The VAX is still vulnerable. 3. Work list 3.1 SCP - Better ENABLE/DISABLE. 3.2 PDP-11 RQDX3 Software mapped mode, RCT read simulation, VMS debug.
998 lines
33 KiB
C
998 lines
33 KiB
C
/* pdp11_fp.c: PDP-11 floating point simulator (32b version)
|
||
|
||
Copyright (c) 1993-2001, Robert M Supnik
|
||
|
||
Permission is hereby granted, free of charge, to any person obtaining a
|
||
copy of this software and associated documentation files (the "Software"),
|
||
to deal in the Software without restriction, including without limitation
|
||
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
and/or sell copies of the Software, and to permit persons to whom the
|
||
Software is furnished to do so, subject to the following conditions:
|
||
|
||
The above copyright notice and this permission notice shall be included in
|
||
all copies or substantial portions of the Software.
|
||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
||
Except as contained in this notice, the name of Robert M Supnik shall not
|
||
be used in advertising or otherwise to promote the sale, use or other dealings
|
||
in this Software without prior written authorization from Robert M Supnik.
|
||
|
||
05-Jun-98 RMS Fixed implementation specific shift bugs
|
||
20-Apr-98 RMS Fixed bug in MODf integer truncation
|
||
17-Apr-98 RMS Fixed bug in STCfi range check
|
||
16-Apr-98 RMS Fixed bugs in STEXP, STCfi, round/pack
|
||
09-Apr-98 RMS Fixed bug in LDEXP
|
||
04-Apr-98 RMS Fixed bug in MODf condition codes
|
||
|
||
This module simulates the PDP-11 floating point unit (FP11 series).
|
||
It is called from the instruction decoder for opcodes 170000:177777.
|
||
|
||
The floating point unit recognizes three instruction formats:
|
||
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ no operand
|
||
| 1 1 1 1| 0 0 0 0 0 0| opcode | 170000:
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 170077
|
||
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ one operand
|
||
| 1 1 1 1| 0 0 0| opcode | dest spec | 170100:
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 170777
|
||
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ register + operand
|
||
| 1 1 1 1| opcode | fac | dest spec | 171000:
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 177777
|
||
|
||
The instruction space is further extended through use of the floating
|
||
point status register (FPS) mode bits. Three mode bits affect how
|
||
instructions are interpreted:
|
||
|
||
FPS_D if 0, floating registers are single precision
|
||
if 1, floating registers are double precision
|
||
|
||
FPS_L if 0, integer operands are word
|
||
if 1, integer operands are longword
|
||
|
||
FPS_T if 0, floating operations are rounded
|
||
if 1, floating operations are truncated
|
||
|
||
FPS also contains the condition codes for the floating point unit,
|
||
and exception enable bits for individual error conditions. Exceptions
|
||
cause a trap through 0244, unless the individual exception, or all
|
||
exceptions, are disabled. Illegal address mode, undefined variable,
|
||
and divide by zero abort the current instruction; all other exceptions
|
||
permit the instruction to complete. (Aborts are implemented as traps
|
||
that request an "interrupt" trap. If an interrupt is pending, it is
|
||
serviced; if not, trap_req is updated and processing continues.)
|
||
|
||
Floating point specifiers are similar to integer specifiers, with
|
||
the length of the operand being up to 8 bytes. In two specific cases,
|
||
the floating point unit reads or writes only two bytes, rather than
|
||
the length specified by the operand type:
|
||
|
||
register for integers, only 16b are accessed; if the
|
||
operand is 32b, these are the high order 16b
|
||
of the operand
|
||
|
||
immediate for integers or floating point, only 16b are
|
||
accessed; if the operand is 32b or 64b, these
|
||
are the high order 16b of the operand
|
||
*/
|
||
|
||
#include "pdp11_defs.h"
|
||
|
||
/* Floating point status register */
|
||
|
||
#define FPS_ER (1u << FPS_V_ER) /* error */
|
||
#define FPS_ID (1u << FPS_V_ID) /* interrupt disable */
|
||
#define FPS_IUV (1u << FPS_V_IUV) /* int on undef var */
|
||
#define FPS_IU (1u << FPS_V_IU) /* int on underflow */
|
||
#define FPS_IV (1u << FPS_V_IV) /* int on overflow */
|
||
#define FPS_IC (1u << FPS_V_IC) /* int on conv error */
|
||
#define FPS_D (1u << FPS_V_D) /* single/double */
|
||
#define FPS_L (1u << FPS_V_L) /* word/long */
|
||
#define FPS_T (1u << FPS_V_T) /* round/truncate */
|
||
#define FPS_N (1u << FPS_V_N)
|
||
#define FPS_Z (1u << FPS_V_Z)
|
||
#define FPS_V (1u << FPS_V_V)
|
||
#define FPS_C (1u << FPS_V_C)
|
||
#define FPS_CC (FPS_N + FPS_Z + FPS_V + FPS_C)
|
||
#define FPS_RW (FPS_ER + FPS_ID + FPS_IUV + FPS_IU + FPS_IV + \
|
||
FPS_IC + FPS_D + FPS_L + FPS_T + FPS_CC)
|
||
|
||
/* Floating point exception codes */
|
||
|
||
#define FEC_OP 2 /* illegal op/mode */
|
||
#define FEC_DZRO 4 /* divide by zero */
|
||
#define FEC_ICVT 6 /* conversion error */
|
||
#define FEC_OVFLO 8 /* overflow */
|
||
#define FEC_UNFLO 10 /* underflow */
|
||
#define FEC_UNDFV 12 /* undef variable */
|
||
|
||
/* Floating point format, all assignments 32b relative */
|
||
|
||
#define FP_V_SIGN (63 - 32) /* high lw: sign */
|
||
#define FP_V_EXP (55 - 32) /* exponent */
|
||
#define FP_V_HB FP_V_EXP /* hidden bit */
|
||
#define FP_V_F0 (48 - 32) /* fraction 0 */
|
||
#define FP_V_F1 (32 - 32) /* fraction 1 */
|
||
#define FP_V_FROUND (31 - 32) /* f round point */
|
||
#define FP_V_F2 16 /* low lw: fraction 2 */
|
||
#define FP_V_F3 0 /* fraction 3 */
|
||
#define FP_V_DROUND (-1) /* d round point */
|
||
#define FP_M_EXP 0377
|
||
#define FP_SIGN (1u << FP_V_SIGN)
|
||
#define FP_EXP (FP_M_EXP << FP_V_EXP)
|
||
#define FP_HB (1u << FP_V_HB)
|
||
#define FP_FRACH ((1u << FP_V_HB) - 1)
|
||
#define FP_FRACL 0xFFFFFFFF
|
||
#define FP_BIAS 0200 /* exponent bias */
|
||
#define FP_GUARD 3 /* guard bits */
|
||
|
||
/* Data lengths */
|
||
|
||
#define WORD 2
|
||
#define LONG 4
|
||
#define QUAD 8
|
||
|
||
/* Double precision operations on 64b quantities */
|
||
|
||
#define F_LOAD(qd,ac,ds) ds.h = ac.h; ds.l = (qd)? ac.l: 0
|
||
#define F_LOAD_P(qd,ac,ds) ds -> h = ac.h; ds -> l = (qd)? ac.l: 0
|
||
#define F_LOAD_FRAC(qd,ac,ds) ds.h = (ac.h & FP_FRACH) | FP_HB; \
|
||
ds.l = (qd)? ac.l: 0
|
||
#define F_STORE(qd,sr,ac) ac.h = sr.h; if ((qd)) ac.l = sr.l
|
||
#define F_STORE_P(qd,sr,ac) ac.h = sr -> h; if ((qd)) ac.l = sr -> l
|
||
#define F_GET_FRAC_P(sr,ds) ds.l = sr -> l; \
|
||
ds.h = (sr -> h & FP_FRACH) | FP_HB
|
||
#define F_ADD(s2,s1,ds) ds.l = (s1.l + s2.l) & 0xFFFFFFFF; \
|
||
ds.h = (s1.h + s2.h + (ds.l < s2.l)) & 0xFFFFFFFF
|
||
#define F_SUB(s2,s1,ds) ds.h = (s1.h - s2.h - (s1.l < s2.l)) & 0xFFFFFFFF; \
|
||
ds.l = (s1.l - s2.l) & 0xFFFFFFFF
|
||
#define F_LT(x,y) ((x.h < y.h) || ((x.h == y.h) && (x.l < y.l)))
|
||
#define F_LT_AP(x,y) (((x -> h & ~FP_SIGN) < (y -> h & ~FP_SIGN)) || \
|
||
(((x -> h & ~FP_SIGN) == (y -> h & ~FP_SIGN)) && (x -> l < y -> l)))
|
||
#define F_LSH_V(sr,n,ds) \
|
||
ds.h = (((n) >= 32)? (sr.l << ((n) - 32)): \
|
||
(sr.h << (n)) | ((sr.l >> (32 - (n))) & and_mask[n])) \
|
||
& 0xFFFFFFFF; \
|
||
ds.l = ((n) >= 32)? 0: (sr.l << (n)) & 0xFFFFFFFF
|
||
#define F_RSH_V(sr,n,ds) \
|
||
ds.l = (((n) >= 32)? (sr.h >> ((n) - 32)) & and_mask[64 - (n)]: \
|
||
((sr.l >> (n)) & and_mask[32 - (n)]) | \
|
||
(sr.h << (32 - (n)))) & 0xFFFFFFFF; \
|
||
ds.h = ((n) >= 32)? 0: \
|
||
((sr.h >> (n)) & and_mask[32 - (n)]) & 0xFFFFFFFF
|
||
|
||
/* For the constant shift macro, arguments must in the range [2,31] */
|
||
|
||
#define F_LSH_1(ds) ds.h = ((ds.h << 1) | ((ds.l >> 31) & 1)) & 0xFFFFFFFF; \
|
||
ds.l = (ds.l << 1) & 0xFFFFFFFF
|
||
#define F_RSH_1(ds) ds.l = ((ds.l >> 1) & 0x7FFFFFFF) | ((ds.h & 1) << 31); \
|
||
ds.h = ((ds.h >> 1) & 0x7FFFFFFF)
|
||
#define F_LSH_K(sr,n,ds) \
|
||
ds.h = ((sr.h << (n)) | ((sr.l >> (32 - (n))) & and_mask[n])) \
|
||
& 0xFFFFFFFF; \
|
||
ds.l = (sr.l << (n)) & 0xFFFFFFFF
|
||
#define F_RSH_K(sr,n,ds) \
|
||
ds.l = (((sr.l >> (n)) & and_mask[32 - (n)]) | \
|
||
(sr.h << (32 - (n)))) & 0xFFFFFFFF; \
|
||
ds.h = ((sr.h >> (n)) & and_mask[32 - (n)]) & 0xFFFFFFFF
|
||
#define F_LSH_GUARD(ds) F_LSH_K(ds,FP_GUARD,ds)
|
||
#define F_RSH_GUARD(ds) F_RSH_K(ds,FP_GUARD,ds)
|
||
|
||
#define GET_BIT(ir,n) (((ir) >> n) & 1)
|
||
#define GET_SIGN(ir) GET_BIT((ir), FP_V_SIGN)
|
||
#define GET_EXP(ir) (((ir) >> FP_V_EXP) & FP_M_EXP)
|
||
#define GET_SIGN_L(ir) GET_BIT((ir), 31)
|
||
#define GET_SIGN_W(ir) GET_BIT((ir), 15)
|
||
|
||
extern jmp_buf save_env;
|
||
extern int32 FEC, FEA, FPS;
|
||
extern int32 CPUERR, trap_req;
|
||
extern int32 N, Z, V, C;
|
||
extern int32 R[8];
|
||
extern fpac_t FR[6];
|
||
extern int32 GeteaW (int32 spec);
|
||
extern int32 ReadW (int32 addr);
|
||
extern void WriteW (int32 data, int32 addr);
|
||
fpac_t zero_fac = { 0, 0 };
|
||
fpac_t one_fac = { 1, 0 };
|
||
fpac_t fround_fac = { (1u << (FP_V_FROUND + 32)), 0 };
|
||
fpac_t fround_guard_fac = { 0, (1u << (FP_V_FROUND + FP_GUARD)) };
|
||
fpac_t dround_guard_fac = { (1u << (FP_V_DROUND + FP_GUARD)), 0 };
|
||
fpac_t fmask_fac = { 0xFFFFFFFF, (1u << (FP_V_HB + FP_GUARD + 1)) - 1 };
|
||
static const uint32 and_mask[33] = { 0,
|
||
0x1, 0x3, 0x7, 0xF,
|
||
0x1F, 0x3F, 0x7F, 0xFF,
|
||
0x1FF, 0x3FF, 0x7FF, 0xFFF,
|
||
0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF,
|
||
0x1FFFF, 0x3FFFF, 0x7FFFF, 0xFFFFF,
|
||
0x1FFFFF, 0x3FFFFF, 0x7FFFFF, 0xFFFFFF,
|
||
0x1FFFFFF, 0x3FFFFFF, 0x7FFFFFF, 0xFFFFFFF,
|
||
0x1FFFFFFF, 0x3FFFFFFF, 0x7FFFFFFF, 0xFFFFFFFF };
|
||
int32 backup_PC;
|
||
int32 fpnotrap (int32 code);
|
||
int32 GeteaFP (int32 spec, int32 len);
|
||
unsigned int32 ReadI (int32 addr, int32 spec, int32 len);
|
||
void ReadFP (fpac_t *fac, int32 addr, int32 spec, int32 len);
|
||
void WriteI (int32 data, int32 addr, int32 spec, int32 len);
|
||
void WriteFP (fpac_t *data, int32 addr, int32 spec, int32 len);
|
||
int32 setfcc (int32 old_status, int32 result_high, int32 newV);
|
||
int32 addfp11 (fpac_t *src1, fpac_t *src2);
|
||
int32 mulfp11 (fpac_t *src1, fpac_t *src2);
|
||
int32 divfp11 (fpac_t *src1, fpac_t *src2);
|
||
int32 modfp11 (fpac_t *src1, fpac_t *src2, fpac_t *frac);
|
||
void frac_mulfp11 (fpac_t *src1, fpac_t *src2);
|
||
int32 roundfp11 (fpac_t *src);
|
||
int32 round_and_pack (fpac_t *fac, int32 exp, fpac_t *frac, int r);
|
||
|
||
/* Set up for instruction decode and execution */
|
||
|
||
void fp11 (int32 IR)
|
||
{
|
||
int32 dst, ea, ac, dstspec;
|
||
int32 i, qdouble, lenf, leni;
|
||
int32 newV, exp, sign;
|
||
fpac_t fac, fsrc, modfrac;
|
||
static const unsigned int32 i_limit[2][2] =
|
||
{ { 0x80000000, 0x80010000 }, { 0x80000000, 0x80000001 } };
|
||
|
||
backup_PC = PC; /* save PC for FEA */
|
||
ac = (IR >> 6) & 03; /* fac is IR<7:6> */
|
||
dstspec = IR & 077;
|
||
qdouble = FPS & FPS_D;
|
||
lenf = qdouble? QUAD: LONG;
|
||
switch ((IR >> 8) & 017) { /* decode IR<11:8> */
|
||
case 0:
|
||
switch (ac) { /* decode IR<7:6> */
|
||
case 0: /* specials */
|
||
if (IR == 0170000) { /* CFCC */
|
||
N = (FPS >> PSW_V_N) & 1;
|
||
Z = (FPS >> PSW_V_Z) & 1;
|
||
V = (FPS >> PSW_V_V) & 1;
|
||
C = (FPS >> PSW_V_C) & 1; }
|
||
else if (IR == 0170001) /* SETF */
|
||
FPS = FPS & ~FPS_D;
|
||
else if (IR == 0170002) /* SETI */
|
||
FPS = FPS & ~FPS_L;
|
||
else if (IR == 0170011) /* SETD */
|
||
FPS = FPS | FPS_D;
|
||
else if (IR == 0170012) /* SETL */
|
||
FPS = FPS | FPS_L;
|
||
else fpnotrap (FEC_OP);
|
||
break;
|
||
case 1: /* LDFPS */
|
||
dst = (dstspec <= 07)? R[dstspec]: ReadW (GeteaW (dstspec));
|
||
FPS = dst & FPS_RW;
|
||
break;
|
||
case 2: /* STFPS */
|
||
FPS = FPS & FPS_RW;
|
||
if (dstspec <= 07) R[dstspec] = FPS;
|
||
else WriteW (FPS, GeteaW (dstspec));
|
||
break;
|
||
case 3: /* STST */
|
||
if (dstspec <= 07) R[dstspec] = FEC;
|
||
else WriteI ((FEC << 16) | FEA, GeteaFP (dstspec, LONG),
|
||
dstspec, LONG);
|
||
break; } /* end switch <7:6> */
|
||
break; /* end case 0 */
|
||
|
||
/* "Easy" instructions */
|
||
|
||
case 1:
|
||
switch (ac) { /* decode IR<7:6> */
|
||
case 0: /* CLRf */
|
||
WriteFP (&zero_fac, GeteaFP (dstspec, lenf), dstspec, lenf);
|
||
FPS = (FPS & ~FPS_CC) | FPS_Z;
|
||
break;
|
||
case 1: /* TSTf */
|
||
ReadFP (&fsrc, GeteaFP (dstspec, lenf), dstspec, lenf);
|
||
FPS = setfcc (FPS, fsrc.h, 0);
|
||
break;
|
||
case 2: /* ABSf */
|
||
ReadFP (&fsrc, ea = GeteaFP (dstspec, lenf), dstspec, lenf);
|
||
if (GET_EXP (fsrc.h) == 0) fsrc = zero_fac;
|
||
else fsrc.h = fsrc.h & ~FP_SIGN;
|
||
WriteFP (&fsrc, ea, dstspec, lenf);
|
||
FPS = setfcc (FPS, fsrc.h, 0);
|
||
break;
|
||
case 3: /* NEGf */
|
||
ReadFP (&fsrc, ea = GeteaFP (dstspec, lenf), dstspec, lenf);
|
||
if (GET_EXP (fsrc.h) == 0) fsrc = zero_fac;
|
||
else fsrc.h = fsrc.h ^ FP_SIGN;
|
||
WriteFP (&fsrc, ea, dstspec, lenf);
|
||
FPS = setfcc (FPS, fsrc.h, 0);
|
||
break; } /* end switch <7:6> */
|
||
break; /* end case 1 */
|
||
case 5: /* LDf */
|
||
ReadFP (&fsrc, GeteaFP (dstspec, lenf), dstspec, lenf);
|
||
F_STORE (qdouble, fsrc, FR[ac]);
|
||
FPS = setfcc (FPS, fsrc.h, 0);
|
||
break;
|
||
case 010: /* STf */
|
||
F_LOAD (qdouble, FR[ac], fac);
|
||
WriteFP (&fac, GeteaFP (dstspec, lenf), dstspec, lenf);
|
||
break;
|
||
case 017: /* LDCff' */
|
||
ReadFP (&fsrc, GeteaFP (dstspec, 12 - lenf), dstspec, 12 - lenf);
|
||
if (GET_EXP (fsrc.h) == 0) fsrc = zero_fac;
|
||
if ((FPS & (FPS_D + FPS_T)) == 0) newV = roundfp11 (&fsrc);
|
||
else newV = 0;
|
||
F_STORE (qdouble, fsrc, FR[ac]);
|
||
FPS = setfcc (FPS, fsrc.h, newV);
|
||
break;
|
||
case 014: /* STCff' */
|
||
F_LOAD (qdouble, FR[ac], fac);
|
||
if (GET_EXP (fac.h) == 0) fac = zero_fac;
|
||
if ((FPS & (FPS_D + FPS_T)) == FPS_D) newV = roundfp11 (&fac);
|
||
else newV = 0;
|
||
WriteFP (&fac, GeteaFP (dstspec, 12 - lenf), dstspec, 12 - lenf);
|
||
FPS = setfcc (FPS, fac.h, newV);
|
||
break;
|
||
|
||
/* Compare instruction */
|
||
|
||
case 7: /* CMPf */
|
||
ReadFP (&fsrc, GeteaFP (dstspec, lenf), dstspec, lenf);
|
||
F_LOAD (qdouble, FR[ac], fac);
|
||
if (GET_EXP (fsrc.h) == 0) fsrc = zero_fac;
|
||
if (GET_EXP (fac.h) == 0) fac = zero_fac;
|
||
if ((fsrc.h == fac.h) && (fsrc.l == fac.l)) { /* equal? */
|
||
FPS = (FPS & ~FPS_CC) | FPS_Z;
|
||
if ((fsrc.h | fsrc.l) == 0) { /* zero? */
|
||
F_STORE (qdouble, zero_fac, FR[ac]); }
|
||
break; }
|
||
FPS = (FPS & ~FPS_CC) | ((fsrc.h >> (FP_V_SIGN - PSW_V_N)) & FPS_N);
|
||
if ((GET_SIGN (fsrc.h ^ fac.h) == 0) && (fac.h != 0) &&
|
||
F_LT (fsrc, fac)) FPS = FPS ^ FPS_N;
|
||
break;
|
||
|
||
/* Load and store exponent instructions */
|
||
|
||
case 015: /* LDEXP */
|
||
dst = (dstspec <= 07)? R[dstspec]: ReadW (GeteaW (dstspec));
|
||
F_LOAD (qdouble, FR[ac], fac);
|
||
fac.h = (fac.h & ~FP_EXP) | (((dst + FP_BIAS) & FP_M_EXP) << FP_V_EXP);
|
||
newV = 0;
|
||
if ((dst > 0177) && (dst <= 0177600)) {
|
||
if (dst < 0100000) {
|
||
if (fpnotrap (FEC_OVFLO)) fac = zero_fac;
|
||
newV = FPS_V; }
|
||
else { if (fpnotrap (FEC_UNFLO)) fac = zero_fac; } }
|
||
F_STORE (qdouble, fac, FR[ac]);
|
||
FPS = setfcc (FPS, fac.h, newV);
|
||
break;
|
||
case 012: /* STEXP */
|
||
dst = (GET_EXP (FR[ac].h) - FP_BIAS) & 0177777;
|
||
N = GET_SIGN_W (dst);
|
||
Z = (dst == 0);
|
||
V = 0;
|
||
C = 0;
|
||
FPS = (FPS & ~FPS_CC) | (N << PSW_V_N) | (Z << PSW_V_Z);
|
||
if (dstspec <= 07) R[dstspec] = dst;
|
||
else WriteW (dst, GeteaW (dstspec));
|
||
break;
|
||
|
||
/* Integer convert instructions */
|
||
|
||
case 016: /* LDCif */
|
||
leni = FPS & FPS_L? LONG: WORD;
|
||
if (dstspec <= 07) fac.l = R[dstspec] << 16;
|
||
else fac.l = ReadI (GeteaFP (dstspec, leni), dstspec, leni);
|
||
fac.h = 0;
|
||
if (fac.l) {
|
||
if (sign = GET_SIGN_L (fac.l)) fac.l = (fac.l ^ 0xFFFFFFFF) + 1;
|
||
for (i = 0; GET_SIGN_L (fac.l) == 0; i++) fac.l = fac.l << 1;
|
||
exp = ((FPS & FPS_L)? FP_BIAS + 32: FP_BIAS + 16) - i;
|
||
fac.h = (sign << FP_V_SIGN) | (exp << FP_V_EXP) |
|
||
((fac.l >> (31 - FP_V_HB)) & FP_FRACH);
|
||
fac.l = (fac.l << (FP_V_HB + 1)) & FP_FRACL;
|
||
if ((FPS & (FPS_D + FPS_T)) == 0) roundfp11 (&fac); }
|
||
F_STORE (qdouble, fac, FR[ac]);
|
||
FPS = setfcc (FPS, fac.h, 0);
|
||
break;
|
||
case 013: /* STCfi */
|
||
sign = GET_SIGN (FR[ac].h); /* get sign, */
|
||
exp = GET_EXP (FR[ac].h); /* exponent, */
|
||
F_LOAD_FRAC (qdouble, FR[ac], fac); /* fraction */
|
||
if (FPS & FPS_L) {
|
||
leni = LONG;
|
||
i = FP_BIAS + 32; }
|
||
else { leni = WORD;
|
||
i = FP_BIAS + 16; }
|
||
C = 0;
|
||
if (exp <= FP_BIAS) dst = 0;
|
||
else if (exp > i) {
|
||
dst = 0;
|
||
C = 1; }
|
||
else { F_RSH_V (fac, FP_V_HB + 1 + i - exp, fsrc);
|
||
if (leni == WORD) fsrc.l = fsrc.l & ~0177777;
|
||
if (fsrc.l >= i_limit[leni == LONG][sign]) {
|
||
dst = 0;
|
||
C = 1; }
|
||
else { dst = fsrc.l;
|
||
if (sign) dst = -dst; } }
|
||
N = GET_SIGN_L (dst);
|
||
Z = (dst == 0);
|
||
V = 0;
|
||
if (C) fpnotrap (FEC_ICVT);
|
||
FPS = (FPS & ~FPS_CC) | (N << PSW_V_N) |
|
||
(Z << PSW_V_Z) | (C << PSW_V_C);
|
||
if (dstspec <= 07) R[dstspec] = (dst >> 16) & 0177777;
|
||
else WriteI (dst, GeteaFP (dstspec, leni), dstspec, leni);
|
||
break;
|
||
|
||
/* Calculation instructions */
|
||
|
||
case 2: /* MULf */
|
||
ReadFP (&fsrc, GeteaFP (dstspec, lenf), dstspec, lenf);
|
||
F_LOAD (qdouble, FR[ac], fac);
|
||
newV = mulfp11 (&fac, &fsrc);
|
||
F_STORE (qdouble, fac, FR[ac]);
|
||
FPS = setfcc (FPS, fac.h, newV);
|
||
break;
|
||
case 3: /* MODf */
|
||
ReadFP (&fsrc, GeteaFP (dstspec, lenf), dstspec, lenf);
|
||
F_LOAD (qdouble, FR[ac], fac);
|
||
newV = modfp11 (&fac, &fsrc, &modfrac);
|
||
F_STORE (qdouble, fac, FR[ac | 1]);
|
||
F_STORE (qdouble, modfrac, FR[ac]);
|
||
FPS = setfcc (FPS, modfrac.h, newV);
|
||
break;
|
||
case 4: /* ADDf */
|
||
ReadFP (&fsrc, GeteaFP (dstspec, lenf), dstspec, lenf);
|
||
F_LOAD (qdouble, FR[ac], fac);
|
||
newV = addfp11 (&fac, &fsrc);
|
||
F_STORE (qdouble, fac, FR[ac]);
|
||
FPS = setfcc (FPS, fac.h, newV);
|
||
break;
|
||
case 6: /* SUBf */
|
||
ReadFP (&fsrc, GeteaFP (dstspec, lenf), dstspec, lenf);
|
||
F_LOAD (qdouble, FR[ac], fac);
|
||
if (GET_EXP (fsrc.h) != 0) fsrc.h = fsrc.h ^ FP_SIGN;
|
||
newV = addfp11 (&fac, &fsrc);
|
||
F_STORE (qdouble, fac, FR[ac]);
|
||
FPS = setfcc (FPS, fac.h, newV);
|
||
break;
|
||
case 011: /* DIVf */
|
||
ReadFP (&fsrc, GeteaFP (dstspec, lenf), dstspec, lenf);
|
||
F_LOAD (qdouble, FR[ac], fac);
|
||
newV = divfp11 (&fac, &fsrc);
|
||
F_STORE (qdouble, fac, FR[ac]);
|
||
FPS = setfcc (FPS, fac.h, newV);
|
||
break; } /* end switch fop */
|
||
return;
|
||
}
|
||
|
||
/* Effective address calculation for fp operands
|
||
|
||
Inputs:
|
||
spec = specifier
|
||
len = length
|
||
Outputs:
|
||
VA = virtual address
|
||
|
||
Warnings:
|
||
- Do not call this routine for integer mode 0 operands
|
||
- Do not call this routine more than once per instruction
|
||
*/
|
||
|
||
int32 GeteaFP (int32 spec, int32 len)
|
||
{
|
||
int32 adr, reg, ds;
|
||
extern int32 cm, isenable, dsenable, MMR0, MMR1;
|
||
|
||
reg = spec & 07; /* reg number */
|
||
ds = (reg == 7)? isenable: dsenable; /* dspace if not PC */
|
||
switch (spec >> 3) { /* case on spec */
|
||
case 0: /* floating AC */
|
||
if (reg >= 06) { fpnotrap (FEC_OP); ABORT (TRAP_INT); }
|
||
return 0;
|
||
case 1: /* (R) */
|
||
return (R[reg] | ds);
|
||
case 2: /* (R)+ */
|
||
if (reg == 7) len = 2;
|
||
R[reg] = ((adr = R[reg]) + len) & 0177777;
|
||
if (update_MM) MMR1 = (len << 3) | reg;
|
||
return (adr | ds);
|
||
case 3: /* @(R)+ */
|
||
R[reg] = ((adr = R[reg]) + 2) & 0177777;
|
||
if (update_MM) MMR1 = 020 | reg;
|
||
adr = ReadW (adr | ds);
|
||
return (adr | dsenable);
|
||
case 4: /* -(R) */
|
||
adr = R[reg] = (R[reg] - len) & 0177777;
|
||
if (update_MM) MMR1 = (((-len) & 037) << 3) | reg;
|
||
if ((adr < STKLIM) && (reg == 6) && (cm == KERNEL)) {
|
||
setTRAP (TRAP_YEL);
|
||
setCPUERR (CPUE_YEL); }
|
||
return (adr | ds);
|
||
case 5: /* @-(R) */
|
||
adr = R[reg] = (R[reg] - 2) & 0177777;
|
||
if (update_MM) MMR1 = 0360 | reg;
|
||
if ((adr < STKLIM) && (reg == 6) && (cm == KERNEL)) {
|
||
setTRAP (TRAP_YEL);
|
||
setCPUERR (CPUE_YEL); }
|
||
adr = ReadW (adr | ds);
|
||
return (adr | dsenable);
|
||
case 6: /* d(r) */
|
||
adr = ReadW (PC | isenable);
|
||
PC = (PC + 2) & 0177777;
|
||
return (((R[reg] + adr) & 0177777) | dsenable);
|
||
case 7: /* @d(R) */
|
||
adr = ReadW (PC | isenable);
|
||
PC = (PC + 2) & 0177777;
|
||
adr = ReadW (((R[reg] + adr) & 0177777) | dsenable);
|
||
return (adr | dsenable); } /* end switch */
|
||
return 0;
|
||
}
|
||
|
||
/* Read integer operand
|
||
|
||
Inputs:
|
||
VA = virtual address, VA<18:16> = mode, I/D space
|
||
spec = specifier
|
||
len = length (2/4 bytes)
|
||
Outputs:
|
||
data = data read from memory or I/O space
|
||
*/
|
||
|
||
unsigned int32 ReadI (int32 VA, int32 spec, int32 len)
|
||
{
|
||
if ((len == WORD) || (spec == 027)) return (ReadW (VA) << 16);
|
||
return ((ReadW (VA) << 16) | ReadW ((VA & ~0177777) | ((VA + 2) & 0177777)));
|
||
}
|
||
|
||
/* Read floating operand
|
||
|
||
Inputs:
|
||
fptr = pointer to output
|
||
VA = virtual address, VA<18:16> = mode, I/D space
|
||
spec = specifier
|
||
len = length (4/8 bytes)
|
||
*/
|
||
|
||
void ReadFP (fpac_t *fptr, int32 VA, int32 spec, int32 len)
|
||
{
|
||
int32 exta;
|
||
|
||
if (spec <= 07) {
|
||
F_LOAD_P (len == QUAD, FR[spec], fptr);
|
||
return; }
|
||
if (spec == 027) {
|
||
fptr -> h = (ReadW (VA) << FP_V_F0);
|
||
fptr -> l = 0; }
|
||
else { exta = VA & ~0177777;
|
||
fptr -> h = (ReadW (VA) << FP_V_F0) |
|
||
(ReadW (exta | ((VA + 2) & 0177777)) << FP_V_F1);
|
||
if (len == QUAD) fptr -> l =
|
||
(ReadW (exta | ((VA + 4) & 0177777)) << FP_V_F2) |
|
||
(ReadW (exta | ((VA + 6) & 0177777)) << FP_V_F3);
|
||
else fptr -> l = 0; }
|
||
if ((GET_SIGN (fptr -> h) != 0) && (GET_EXP (fptr -> h) == 0) &&
|
||
(fpnotrap (FEC_UNDFV) == 0)) ABORT (TRAP_INT);
|
||
return;
|
||
}
|
||
|
||
/* Write integer result
|
||
|
||
Inputs:
|
||
data = data to be written
|
||
VA = virtual address, VA<18:16> = mode, I/D space
|
||
spec = specifier
|
||
len = length
|
||
Outputs: none
|
||
*/
|
||
|
||
void WriteI (int32 data, int32 VA, int32 spec, int32 len)
|
||
{
|
||
WriteW ((data >> 16) & 0177777, VA);
|
||
if ((len == WORD) || (spec == 027)) return;
|
||
WriteW (data & 0177777, (VA & ~0177777) | ((VA + 2) & 0177777));
|
||
return;
|
||
}
|
||
|
||
/* Write floating result
|
||
|
||
Inputs:
|
||
fptr = pointer to data to be written
|
||
VA = virtual address, VA<18:16> = mode, I/D space
|
||
spec = specifier
|
||
len = length
|
||
Outputs: none
|
||
*/
|
||
|
||
void WriteFP (fpac_t *fptr, int32 VA, int32 spec, int32 len)
|
||
{
|
||
int32 exta;
|
||
|
||
if (spec <= 07) {
|
||
F_STORE_P (len == QUAD, fptr, FR[spec]);
|
||
return; }
|
||
WriteW ((fptr -> h >> FP_V_F0) & 0177777, VA);
|
||
if (spec == 027) return;
|
||
exta = VA & ~0177777;
|
||
WriteW ((fptr -> h >> FP_V_F1) & 0177777, exta | ((VA + 2) & 0177777));
|
||
if (len == LONG) return;
|
||
WriteW ((fptr -> l >> FP_V_F2) & 0177777, exta | ((VA + 4) & 0177777));
|
||
WriteW ((fptr -> l >> FP_V_F3) & 0177777, exta | ((VA + 6) & 0177777));
|
||
return;
|
||
}
|
||
|
||
/* Floating point add
|
||
|
||
Inputs:
|
||
facp = pointer to src1 (output)
|
||
fsrcp = pointer to src2
|
||
Outputs:
|
||
ovflo = overflow variable
|
||
*/
|
||
|
||
int32 addfp11 (fpac_t *facp, fpac_t *fsrcp)
|
||
{
|
||
int32 facexp, fsrcexp, ediff;
|
||
fpac_t facfrac, fsrcfrac;
|
||
|
||
if (F_LT_AP (facp, fsrcp)) { /* if !fac! < !fsrc! */
|
||
facfrac = *facp;
|
||
*facp = *fsrcp; /* swap operands */
|
||
*fsrcp = facfrac; }
|
||
facexp = GET_EXP (facp -> h); /* get exponents */
|
||
fsrcexp = GET_EXP (fsrcp -> h);
|
||
if (facexp == 0) { /* fac = 0? */
|
||
*facp = fsrcexp? *fsrcp: zero_fac; /* result fsrc or 0 */
|
||
return 0; }
|
||
if (fsrcexp == 0) return 0; /* fsrc = 0? no op */
|
||
ediff = facexp - fsrcexp; /* exponent diff */
|
||
if (ediff >= 60) return 0; /* too big? no op */
|
||
F_GET_FRAC_P (facp, facfrac); /* get fractions */
|
||
F_GET_FRAC_P (fsrcp, fsrcfrac);
|
||
F_LSH_GUARD (facfrac); /* guard fractions */
|
||
F_LSH_GUARD (fsrcfrac);
|
||
if (GET_SIGN (facp -> h) != GET_SIGN (fsrcp -> h)) { /* signs different? */
|
||
if (ediff) { F_RSH_V (fsrcfrac, ediff, fsrcfrac); } /* sub, shf fsrc */
|
||
F_SUB (fsrcfrac, facfrac, facfrac); /* sub fsrc from fac */
|
||
if ((facfrac.h | facfrac.l) == 0) { /* result zero? */
|
||
*facp = zero_fac; /* no overflow */
|
||
return 0; }
|
||
if (ediff <= 1) { /* big normalize? */
|
||
if ((facfrac.h & (0x00FFFFFF << FP_GUARD)) == 0) {
|
||
F_LSH_K (facfrac, 24, facfrac);
|
||
facexp = facexp - 24; }
|
||
if ((facfrac.h & (0x00FFF000 << FP_GUARD)) == 0) {
|
||
F_LSH_K (facfrac, 12, facfrac);
|
||
facexp = facexp - 12; }
|
||
if ((facfrac.h & (0x00FC0000 << FP_GUARD)) == 0) {
|
||
F_LSH_K (facfrac, 6, facfrac);
|
||
facexp = facexp - 6; } }
|
||
while (GET_BIT (facfrac.h, FP_V_HB + FP_GUARD) == 0) {
|
||
F_LSH_1 (facfrac);
|
||
facexp = facexp - 1; } }
|
||
else { if (ediff) { F_RSH_V (fsrcfrac, ediff, fsrcfrac); } /* add, shf fsrc */
|
||
F_ADD (fsrcfrac, facfrac, facfrac); /* add fsrc to fac */
|
||
if (GET_BIT (facfrac.h, FP_V_HB + FP_GUARD + 1)) {
|
||
F_RSH_1 (facfrac); /* carry out, shift */
|
||
facexp = facexp + 1; } }
|
||
return round_and_pack (facp, facexp, &facfrac, 1);
|
||
}
|
||
|
||
/* Floating point multiply
|
||
|
||
Inputs:
|
||
facp = pointer to src1 (output)
|
||
fsrcp = pointer to src2
|
||
Outputs:
|
||
ovflo = overflow indicator
|
||
*/
|
||
|
||
int32 mulfp11 (fpac_t *facp, fpac_t *fsrcp)
|
||
{
|
||
int32 facexp, fsrcexp;
|
||
fpac_t facfrac, fsrcfrac;
|
||
|
||
facexp = GET_EXP (facp -> h); /* get exponents */
|
||
fsrcexp = GET_EXP (fsrcp -> h);
|
||
if ((facexp == 0) || (fsrcexp == 0)) { /* test for zero */
|
||
*facp = zero_fac;
|
||
return 0; }
|
||
F_GET_FRAC_P (facp, facfrac); /* get fractions */
|
||
F_GET_FRAC_P (fsrcp, fsrcfrac);
|
||
facexp = facexp + fsrcexp - FP_BIAS; /* calculate exp */
|
||
facp -> h = facp -> h ^ fsrcp -> h; /* calculate sign */
|
||
frac_mulfp11 (&facfrac, &fsrcfrac); /* multiply fracs */
|
||
|
||
/* Multiplying two numbers in the range [.5,1) produces a result in the
|
||
range [.25,1). Therefore, at most one bit of normalization is required
|
||
to bring the result back to the range [.5,1).
|
||
*/
|
||
|
||
if (GET_BIT (facfrac.h, FP_V_HB + FP_GUARD) == 0) {
|
||
F_LSH_1 (facfrac);
|
||
facexp = facexp - 1; }
|
||
return round_and_pack (facp, facexp, &facfrac, 1);
|
||
}
|
||
|
||
/* Floating point mod
|
||
|
||
Inputs:
|
||
facp = pointer to src1 (integer result)
|
||
fsrcp = pointer to src2
|
||
fracp = pointer to fractional result
|
||
Outputs:
|
||
ovflo = overflow indicator
|
||
|
||
See notes on multiply for initial operation
|
||
*/
|
||
|
||
int32 modfp11 (fpac_t *facp, fpac_t *fsrcp, fpac_t *fracp)
|
||
{
|
||
int32 facexp, fsrcexp;
|
||
fpac_t facfrac, fsrcfrac, fmask;
|
||
|
||
facexp = GET_EXP (facp -> h); /* get exponents */
|
||
fsrcexp = GET_EXP (fsrcp -> h);
|
||
if ((facexp == 0) || (fsrcexp == 0)) { /* test for zero */
|
||
*fracp = zero_fac;
|
||
*facp = zero_fac;
|
||
return 0; }
|
||
F_GET_FRAC_P (facp, facfrac); /* get fractions */
|
||
F_GET_FRAC_P (fsrcp, fsrcfrac);
|
||
facexp = facexp + fsrcexp - FP_BIAS; /* calculate exp */
|
||
fracp -> h = facp -> h = facp -> h ^ fsrcp -> h; /* calculate sign */
|
||
frac_mulfp11 (&facfrac, &fsrcfrac); /* multiply fracs */
|
||
|
||
/* Multiplying two numbers in the range [.5,1) produces a result in the
|
||
range [.25,1). Therefore, at most one bit of normalization is required
|
||
to bring the result back to the range [.5,1).
|
||
*/
|
||
|
||
if (GET_BIT (facfrac.h, FP_V_HB + FP_GUARD) == 0) {
|
||
F_LSH_1 (facfrac);
|
||
facexp = facexp - 1; }
|
||
|
||
/* There are three major cases of MODf:
|
||
|
||
1. Exp <= FP_BIAS (all fraction). Return 0 as integer, product as
|
||
fraction. Underflow can occur.
|
||
2. Exp > FP_BIAS + #fraction bits (all integer). Return product as
|
||
integer, 0 as fraction. Overflow can occur.
|
||
3. FP_BIAS < exp <= FP_BIAS + #fraction bits. Separate integer and
|
||
fraction and return both. Neither overflow nor underflow can occur.
|
||
*/
|
||
|
||
if (facexp <= FP_BIAS) { /* case 1 */
|
||
*facp = zero_fac;
|
||
return round_and_pack (fracp, facexp, &facfrac, 1); }
|
||
if (facexp > ((FPS & FPS_D)? FP_BIAS + 56: FP_BIAS + 24)) {
|
||
*fracp = zero_fac; /* case 2 */
|
||
return round_and_pack (facp, facexp, &facfrac, 0); }
|
||
F_RSH_V (fmask_fac, facexp - FP_BIAS, fmask); /* shift mask */
|
||
fsrcfrac.l = facfrac.l & fmask.l; /* extract fraction */
|
||
fsrcfrac.h = facfrac.h & fmask.h;
|
||
if ((fsrcfrac.h | fsrcfrac.l) == 0) *fracp = zero_fac;
|
||
else { F_LSH_V (fsrcfrac, facexp - FP_BIAS, fsrcfrac);
|
||
fsrcexp = FP_BIAS;
|
||
if ((fsrcfrac.h & (0x00FFFFFF << FP_GUARD)) == 0) {
|
||
F_LSH_K (fsrcfrac, 24, fsrcfrac);
|
||
fsrcexp = fsrcexp - 24; }
|
||
if ((fsrcfrac.h & (0x00FFF000 << FP_GUARD)) == 0) {
|
||
F_LSH_K (fsrcfrac, 12, fsrcfrac);
|
||
fsrcexp = fsrcexp - 12; }
|
||
if ((fsrcfrac.h & (0x00FC0000 << FP_GUARD)) == 0) {
|
||
F_LSH_K (fsrcfrac, 6, fsrcfrac);
|
||
fsrcexp = fsrcexp - 6; }
|
||
while (GET_BIT (fsrcfrac.h, FP_V_HB + FP_GUARD) == 0) {
|
||
F_LSH_1 (fsrcfrac);
|
||
fsrcexp = fsrcexp - 1; }
|
||
round_and_pack (fracp, fsrcexp, &fsrcfrac, 1); }
|
||
facfrac.l = facfrac.l & ~fmask.l;
|
||
facfrac.h = facfrac.h & ~fmask.h;
|
||
return round_and_pack (facp, facexp, &facfrac, 0);
|
||
}
|
||
|
||
/* Fraction multiply
|
||
|
||
Inputs:
|
||
f1p = pointer to multiplier (output)
|
||
f2p = pointer to multiplicand fraction
|
||
|
||
Note: the inputs are unguarded; the output is guarded.
|
||
|
||
This routine performs a classic shift-and-add multiply. The low
|
||
order bit of the multiplier is tested; if 1, the multiplicand is
|
||
added into the high part of the double precision result. The
|
||
result and the multiplier are both shifted right 1.
|
||
|
||
For the 24b x 24b case, this routine develops 48b of result.
|
||
For the 56b x 56b case, this routine only develops the top 64b
|
||
of the the result. Because the inputs are normalized fractions,
|
||
the interesting part of the result is the high 56+guard bits.
|
||
Everything shifted off to the right, beyond 64b, plays no part
|
||
in rounding or the result.
|
||
|
||
There are many possible optimizations in this routine: scanning
|
||
for groups of zeroes, particularly in the 56b x 56b case; using
|
||
"extended multiply" capability if available in the hardware.
|
||
*/
|
||
|
||
void frac_mulfp11 (fpac_t *f1p, fpac_t *f2p)
|
||
{
|
||
fpac_t result, mpy, mpc;
|
||
int32 i;
|
||
|
||
result = zero_fac; /* clear result */
|
||
mpy = *f1p; /* get operands */
|
||
mpc = *f2p;
|
||
F_LSH_GUARD (mpc); /* guard multipicand */
|
||
if ((mpy.l | mpc.l) == 0) { /* 24b x 24b? */
|
||
for (i = 0; i < 24; i++) {
|
||
if (mpy.h & 1) result.h = result.h + mpc.h;
|
||
F_RSH_1 (result);
|
||
mpy.h = mpy.h >> 1; } }
|
||
else { if (mpy.l != 0) { /* 24b x 56b? */
|
||
for (i = 0; i < 32; i++) {
|
||
if (mpy.l & 1) { F_ADD (mpc, result, result); }
|
||
F_RSH_1 (result);
|
||
mpy.l = mpy.l >> 1; } }
|
||
for (i = 0; i < 24; i++) {
|
||
if (mpy.h & 1) { F_ADD (mpc, result, result); }
|
||
F_RSH_1 (result);
|
||
mpy.h = mpy.h >> 1; } }
|
||
*f1p = result;
|
||
return;
|
||
}
|
||
|
||
/* Floating point divide
|
||
|
||
Inputs:
|
||
facp = pointer to dividend (output)
|
||
fsrcp = pointer to divisor
|
||
Outputs:
|
||
ovflo = overflow indicator
|
||
*/
|
||
|
||
int32 divfp11 (fpac_t *facp, fpac_t *fsrcp)
|
||
{
|
||
int32 facexp, fsrcexp, i, count, qd;
|
||
fpac_t facfrac, fsrcfrac, quo;
|
||
|
||
fsrcexp = GET_EXP (fsrcp -> h); /* get divisor exp */
|
||
if (fsrcexp == 0) { /* divide by zero? */
|
||
fpnotrap (FEC_DZRO);
|
||
ABORT (TRAP_INT); }
|
||
facexp = GET_EXP (facp -> h); /* get dividend exp */
|
||
if (facexp == 0) { /* test for zero */
|
||
*facp = zero_fac; /* result zero */
|
||
return 0; }
|
||
F_GET_FRAC_P (facp, facfrac); /* get fractions */
|
||
F_GET_FRAC_P (fsrcp, fsrcfrac);
|
||
F_LSH_GUARD (facfrac); /* guard fractions */
|
||
F_LSH_GUARD (fsrcfrac);
|
||
facexp = facexp - fsrcexp + FP_BIAS + 1; /* calculate exp */
|
||
facp -> h = facp -> h ^ fsrcp -> h; /* calculate sign */
|
||
qd = FPS & FPS_D;
|
||
count = FP_V_HB + FP_GUARD + (qd? 33: 1); /* count = 56b/24b */
|
||
|
||
quo = zero_fac;
|
||
for (i = count; (i > 0) && ((facfrac.h | facfrac.l) != 0); i--) {
|
||
F_LSH_1 (quo); /* shift quotient */
|
||
if (!F_LT (facfrac, fsrcfrac)) { /* divd >= divr? */
|
||
F_SUB (fsrcfrac, facfrac, facfrac); /* divd - divr */
|
||
if (qd) quo.l = quo.l | 1; /* double or single? */
|
||
else quo.h = quo.h | 1; }
|
||
F_LSH_1 (facfrac); } /* shift divd */
|
||
if (i > 0) { F_LSH_V (quo, i, quo); } /* early exit? */
|
||
|
||
/* Dividing two numbers in the range [.5,1) produces a result in the
|
||
range [.5,2). Therefore, at most one bit of normalization is required
|
||
to bring the result back to the range [.5,1). The choice of counts
|
||
and quotient bit positions makes this work correctly.
|
||
*/
|
||
|
||
if (GET_BIT (quo.h, FP_V_HB + FP_GUARD) == 0) {
|
||
F_LSH_1 (quo);
|
||
facexp = facexp - 1; }
|
||
return round_and_pack (facp, facexp, &quo, 1);
|
||
}
|
||
|
||
/* Update floating condition codes
|
||
Note that FC is only set by STCfi via the integer condition codes
|
||
|
||
Inputs:
|
||
oldst = current status
|
||
result = high result
|
||
newV = new V
|
||
Outputs:
|
||
newst = new status
|
||
*/
|
||
|
||
int32 setfcc (int32 oldst, int32 result, int32 newV)
|
||
{
|
||
oldst = (oldst & ~FPS_CC) | newV;
|
||
if (GET_SIGN (result)) oldst = oldst | FPS_N;
|
||
if (GET_EXP (result) == 0) oldst = oldst | FPS_Z;
|
||
return oldst;
|
||
}
|
||
|
||
/* Round (in place) floating point number to f_floating
|
||
|
||
Inputs:
|
||
fptr = pointer to floating number
|
||
Outputs:
|
||
ovflow = overflow
|
||
*/
|
||
|
||
int32 roundfp11 (fpac_t *fptr)
|
||
{
|
||
fpac_t outf;
|
||
|
||
outf = *fptr; /* get argument */
|
||
F_ADD (fround_fac, outf, outf); /* round */
|
||
if (GET_SIGN (outf.h ^ fptr -> h)) { /* flipped sign? */
|
||
outf.h = (outf.h ^ FP_SIGN) & 0xFFFFFFFF; /* restore sign */
|
||
if (fpnotrap (FEC_OVFLO)) *fptr = zero_fac; /* if no int, clear */
|
||
else *fptr = outf; /* return rounded */
|
||
return FPS_V; } /* overflow */
|
||
else { *fptr = outf; /* round was ok */
|
||
return 0; } /* no overflow */
|
||
}
|
||
|
||
/* Round result of calculation, test overflow, pack
|
||
|
||
Input:
|
||
facp = pointer to result, sign in place
|
||
exp = result exponent, right justified
|
||
fracp = pointer to result fraction, right justified with
|
||
guard bits
|
||
r = round (1) or truncate (0)
|
||
Outputs:
|
||
ovflo = overflow indicator
|
||
*/
|
||
|
||
int32 round_and_pack (fpac_t *facp, int32 exp, fpac_t *fracp, int r)
|
||
{
|
||
fpac_t frac;
|
||
|
||
frac = *fracp; /* get fraction */
|
||
if (r && ((FPS & FPS_T) == 0)) {
|
||
if (FPS & FPS_D) { F_ADD (dround_guard_fac, frac, frac); }
|
||
else { F_ADD (fround_guard_fac, frac, frac); }
|
||
if (GET_BIT (frac.h, FP_V_HB + FP_GUARD + 1)) {
|
||
F_RSH_1 (frac);
|
||
exp = exp + 1; } }
|
||
F_RSH_GUARD (frac);
|
||
facp -> l = frac.l & FP_FRACL;
|
||
facp -> h = (facp -> h & FP_SIGN) | ((exp & FP_M_EXP) << FP_V_EXP) |
|
||
(frac.h & FP_FRACH);
|
||
if (exp > 0377) {
|
||
if (fpnotrap (FEC_OVFLO)) *facp = zero_fac;
|
||
return FPS_V; }
|
||
if ((exp <= 0) && (fpnotrap (FEC_UNFLO))) *facp = zero_fac;
|
||
return 0;
|
||
}
|
||
|
||
/* Process floating point exception
|
||
|
||
Inputs:
|
||
code = exception code
|
||
Outputs:
|
||
int = FALSE if interrupt enabled, TRUE if disabled
|
||
*/
|
||
|
||
int32 fpnotrap (int32 code)
|
||
{
|
||
static const int32 test_code[] = { 0, 0, 0, FPS_IC, FPS_IV, FPS_IU, FPS_IUV };
|
||
|
||
if ((code >= FEC_ICVT) && (code <= FEC_UNDFV) &&
|
||
((FPS & test_code[code >> 1]) == 0)) return TRUE;
|
||
FPS = FPS | FPS_ER;
|
||
FEC = code;
|
||
FEA = (backup_PC - 2) & 0177777;
|
||
if ((FPS & FPS_ID) == 0) setTRAP (TRAP_FPE);
|
||
return FALSE;
|
||
}
|