simh-testsetgenerator/PDP11/pdp11_rk.c
Bob Supnik 701f0fe028 Notes For V2.8
1. New Features

1.1 Directory and documentation

- Only common files (SCP and libraries) are in the top level
  directory.  Individual simulator files are in their individual
  directories.
- simh_doc.txt has been split up.  simh_doc.txt now documents
  only SCP.  The individual simulators are documented in separate
  text files in their own directories.
- mingw_build.bat is a batch file for the MINGW/gcc environment
  that will build all the simulators, assuming the root directory
  structure is at c:\sim.
- Makefile is a UNIX make file for the gcc environment that will
  build all the simulators, assuming the root directory is at
  c:\sim.

1.2 SCP

- DO <file name> executes the SCP commands in the specified file.
- Replicated registers in unit structures can now be declared as
  arrays for examine, modify, save, and restore.  Most replicated
  unit registers (for example, mag tape position registers) have
  been changed to arrays.
- The ADD/REMOVE commands have been replaced by SET unit ONLINE
  and SET unit OFFLINE, respectively.
- Register names that are unique within an entire simulator do
  not have to be prefaced with the device name.
- The ATTACH command can attach files read only, either under
  user option (-r), or because the attached file is ready only.
- The SET/SHOW capabilities have been extended.  New forms include:

	SET <dev> param{=value}{ param ...}
	SET <unit> param{=value}{ param ...}
	SHOW <dev> {param param ...}
	SHOW <unit> {param param ...}

- Multiple breakpoints have been implemented.  Breakpoints are
  set/cleared/displayed by:

	BREAK addr_list{[count]}
	NOBREAK addr_list
	SHOW BREAK addr_list

1.3 PDP-11 simulator

- Unibus map implemented, with 22b RP controller (URH70) or 18b
  RP controller (URH11) (in debug).
- All DMA peripherals rewritten to use map.
- Many peripherals modified for source sharing with VAX.
- RQDX3 implemented.
- Bugs fixed in RK11 and RL11 write check.

1.4 PDP-10 simulator

- ITS 1-proceed implemented.
- Bugs fixed in ITS PC sampling and LPMR

1.5 18b PDP simulator

- Interrupts split out to multiple levels to allow easier
  expansion.

1.5 IBM System 3 Simulator

- Written by Charles (Dutch) Owen.

1.6 VAX Simulator (in debug)

- Simulates MicroVAX 3800 (KA655) with 16MB-64MB memory, RQDX3,
  RLV12, TSV11, DZV11, LPV11, PCV11.
- CDROM capability has been added to the RQDX3, to allow testing
  with VMS hobbyist images.

1.7 SDS 940 Simulator (not tested)

- Simulates SDS 940, 16K-64K memory, fixed and moving head
  disk, magtape, line printer, console.

1.8 Altair Z80

- Revised from Charles (Dutch) Owen's original by Peter Schorn.
- MITS 8080 with full Z80 simulation.
- 4K and 8K BASIC packages, Prolog package.

1.9 Interdata

The I4 simulator has been withdrawn for major rework.  Look for
a complete 16b/32b Interdata simulator sometime next year.

2. Release Notes

2.1 SCP

SCP now allows replicated registers in unit structures to be
modelled as arrays.  All replicated register declarations have
been replaced by register array declarations.  As a result,
save files from prior revisions will generate errors after
restoring main memory.

2.2 PDP-11

The Unibus map code is in debug.  The map was implemented primarily
to allow source sharing with the VAX, which requires a DMA map.
DMA devices work correctly with the Unibus map disabled.

The RQDX3 simulator has run a complete RSTS/E SYSGEN, with multiple
drives, and booted the completed system from scratch.

2.3 VAX

The VAX simulator will run the boot code up to the >>> prompt.  It
can successfully process a SHOW DEVICE command.  It runs the HCORE
instruction diagnostic.  It can boot the hobbyist CD through SYSBOOT
and through the date/time dialog and restore the hobbyist CD, using
standalone backup.  On the boot of the restored disk, it gets to the
date/time dialog, and then crashes.

2.4 SDS 940

The SDS 940 is untested, awaiting real code.

2.5 GCC Optimization

At -O2 and above, GCC does not correctly compile the simulators which
use setjmp-longjmp (PDP-11, PDP-10, VAX).  A working hypothesis is
that optimized state maintained in registers is being used in the
setjmp processing routine.  On the PDP-11 and PDP-10, all of this
state has been either made global, or volatile, to encourage GCC to
keep the state up to date in memory.  The VAX is still vulnerable.

3. Work list

3.1 SCP

- Better ENABLE/DISABLE.

3.2 PDP-11 RQDX3

Software mapped mode, RCT read simulation, VMS debug.
2011-04-15 08:33:38 -07:00

592 lines
20 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* pdp11_rk.c: RK11 cartridge disk simulator
Copyright (c) 1993-2001, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
rk RK11/RK05 cartridge disk
30-Nov-01 RMS Added read only unit, extended SET/SHOW support
24-Nov-01 RMS Converted FLG to array
09-Nov-01 RMS Added bus map support
07-Sep-01 RMS Revised device disable and interrupt mechanisms
26-Apr-01 RMS Added device enable/disable support
25-Mar-01 RMS Fixed block fill calculation
15-Feb-01 RMS Corrected bootstrap string
29-Jun-96 RMS Added unit disable support
The RK11 is an eight drive cartridge disk subsystem. An RK05 drive
consists of 203 cylinders, each with 2 surfaces containing 12 sectors
of 512 bytes.
The most complicated part of the RK11 controller is the concept of
interrupt "polling". While only one read or write can occur at a
time, the controller supports multiple seeks. When a seek completes,
if done is set the drive attempts to interrupt. If an interrupt is
already pending, the interrupt is "queued" until it can be processed.
When an interrupt occurs, RKDS<15:13> is loaded with the number of the
interrupting drive.
To implement this structure, and to assure that read/write interrupts
take priority over seek interrupts, the controller contains an
interrupt queue, rkintq, with a bit for a controller interrupt and
then one for each drive. In addition, the drive number of the last
non-seeking drive is recorded in last_drv.
*/
#include "pdp11_defs.h"
/* Constants */
#define RK_NUMWD 256 /* words/sector */
#define RK_NUMSC 12 /* sectors/surface */
#define RK_NUMSF 2 /* surfaces/cylinder */
#define RK_NUMCY 203 /* cylinders/drive */
#define RK_NUMTR (RK_NUMCY * RK_NUMSF) /* tracks/drive */
#define RK_NUMDR 8 /* drives/controller */
#define RK_M_NUMDR 07
#define RK_SIZE (RK_NUMCY * RK_NUMSF * RK_NUMSC * RK_NUMWD) /* words/drive */
#define RK_CTLI 1 /* controller int */
#define RK_SCPI(x) (2u << (x)) /* drive int */
#define RK_MAXFR (1 << 16) /* max transfer */
/* Flags in the unit flags word */
#define UNIT_V_HWLK (UNIT_V_UF + 0) /* hwre write lock */
#define UNIT_V_SWLK (UNIT_V_UF + 1) /* swre write lock */
#define UNIT_W_UF 3 /* user flags width */
#define UNIT_HWLK (1u << UNIT_V_HWLK)
#define UNIT_SWLK (1u << UNIT_V_SWLK)
#define UNIT_WPRT (UNIT_HWLK|UNIT_SWLK|UNIT_RO) /* write prot */
/* Parameters in the unit descriptor */
#define CYL u3 /* current cylinder */
#define FUNC u4 /* function */
/* RKDS */
#define RKDS_SC 0000017 /* sector counter */
#define RKDS_ON_SC 0000020 /* on sector */
#define RKDS_WLK 0000040 /* write locked */
#define RKDS_RWS 0000100 /* rd/wr/seek ready */
#define RKDS_RDY 0000200 /* drive ready */
#define RKDS_SC_OK 0000400 /* SC valid */
#define RKDS_INC 0001000 /* seek incomplete */
#define RKDS_UNSAFE 0002000 /* unsafe */
#define RKDS_RK05 0004000 /* RK05 */
#define RKDS_PWR 0010000 /* power low */
#define RKDS_ID 0160000 /* drive ID */
#define RKDS_V_ID 13
/* RKER */
#define RKER_WCE 0000001 /* write check */
#define RKER_CSE 0000002 /* checksum */
#define RKER_NXS 0000040 /* nx sector */
#define RKER_NXC 0000100 /* nx cylinder */
#define RKER_NXD 0000200 /* nx drive */
#define RKER_TE 0000400 /* timing error */
#define RKER_DLT 0001000 /* data late */
#define RKER_NXM 0002000 /* nx memory */
#define RKER_PGE 0004000 /* programming error */
#define RKER_SKE 0010000 /* seek error */
#define RKER_WLK 0020000 /* write lock */
#define RKER_OVR 0040000 /* overrun */
#define RKER_DRE 0100000 /* drive error */
#define RKER_IMP 0177743 /* implemented */
#define RKER_SOFT (RKER_WCE+RKER_CSE) /* soft errors */
#define RKER_HARD 0177740 /* hard errors */
/* RKCS */
#define RKCS_M_FUNC 0000007 /* function */
#define RKCS_CTLRESET 0
#define RKCS_WRITE 1
#define RKCS_READ 2
#define RKCS_WCHK 3
#define RKCS_SEEK 4
#define RKCS_RCHK 5
#define RKCS_DRVRESET 6
#define RKCS_WLK 7
#define RKCS_V_FUNC 1
#define RKCS_MEX 0000060 /* memory extension */
#define RKCS_V_MEX 4
#define RKCS_SSE 0000400 /* stop on soft err */
#define RKCS_FMT 0002000 /* format */
#define RKCS_INH 0004000 /* inhibit increment */
#define RKCS_SCP 0020000 /* search complete */
#define RKCS_HERR 0040000 /* hard error */
#define RKCS_ERR 0100000 /* error */
#define RKCS_REAL 0026776 /* kept here */
#define RKCS_RW 0006576 /* read/write */
#define GET_FUNC(x) (((x) >> RKCS_V_FUNC) & RKCS_M_FUNC)
/* RKDA */
#define RKDA_V_SECT 0 /* sector */
#define RKDA_M_SECT 017
#define RKDA_V_TRACK 4 /* track */
#define RKDA_M_TRACK 0777
#define RKDA_V_CYL 5 /* cylinder */
#define RKDA_M_CYL 0377
#define RKDA_V_DRIVE 13 /* drive */
#define RKDA_M_DRIVE 07
#define RKDA_DRIVE (RKDA_M_DRIVE << RKDA_V_DRIVE)
#define GET_SECT(x) (((x) >> RKDA_V_SECT) & RKDA_M_SECT)
#define GET_CYL(x) (((x) >> RKDA_V_CYL) & RKDA_M_CYL)
#define GET_TRACK(x) (((x) >> RKDA_V_TRACK) & RKDA_M_TRACK)
#define GET_DRIVE(x) (((x) >> RKDA_V_DRIVE) & RKDA_M_DRIVE)
#define GET_DA(x) ((GET_TRACK (x) * RK_NUMSC) + GET_SECT (x))
/* RKBA */
#define RKBA_IMP 0177776 /* implemented */
#define RK_MIN 10
#define MAX(x,y) (((x) > (y))? (x): (y))
extern uint16 *M; /* memory */
extern int32 int_req[IPL_HLVL];
uint16 *rkxb = NULL; /* xfer buffer */
int32 rkcs = 0; /* control/status */
int32 rkds = 0; /* drive status */
int32 rkba = 0; /* memory address */
int32 rkda = 0; /* disk address */
int32 rker = 0; /* error status */
int32 rkwc = 0; /* word count */
int32 rkintq = 0; /* interrupt queue */
int32 last_drv = 0; /* last r/w drive */
int32 rk_stopioe = 1; /* stop on error */
int32 rk_swait = 10; /* seek time */
int32 rk_rwait = 10; /* rotate time */
int32 rk_enb = 1; /* device enable */
t_stat rk_svc (UNIT *uptr);
t_stat rk_reset (DEVICE *dptr);
void rk_go (void);
void rk_set_done (int32 error);
void rk_clr_done (void);
t_stat rk_boot (int32 unitno);
/* RK11 data structures
rk_dev RK device descriptor
rk_unit RK unit list
rk_reg RK register list
rk_mod RK modifier list
*/
UNIT rk_unit[] = {
{ UDATA (&rk_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE, RK_SIZE) },
{ UDATA (&rk_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE, RK_SIZE) },
{ UDATA (&rk_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE, RK_SIZE) },
{ UDATA (&rk_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE, RK_SIZE) },
{ UDATA (&rk_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE, RK_SIZE) },
{ UDATA (&rk_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE, RK_SIZE) },
{ UDATA (&rk_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE, RK_SIZE) },
{ UDATA (&rk_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE, RK_SIZE) } };
REG rk_reg[] = {
{ ORDATA (RKCS, rkcs, 16) },
{ ORDATA (RKDA, rkda, 16) },
{ ORDATA (RKBA, rkba, 16) },
{ ORDATA (RKWC, rkwc, 16) },
{ ORDATA (RKDS, rkds, 16) },
{ ORDATA (RKER, rker, 16) },
{ ORDATA (INTQ, rkintq, 9) },
{ ORDATA (DRVN, last_drv, 3) },
{ FLDATA (INT, IREQ (RK), INT_V_RK) },
{ FLDATA (ERR, rkcs, CSR_V_ERR) },
{ FLDATA (DONE, rkcs, CSR_V_DONE) },
{ FLDATA (IE, rkcs, CSR_V_IE) },
{ DRDATA (STIME, rk_swait, 24), PV_LEFT },
{ DRDATA (RTIME, rk_rwait, 24), PV_LEFT },
{ URDATA (FLG, rk_unit[0].flags, 8, UNIT_W_UF, UNIT_V_UF - 1,
RK_NUMDR, REG_HRO) },
{ FLDATA (STOP_IOE, rk_stopioe, 0) },
{ FLDATA (*DEVENB, rk_enb, 0), REG_HRO },
{ NULL } };
MTAB rk_mod[] = {
{ UNIT_HWLK, 0, "write enabled", "ENABLED", NULL },
{ UNIT_HWLK, UNIT_HWLK, "write locked", "LOCKED", NULL },
{ 0 } };
DEVICE rk_dev = {
"RK", rk_unit, rk_reg, rk_mod,
RK_NUMDR, 8, 24, 1, 8, 16,
NULL, NULL, &rk_reset,
&rk_boot, NULL, NULL };
/* I/O dispatch routine, I/O addresses 17777400 - 17777416
17777400 RKDS read only, constructed from "id'd drive"
plus current drive status flags
17777402 RKER read only, set as operations progress,
cleared by INIT or CONTROL RESET
17777404 RKCS read/write
17777406 RKWC read/write
17777410 RKBA read/write
17777412 RKDA read/write
17777414 RKMR read/write, unimplemented
17777416 RKDB read only, unimplemented
*/
t_stat rk_rd (int32 *data, int32 PA, int32 access)
{
UNIT *uptr;
switch ((PA >> 1) & 07) { /* decode PA<3:1> */
case 0: /* RKDS: read only */
rkds = (rkds & RKDS_ID) | RKDS_RK05 | RKDS_SC_OK |
(rand () % RK_NUMSC); /* random sector */
uptr = rk_dev.units + GET_DRIVE (rkda); /* selected unit */
if (uptr -> flags & UNIT_ATT) rkds = rkds | RKDS_RDY; /* attached? */
if (!sim_is_active (uptr)) rkds = rkds | RKDS_RWS; /* idle? */
if (uptr -> flags & UNIT_WPRT) rkds = rkds | RKDS_WLK;
if (GET_SECT (rkda) == (rkds & RKDS_SC)) rkds = rkds | RKDS_ON_SC;
*data = rkds;
return SCPE_OK;
case 1: /* RKER: read only */
*data = rker & RKER_IMP;
return SCPE_OK;
case 2: /* RKCS */
rkcs = rkcs & RKCS_REAL;
if (rker) rkcs = rkcs | RKCS_ERR; /* update err flags */
if (rker & RKER_HARD) rkcs = rkcs | RKCS_HERR;
*data = rkcs;
return SCPE_OK;
case 3: /* RKWC */
*data = rkwc;
return SCPE_OK;
case 4: /* RKBA */
*data = rkba & RKBA_IMP;
return SCPE_OK;
case 5: /* RKDA */
*data = rkda;
return SCPE_OK;
default:
*data = 0;
return SCPE_OK; } /* end switch */
}
t_stat rk_wr (int32 data, int32 PA, int32 access)
{
switch ((PA >> 1) & 07) { /* decode PA<3:1> */
case 0: /* RKDS: read only */
return SCPE_OK;
case 1: /* RKER: read only */
return SCPE_OK;
case 2: /* RKCS */
rkcs = rkcs & RKCS_REAL;
if (access == WRITEB) data = (PA & 1)?
(rkcs & 0377) | (data << 8): (rkcs & ~0377) | data;
if ((data & CSR_IE) == 0) { /* int disable? */
rkintq = 0; /* clr int queue */
CLR_INT (RK); } /* clr int request */
else if ((rkcs & (CSR_DONE + CSR_IE)) == CSR_DONE) {
rkintq = rkintq | RK_CTLI; /* queue ctrl int */
SET_INT (RK); } /* set int request */
rkcs = (rkcs & ~RKCS_RW) | (data & RKCS_RW);
if ((rkcs & CSR_DONE) && (data & CSR_GO)) rk_go (); /* new function? */
return SCPE_OK;
case 3: /* RKWC */
if (access == WRITEB) data = (PA & 1)?
(rkwc & 0377) | (data << 8): (rkwc & ~0377) | data;
rkwc = data;
return SCPE_OK;
case 4: /* RKBA */
if (access == WRITEB) data = (PA & 1)?
(rkba & 0377) | (data << 8): (rkba & ~0377) | data;
rkba = data & RKBA_IMP;
return SCPE_OK;
case 5: /* RKDA */
if ((rkcs & CSR_DONE) == 0) return SCPE_OK;
if (access == WRITEB) data = (PA & 1)?
(rkda & 0377) | (data << 8): (rkda & ~0377) | data;
rkda = data;
return SCPE_OK;
default:
return SCPE_OK; } /* end switch */
}
/* Initiate new function */
void rk_go (void)
{
int32 i, sect, cyl, func;
UNIT *uptr;
func = GET_FUNC (rkcs); /* get function */
if (func == RKCS_CTLRESET) { /* control reset? */
rker = 0; /* clear errors */
rkda = 0;
rkba = 0;
rkcs = CSR_DONE;
rkintq = 0; /* clr int queue */
CLR_INT (RK); /* clr int request */
return; }
rker = rker & ~RKER_SOFT; /* clear soft errors */
if (rker == 0) rkcs = rkcs & ~RKCS_ERR; /* redo summary */
rkcs = rkcs & ~RKCS_SCP; /* clear sch compl*/
rk_clr_done (); /* clear done */
last_drv = GET_DRIVE (rkda); /* get drive no */
uptr = rk_dev.units + last_drv; /* select unit */
if (uptr -> flags & UNIT_DIS) { /* not present? */
rk_set_done (RKER_NXD);
return; }
if (((uptr -> flags & UNIT_ATT) == 0) || sim_is_active (uptr)) {
rk_set_done (RKER_DRE); /* not att or busy */
return; }
if (rkcs & (RKCS_INH + RKCS_FMT)) { /* format? */
rk_set_done (RKER_PGE);
return; }
if ((func == RKCS_WRITE) && (uptr -> flags & UNIT_WPRT)) {
rk_set_done (RKER_WLK); /* write and locked? */
return; }
if (func == RKCS_WLK) { /* write lock? */
uptr -> flags = uptr -> flags | UNIT_SWLK;
rk_set_done (0);
return; }
if (func == RKCS_DRVRESET) { /* drive reset? */
uptr -> flags = uptr -> flags & ~UNIT_SWLK;
cyl = sect = 0;
func = RKCS_SEEK; }
else { sect = GET_SECT (rkda);
cyl = GET_CYL (rkda); }
if (sect >= RK_NUMSC) { /* bad sector? */
rk_set_done (RKER_NXS);
return; }
if (cyl >= RK_NUMCY) { /* bad cyl? */
rk_set_done (RKER_NXC);
return; }
i = abs (cyl - uptr -> CYL) * rk_swait; /* seek time */
if (func == RKCS_SEEK) { /* seek? */
rk_set_done (0); /* set done */
sim_activate (uptr, MAX (RK_MIN, i)); } /* schedule */
else sim_activate (uptr, i + rk_rwait);
uptr -> FUNC = func; /* save func */
uptr -> CYL = cyl; /* put on cylinder */
return;
}
/* Service unit timeout
If seek in progress, complete seek command
Else complete data transfer command
The unit control block contains the function and disk address for
the current command.
*/
t_stat rk_svc (UNIT *uptr)
{
int32 i, drv, err, awc, wc, t;
int32 da, track, sect;
t_addr ma;
uint16 comp;
drv = uptr - rk_dev.units; /* get drv number */
if (uptr -> FUNC == RKCS_SEEK) { /* seek */
rkcs = rkcs | RKCS_SCP; /* set seek done */
if (rkcs & CSR_IE) { /* ints enabled? */
rkintq = rkintq | RK_SCPI (drv); /* queue request */
if (rkcs & CSR_DONE) SET_INT (RK); }
else { rkintq = 0; /* clear queue */
CLR_INT (RK); } /* clear interrupt */
return SCPE_OK; }
if ((uptr -> flags & UNIT_ATT) == 0) { /* attached? */
rk_set_done (RKER_DRE);
return IORETURN (rk_stopioe, SCPE_UNATT); }
ma = ((rkcs & RKCS_MEX) << (16 - RKCS_V_MEX)) | rkba; /* get mem addr */
da = GET_DA (rkda) * RK_NUMWD; /* get disk addr */
wc = 0200000 - rkwc; /* get wd cnt */
err = fseek (uptr -> fileref, da * sizeof (int16), SEEK_SET);
if ((uptr -> FUNC == RKCS_READ) && (err == 0)) { /* read? */
i = fxread (rkxb, sizeof (int16), wc, uptr -> fileref);
err = ferror (uptr -> fileref);
for ( ; i < wc; i++) rkxb[i] = 0; /* fill buf */
if (t = Map_WriteW (ma, wc << 1, rkxb, UB)) { /* store buf */
rker = rker | RKER_NXM; /* NXM? set flg */
wc = wc - t; } /* adj wd cnt */
} /* end read */
if ((uptr -> FUNC == RKCS_WRITE) && (err == 0)) { /* write? */
if (t = Map_ReadW (ma, wc << 1, rkxb, UB)) { /* get buf */
rker = rker | RKER_NXM; /* NXM? set flg */
wc = wc - t; } /* adj wd cnt */
if (wc) { /* any xfer? */
awc = (wc + (RK_NUMWD - 1)) & ~(RK_NUMWD - 1); /* clr to */
for (i = wc; i < awc; i++) rkxb[i] = 0; /* end of blk */
fxwrite (rkxb, sizeof (int16), awc, uptr -> fileref);
err = ferror (uptr -> fileref); }
} /* end write */
if ((uptr -> FUNC == RKCS_WCHK) && (err == 0)) { /* write check? */
i = fxread (rkxb, sizeof (int16), wc, uptr -> fileref);
err = ferror (uptr -> fileref);
for ( ; i < wc; i++) rkxb[i] = 0; /* fill buf */
awc = wc; /* save wc */
for (wc = 0; (err == 0) && (wc < awc); wc++) { /* loop thru buf */
if (Map_ReadW (ma + (wc << 1), 2, &comp, UB)) { /* mem wd */
rker = rker | RKER_NXM; /* NXM? set flg */
break; }
if (comp != rkxb[wc]) { /* match to disk? */
rker = rker | RKER_WCE; /* no, err */
if (rkcs & RKCS_SSE) break; } }
} /* end wcheck */
rkwc = (rkwc + wc) & 0177777; /* final word count */
ma = ma + (wc << 1); /* final byte addr */
rkba = ma & RKBA_IMP; /* lower 16b */
rkcs = (rkcs & ~RKCS_MEX) | ((ma >> (16 - RKCS_V_MEX)) & RKCS_MEX);
da = da + wc + (RK_NUMWD - 1);
track = (da / RK_NUMWD) / RK_NUMSC;
sect = (da / RK_NUMWD) % RK_NUMSC;
rkda = (rkda & RKDA_DRIVE) | (track << RKDA_V_TRACK) | (sect << RKDA_V_SECT);
rk_set_done (0);
if (err != 0) { /* error? */
perror ("RK I/O error");
clearerr (uptr -> fileref);
return SCPE_IOERR; }
return SCPE_OK;
}
/* Interrupt state change routines
rk_set_done set done and possibly errors
rk_clr_done clear done
rk_inta acknowledge intererupt
*/
void rk_set_done (int32 error)
{
rkcs = rkcs | CSR_DONE; /* set done */
if (error != 0) {
rker = rker | error; /* update error */
if (rker) rkcs = rkcs | RKCS_ERR; /* update err flags */
if (rker & RKER_HARD) rkcs = rkcs | RKCS_HERR; }
if (rkcs & CSR_IE) { /* int enable? */
rkintq = rkintq | RK_CTLI; /* set ctrl int */
SET_INT (RK); } /* request int */
else { rkintq = 0; /* clear queue */
CLR_INT (RK); }
return;
}
void rk_clr_done (void)
{
rkcs = rkcs & ~CSR_DONE; /* clear done */
rkintq = rkintq & ~RK_CTLI; /* clear ctl int */
CLR_INT (RK); /* clear int req */
return;
}
int32 rk_inta (void)
{
int32 i;
for (i = 0; i <= RK_NUMDR; i++) { /* loop thru intq */
if (rkintq & (1u << i)) { /* bit i set? */
rkintq = rkintq & ~(1u << i); /* clear bit i */
if (rkintq) SET_INT (RK); /* queue next */
rkds = (rkds & ~RKDS_ID) | /* id drive */
(((i == 0)? last_drv: i - 1) << RKDS_V_ID);
return VEC_RK; } } /* return vector */
rkintq = 0; /* clear queue */
return 0; /* passive release */
}
/* Device reset */
t_stat rk_reset (DEVICE *dptr)
{
int32 i;
UNIT *uptr;
rkcs = CSR_DONE;
rkda = rkba = rker = rkds = 0;
rkintq = last_drv = 0;
CLR_INT (RK);
for (i = 0; i < RK_NUMDR; i++) {
uptr = rk_dev.units + i;
sim_cancel (uptr);
uptr -> CYL = uptr -> FUNC = 0;
uptr -> flags = uptr -> flags & ~UNIT_SWLK; }
if (rkxb == NULL) rkxb = calloc (RK_MAXFR, sizeof (unsigned int16));
if (rkxb == NULL) return SCPE_MEM;
return SCPE_OK;
}
/* Device bootstrap */
#define BOOT_START 02000 /* start */
#define BOOT_UNIT 02006 /* unit number */
#define BOOT_LEN (sizeof (boot_rom) / sizeof (int32))
static const int32 boot_rom[] = {
0012706, 0002000, /* MOV #2000, SP */
0012700, 0000000, /* MOV #unit, R0 ; unit number */
0010003, /* MOV R0, R3 */
0000303, /* SWAB R3 */
0006303, /* ASL R3 */
0006303, /* ASL R3 */
0006303, /* ASL R3 */
0006303, /* ASL R3 */
0006303, /* ASL R3 */
0012701, 0177412, /* MOV #RKDA, R1 ; csr */
0010311, /* MOV R3, (R1) ; load da */
0005041, /* CLR -(R1) ; clear ba */
0012741, 0177000, /* MOV #-256.*2, -(R1) ; load wc */
0012741, 0000005, /* MOV #READ+GO, -(R1) ; read & go */
0005002, /* CLR R2 */
0005003, /* CLR R3 */
0005004, /* CLR R4 */
0012705, 0045504, /* MOV #"DK, R5 */
0105711, /* TSTB (R1) */
0100376, /* BPL .-2 */
0105011, /* CLRB (R1) */
0005007 /* CLR PC */
};
t_stat rk_boot (int32 unitno)
{
int32 i;
extern int32 saved_PC;
for (i = 0; i < BOOT_LEN; i++) M[(BOOT_START >> 1) + i] = boot_rom[i];
M[BOOT_UNIT >> 1] = unitno & RK_M_NUMDR;
saved_PC = BOOT_START;
return SCPE_OK;
}