1. New Features 1.1 Directory and documentation - Only common files (SCP and libraries) are in the top level directory. Individual simulator files are in their individual directories. - simh_doc.txt has been split up. simh_doc.txt now documents only SCP. The individual simulators are documented in separate text files in their own directories. - mingw_build.bat is a batch file for the MINGW/gcc environment that will build all the simulators, assuming the root directory structure is at c:\sim. - Makefile is a UNIX make file for the gcc environment that will build all the simulators, assuming the root directory is at c:\sim. 1.2 SCP - DO <file name> executes the SCP commands in the specified file. - Replicated registers in unit structures can now be declared as arrays for examine, modify, save, and restore. Most replicated unit registers (for example, mag tape position registers) have been changed to arrays. - The ADD/REMOVE commands have been replaced by SET unit ONLINE and SET unit OFFLINE, respectively. - Register names that are unique within an entire simulator do not have to be prefaced with the device name. - The ATTACH command can attach files read only, either under user option (-r), or because the attached file is ready only. - The SET/SHOW capabilities have been extended. New forms include: SET <dev> param{=value}{ param ...} SET <unit> param{=value}{ param ...} SHOW <dev> {param param ...} SHOW <unit> {param param ...} - Multiple breakpoints have been implemented. Breakpoints are set/cleared/displayed by: BREAK addr_list{[count]} NOBREAK addr_list SHOW BREAK addr_list 1.3 PDP-11 simulator - Unibus map implemented, with 22b RP controller (URH70) or 18b RP controller (URH11) (in debug). - All DMA peripherals rewritten to use map. - Many peripherals modified for source sharing with VAX. - RQDX3 implemented. - Bugs fixed in RK11 and RL11 write check. 1.4 PDP-10 simulator - ITS 1-proceed implemented. - Bugs fixed in ITS PC sampling and LPMR 1.5 18b PDP simulator - Interrupts split out to multiple levels to allow easier expansion. 1.5 IBM System 3 Simulator - Written by Charles (Dutch) Owen. 1.6 VAX Simulator (in debug) - Simulates MicroVAX 3800 (KA655) with 16MB-64MB memory, RQDX3, RLV12, TSV11, DZV11, LPV11, PCV11. - CDROM capability has been added to the RQDX3, to allow testing with VMS hobbyist images. 1.7 SDS 940 Simulator (not tested) - Simulates SDS 940, 16K-64K memory, fixed and moving head disk, magtape, line printer, console. 1.8 Altair Z80 - Revised from Charles (Dutch) Owen's original by Peter Schorn. - MITS 8080 with full Z80 simulation. - 4K and 8K BASIC packages, Prolog package. 1.9 Interdata The I4 simulator has been withdrawn for major rework. Look for a complete 16b/32b Interdata simulator sometime next year. 2. Release Notes 2.1 SCP SCP now allows replicated registers in unit structures to be modelled as arrays. All replicated register declarations have been replaced by register array declarations. As a result, save files from prior revisions will generate errors after restoring main memory. 2.2 PDP-11 The Unibus map code is in debug. The map was implemented primarily to allow source sharing with the VAX, which requires a DMA map. DMA devices work correctly with the Unibus map disabled. The RQDX3 simulator has run a complete RSTS/E SYSGEN, with multiple drives, and booted the completed system from scratch. 2.3 VAX The VAX simulator will run the boot code up to the >>> prompt. It can successfully process a SHOW DEVICE command. It runs the HCORE instruction diagnostic. It can boot the hobbyist CD through SYSBOOT and through the date/time dialog and restore the hobbyist CD, using standalone backup. On the boot of the restored disk, it gets to the date/time dialog, and then crashes. 2.4 SDS 940 The SDS 940 is untested, awaiting real code. 2.5 GCC Optimization At -O2 and above, GCC does not correctly compile the simulators which use setjmp-longjmp (PDP-11, PDP-10, VAX). A working hypothesis is that optimized state maintained in registers is being used in the setjmp processing routine. On the PDP-11 and PDP-10, all of this state has been either made global, or volatile, to encourage GCC to keep the state up to date in memory. The VAX is still vulnerable. 3. Work list 3.1 SCP - Better ENABLE/DISABLE. 3.2 PDP-11 RQDX3 Software mapped mode, RCT read simulation, VMS debug.
1141 lines
34 KiB
C
1141 lines
34 KiB
C
/* pdp8_cpu.c: PDP-8 CPU simulator
|
||
|
||
Copyright (c) 1993-2001, Robert M Supnik
|
||
|
||
Permission is hereby granted, free of charge, to any person obtaining a
|
||
copy of this software and associated documentation files (the "Software"),
|
||
to deal in the Software without restriction, including without limitation
|
||
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
and/or sell copies of the Software, and to permit persons to whom the
|
||
Software is furnished to do so, subject to the following conditions:
|
||
|
||
The above copyright notice and this permission notice shall be included in
|
||
all copies or substantial portions of the Software.
|
||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
||
Except as contained in this notice, the name of Robert M Supnik shall not
|
||
be used in advertising or otherwise to promote the sale, use or other dealings
|
||
in this Software without prior written authorization from Robert M Supnik.
|
||
|
||
cpu central processor
|
||
|
||
16-Dec-01 RMS Fixed bugs in EAE
|
||
07-Dec-01 RMS Revised to use new breakpoint package
|
||
30-Nov-01 RMS Added RL8A, extended SET/SHOW support
|
||
16-Sep-01 RMS Fixed bug in reset routine, added KL8A support
|
||
10-Aug-01 RMS Removed register from declarations
|
||
17-Jul-01 RMS Moved function prototype
|
||
07-Jun-01 RMS Fixed bug in JMS to non-existent memory
|
||
25-Apr-01 RMS Added device enable/disable support
|
||
18-Mar-01 RMS Added DF32 support
|
||
05-Mar-01 RMS Added clock calibration support
|
||
15-Feb-01 RMS Added DECtape support
|
||
14-Apr-99 RMS Changed t_addr to unsigned
|
||
|
||
The register state for the PDP-8 is:
|
||
|
||
AC<0:11> accumulator
|
||
MQ<0:11> multiplier-quotient
|
||
L link flag
|
||
PC<0:11> program counter
|
||
IF<0:2> instruction field
|
||
IB<0:2> instruction buffer
|
||
DF<0:2> data field
|
||
UF user flag
|
||
UB user buffer
|
||
SF<0:6> interrupt save field
|
||
|
||
The PDP-8 has three instruction formats: memory reference, I/O transfer,
|
||
and operate. The memory reference format is:
|
||
|
||
0 1 2 3 4 5 6 7 8 9 10 11
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| op |in|zr| page offset | memory reference
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
|
||
<0:2> mnemonic action
|
||
|
||
000 AND AC = AC & M[MA]
|
||
001 TAD L'AC = AC + M[MA]
|
||
010 DCA M[MA] = AC, AC = 0
|
||
011 ISZ M[MA] = M[MA] + 1, skip if M[MA] == 0
|
||
100 JMS M[MA] = PC, PC = MA + 1
|
||
101 JMP PC = MA
|
||
|
||
<3:4> mode action
|
||
00 page zero MA = IF'0'IR<5:11>
|
||
01 current page MA = IF'PC<0:4>'IR<5:11>
|
||
10 indirect page zero MA = xF'M[IF'0'IR<5:11>]
|
||
11 indirect current page MA = xF'M[IF'PC<0:4>'IR<5:11>]
|
||
|
||
where x is D for AND, TAD, ISZ, DCA, and I for JMS, JMP.
|
||
|
||
Memory reference instructions can access an address space of 32K words.
|
||
The address space is divided into eight 4K word fields; each field is
|
||
divided into thirty-two 128 word pages. An instruction can directly
|
||
address, via its 7b offset, locations 0-127 on page zero or on the current
|
||
page. All 32k words can be accessed via indirect addressing and the
|
||
instruction and data field registers. If an indirect address is in
|
||
locations 0010-0017 of any field, the indirect address is incremented
|
||
and rewritten to memory before use.
|
||
*/
|
||
|
||
/* The I/O transfer format is as follows:
|
||
|
||
0 1 2 3 4 5 6 7 8 9 10 11
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| op | device | pulse | I/O transfer
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
|
||
The IO transfer instruction sends the the specified pulse to the
|
||
specified I/O device. The I/O device may take data from the AC,
|
||
return data to the AC, initiate or cancel operations, or skip on
|
||
status.
|
||
|
||
The operate format is as follows:
|
||
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| 1| 1| 1| 0| | | | | | | | | operate group 1
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| | | | | | | |
|
||
| | | | | | | +--- increment AC 3
|
||
| | | | | | +--- rotate 1 or 2 4
|
||
| | | | | +--- rotate left 4
|
||
| | | | +--- rotate right 4
|
||
| | | +--- complement L 2
|
||
| | +--- complement AC 2
|
||
| +--- clear L 1
|
||
+-- clear AC 1
|
||
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| 1| 1| 1| 1| | | | | | | | 0| operate group 2
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| | | | | | |
|
||
| | | | | | +--- halt 3
|
||
| | | | | +--- or switch register 3
|
||
| | | | +--- reverse skip sense 1
|
||
| | | +--- skip on L != 0 1
|
||
| | +--- skip on AC == 0 1
|
||
| +--- skip on AC < 0 1
|
||
+-- clear AC 2
|
||
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| 1| 1| 1| 1| | | | | | | | 1| operate group 3
|
||
+--+--+--+--+--+--+--+--+--+--+--+--+
|
||
| | | | \______/
|
||
| | | | |
|
||
| | +--|-----+--- EAE command 3
|
||
| | +--- AC -> MQ, 0 -> AC 2
|
||
| +--- MQ v AC --> AC 2
|
||
+-- clear AC 1
|
||
|
||
The operate instruction can be microprogrammed to perform operations
|
||
on the AC, MQ, and link.
|
||
*/
|
||
|
||
/* This routine is the instruction decode routine for the PDP-8.
|
||
It is called from the simulator control program to execute
|
||
instructions in simulated memory, starting at the simulated PC.
|
||
It runs until 'reason' is set non-zero.
|
||
|
||
General notes:
|
||
|
||
1. Reasons to stop. The simulator can be stopped by:
|
||
|
||
HALT instruction
|
||
breakpoint encountered
|
||
unimplemented instruction and stop_inst flag set
|
||
I/O error in I/O simulator
|
||
|
||
2. Interrupts. Interrupts are maintained by three parallel variables:
|
||
|
||
dev_done device done flags
|
||
int_enable interrupt enable flags
|
||
int_req interrupt requests
|
||
|
||
In addition, int_req contains the interrupt enable flag, the
|
||
CIF not pending flag, and the ION not pending flag. If all
|
||
three of these flags are set, and at least one interrupt request
|
||
is set, then an interrupt occurs.
|
||
|
||
3. Non-existent memory. On the PDP-8, reads to non-existent memory
|
||
return zero, and writes are ignored. In the simulator, the
|
||
largest possible memory is instantiated and initialized to zero.
|
||
Thus, only writes outside the current field (indirect writes) need
|
||
be checked against actual memory size.
|
||
|
||
3. Adding I/O devices. Three modules must be modified:
|
||
|
||
pdp8_defs.h add interrupt request definition
|
||
pdp8_cpu.c add IOT dispatch
|
||
pdp8_sys.c add pointer to data structures to sim_devices
|
||
*/
|
||
|
||
#include "pdp8_defs.h"
|
||
|
||
#define UNIT_V_NOEAE (UNIT_V_UF) /* EAE absent */
|
||
#define UNIT_NOEAE (1 << UNIT_V_NOEAE)
|
||
#define UNIT_V_MSIZE (UNIT_V_UF+1) /* dummy mask */
|
||
#define UNIT_MSIZE (1 << UNIT_V_MSIZE)
|
||
|
||
uint16 M[MAXMEMSIZE] = { 0 }; /* main memory */
|
||
int32 saved_LAC = 0; /* saved L'AC */
|
||
int32 saved_MQ = 0; /* saved MQ */
|
||
int32 saved_PC = 0; /* saved IF'PC */
|
||
int32 saved_DF = 0; /* saved Data Field */
|
||
int32 IB = 0; /* Instruction Buffer */
|
||
int32 SF = 0; /* Save Field */
|
||
int32 emode = 0; /* EAE mode */
|
||
int32 gtf = 0; /* EAE gtf flag */
|
||
int32 SC = 0; /* EAE shift count */
|
||
int32 UB = 0; /* User mode Buffer */
|
||
int32 UF = 0; /* User mode Flag */
|
||
int32 OSR = 0; /* Switch Register */
|
||
int32 old_PC = 0; /* old PC */
|
||
int32 dev_done = 0; /* dev done flags */
|
||
int32 int_enable = INT_INIT_ENABLE; /* intr enables */
|
||
int32 int_req = 0; /* intr requests */
|
||
int32 dev_enb = -1 & ~INT_DF & ~INT_RL; /* device enables */
|
||
int32 stop_inst = 0; /* trap on ill inst */
|
||
extern int32 sim_int_char;
|
||
extern int32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
|
||
|
||
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
|
||
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
|
||
t_stat cpu_reset (DEVICE *dptr);
|
||
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
|
||
|
||
/* CPU data structures
|
||
|
||
cpu_dev CPU device descriptor
|
||
cpu_unit CPU unit descriptor
|
||
cpu_reg CPU register list
|
||
cpu_mod CPU modifier list
|
||
*/
|
||
|
||
UNIT cpu_unit = { UDATA (NULL, UNIT_FIX + UNIT_BINK, MAXMEMSIZE) };
|
||
|
||
REG cpu_reg[] = {
|
||
{ ORDATA (PC, saved_PC, 15) },
|
||
{ ORDATA (AC, saved_LAC, 12) },
|
||
{ FLDATA (L, saved_LAC, 12) },
|
||
{ ORDATA (MQ, saved_MQ, 12) },
|
||
{ ORDATA (SR, OSR, 12) },
|
||
{ GRDATA (IF, saved_PC, 8, 3, 12) },
|
||
{ GRDATA (DF, saved_DF, 8, 3, 12) },
|
||
{ GRDATA (IB, IB, 8, 3, 12) },
|
||
{ ORDATA (SF, SF, 7) },
|
||
{ FLDATA (UB, UB, 0) },
|
||
{ FLDATA (UF, UF, 0) },
|
||
{ ORDATA (SC, SC, 5) },
|
||
{ FLDATA (GTF, gtf, 0) },
|
||
{ FLDATA (EMODE, emode, 0) },
|
||
{ FLDATA (ION, int_req, INT_V_ION) },
|
||
{ FLDATA (ION_DELAY, int_req, INT_V_NO_ION_PENDING) },
|
||
{ FLDATA (CIF_DELAY, int_req, INT_V_NO_CIF_PENDING) },
|
||
{ FLDATA (PWR_INT, int_req, INT_V_PWR) },
|
||
{ FLDATA (UF_INT, int_req, INT_V_UF) },
|
||
{ ORDATA (INT, int_req, INT_V_ION+1), REG_RO },
|
||
{ ORDATA (DONE, dev_done, INT_V_DIRECT), REG_RO },
|
||
{ ORDATA (ENABLE, int_enable, INT_V_DIRECT), REG_RO },
|
||
{ FLDATA (NOEAE, cpu_unit.flags, UNIT_V_NOEAE), REG_HRO },
|
||
{ ORDATA (OLDPC, old_PC, 15), REG_RO },
|
||
{ FLDATA (STOP_INST, stop_inst, 0) },
|
||
{ ORDATA (WRU, sim_int_char, 8) },
|
||
{ ORDATA (DEVENB, dev_enb, 32), REG_HRO },
|
||
{ NULL } };
|
||
|
||
MTAB cpu_mod[] = {
|
||
{ UNIT_NOEAE, UNIT_NOEAE, "no EAE", "NOEAE", NULL },
|
||
{ UNIT_NOEAE, 0, "EAE", "EAE", NULL },
|
||
{ UNIT_MSIZE, 4096, NULL, "4K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 8192, NULL, "8K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 12288, NULL, "12K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 16384, NULL, "16K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 20480, NULL, "20K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 24576, NULL, "24K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 28672, NULL, "28K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 32768, NULL, "32K", &cpu_set_size },
|
||
{ 0 } };
|
||
|
||
DEVICE cpu_dev = {
|
||
"CPU", &cpu_unit, cpu_reg, cpu_mod,
|
||
1, 8, 15, 1, 8, 12,
|
||
&cpu_ex, &cpu_dep, &cpu_reset,
|
||
NULL, NULL, NULL };
|
||
|
||
t_stat sim_instr (void)
|
||
{
|
||
extern int32 sim_interval;
|
||
int32 IR, MB, IF, DF, LAC, MQ;
|
||
t_addr PC, MA;
|
||
int32 device, pulse, temp, iot_data;
|
||
t_stat reason;
|
||
extern UNIT clk_unit;
|
||
extern int32 tti (int32 pulse, int32 AC);
|
||
extern int32 tto (int32 pulse, int32 AC);
|
||
extern int32 ptr (int32 pulse, int32 AC);
|
||
extern int32 ptp (int32 pulse, int32 AC);
|
||
extern int32 clk (int32 pulse, int32 AC);
|
||
extern int32 lpt (int32 pulse, int32 AC);
|
||
extern int32 ttix (int32 inst, int32 AC);
|
||
extern int32 ttox (int32 inst, int32 AC);
|
||
extern int32 rk (int32 pulse, int32 AC);
|
||
extern int32 rx (int32 pulse, int32 AC);
|
||
extern int32 df60 (int32 pulse, int32 AC);
|
||
extern int32 df61 (int32 pulse, int32 AC);
|
||
extern int32 df62 (int32 pulse, int32 AC);
|
||
extern int32 rf60 (int32 pulse, int32 AC);
|
||
extern int32 rf61 (int32 pulse, int32 AC);
|
||
extern int32 rf62 (int32 pulse, int32 AC);
|
||
extern int32 rf64 (int32 pulse, int32 AC);
|
||
extern int32 rl60 (int32 pulse, int32 AC);
|
||
extern int32 rl61 (int32 pulse, int32 AC);
|
||
extern int32 mt70 (int32 pulse, int32 AC);
|
||
extern int32 mt71 (int32 pulse, int32 AC);
|
||
extern int32 mt72 (int32 pulse, int32 AC);
|
||
extern int32 dt76 (int32 pulse, int32 AC);
|
||
extern int32 dt77 (int32 pulse, int32 AC);
|
||
|
||
/* Restore register state */
|
||
|
||
PC = saved_PC & 007777; /* load local copies */
|
||
IF = saved_PC & 070000;
|
||
DF = saved_DF & 070000;
|
||
LAC = saved_LAC & 017777;
|
||
MQ = saved_MQ & 07777;
|
||
int_req = INT_UPDATE;
|
||
reason = 0;
|
||
sim_rtc_init (clk_unit.wait); /* init calibration */
|
||
|
||
/* Main instruction fetch/decode loop */
|
||
|
||
while (reason == 0) { /* loop until halted */
|
||
if (sim_interval <= 0) { /* check clock queue */
|
||
if (reason = sim_process_event ()) break; }
|
||
|
||
if (int_req > INT_PENDING) { /* interrupt? */
|
||
int_req = int_req & ~INT_ION; /* interrupts off */
|
||
SF = (UF << 6) | (IF >> 9) | (DF >> 12); /* form save field */
|
||
IF = IB = DF = UF = UB = 0; /* clear mem ext */
|
||
old_PC = M[0] = PC; /* save PC in 0 */
|
||
PC = 1; } /* fetch next from 1 */
|
||
|
||
MA = IF | PC; /* form PC */
|
||
if (sim_brk_summ && sim_brk_test (MA, SWMASK ('E'))) { /* breakpoint? */
|
||
reason = STOP_IBKPT; /* stop simulation */
|
||
break; }
|
||
|
||
IR = M[MA]; /* fetch instruction */
|
||
PC = (PC + 1) & 07777; /* increment PC */
|
||
int_req = int_req | INT_NO_ION_PENDING; /* clear ION delay */
|
||
sim_interval = sim_interval - 1;
|
||
|
||
/* Instruction decoding.
|
||
|
||
The opcode (IR<0:2>), indirect flag (IR<3>), and page flag (IR<4>)
|
||
are decoded together. This produces 32 decode points, four per
|
||
major opcode. For IOT, the extra decode points are not useful;
|
||
for OPR, only the group flag (IR<3>) is used.
|
||
|
||
The following macros define the address calculations for data and
|
||
jump calculations. Data calculations return a full 15b extended
|
||
address, jump calculations a 12b field-relative address.
|
||
|
||
Autoindex calculations always occur within the same field as the
|
||
instruction fetch. The field must exist; otherwise, the instruction
|
||
fetched would be 0000, and indirect addressing could not occur.
|
||
|
||
Note that MA contains IF'PC.
|
||
*/
|
||
|
||
#define ZERO_PAGE MA = IF | (IR & 0177)
|
||
#define CURR_PAGE MA = (MA & 077600) | (IR & 0177)
|
||
#define INDIRECT if ((MA & 07770) != 00010) MA = DF | M[MA]; \
|
||
else MA = DF | (M[MA] = (M[MA] + 1) & 07777)
|
||
|
||
#define ZERO_PAGE_J MA = IR & 0177
|
||
#define CURR_PAGE_J MA = (MA & 007600) | (IR & 0177)
|
||
#define INDIRECT_J if ((MA & 07770) != 00010) MA = M[MA]; \
|
||
else MA = (M[MA] = (M[MA] + 1) & 07777)
|
||
#define CHANGE_FIELD IF = IB; UF = UB; \
|
||
int_req = int_req | INT_NO_CIF_PENDING
|
||
|
||
switch ((IR >> 7) & 037) { /* decode IR<0:4> */
|
||
|
||
/* Opcode 0, AND */
|
||
|
||
case 000: /* AND, dir, zero */
|
||
ZERO_PAGE;
|
||
LAC = LAC & (M[MA] | 010000);
|
||
break;
|
||
case 001: /* AND, dir, curr */
|
||
CURR_PAGE;
|
||
LAC = LAC & (M[MA] | 010000);
|
||
break;
|
||
case 002: /* AND, indir, zero */
|
||
ZERO_PAGE;
|
||
INDIRECT;
|
||
LAC = LAC & (M[MA] | 010000);
|
||
break;
|
||
case 003: /* AND, indir, curr */
|
||
CURR_PAGE;
|
||
INDIRECT;
|
||
LAC = LAC & (M[MA] | 010000);
|
||
break;
|
||
|
||
/* Opcode 1, TAD */
|
||
|
||
case 004: /* TAD, dir, zero */
|
||
ZERO_PAGE;
|
||
LAC = (LAC + M[MA]) & 017777;
|
||
break;
|
||
case 005: /* TAD, dir, curr */
|
||
CURR_PAGE;
|
||
LAC = (LAC + M[MA]) & 017777;
|
||
break;
|
||
case 006: /* TAD, indir, zero */
|
||
ZERO_PAGE;
|
||
INDIRECT;
|
||
LAC = (LAC + M[MA]) & 017777;
|
||
break;
|
||
case 007: /* TAD, indir, curr */
|
||
CURR_PAGE;
|
||
INDIRECT;
|
||
LAC = (LAC + M[MA]) & 017777;
|
||
break;
|
||
|
||
/* Opcode 2, ISZ */
|
||
|
||
case 010: /* ISZ, dir, zero */
|
||
ZERO_PAGE;
|
||
M[MA] = MB = (M[MA] + 1) & 07777; /* field must exist */
|
||
if (MB == 0) PC = (PC + 1) & 07777;
|
||
break;
|
||
case 011: /* ISZ, dir, curr */
|
||
CURR_PAGE;
|
||
M[MA] = MB = (M[MA] + 1) & 07777; /* field must exist */
|
||
if (MB == 0) PC = (PC + 1) & 07777;
|
||
break;
|
||
case 012: /* ISZ, indir, zero */
|
||
ZERO_PAGE;
|
||
INDIRECT;
|
||
MB = (M[MA] + 1) & 07777;
|
||
if (MEM_ADDR_OK (MA)) M[MA] = MB;
|
||
if (MB == 0) PC = (PC + 1) & 07777;
|
||
break;
|
||
case 013: /* ISZ, indir, curr */
|
||
CURR_PAGE;
|
||
INDIRECT;
|
||
MB = (M[MA] + 1) & 07777;
|
||
if (MEM_ADDR_OK (MA)) M[MA] = MB;
|
||
if (MB == 0) PC = (PC + 1) & 07777;
|
||
break;
|
||
|
||
/* Opcode 3, DCA */
|
||
|
||
case 014: /* DCA, dir, zero */
|
||
ZERO_PAGE;
|
||
M[MA] = LAC & 07777;
|
||
LAC = LAC & 010000;
|
||
break;
|
||
case 015: /* DCA, dir, curr */
|
||
CURR_PAGE;
|
||
M[MA] = LAC & 07777;
|
||
LAC = LAC & 010000;
|
||
break;
|
||
case 016: /* DCA, indir, zero */
|
||
ZERO_PAGE;
|
||
INDIRECT;
|
||
if (MEM_ADDR_OK (MA)) M[MA] = LAC & 07777;
|
||
LAC = LAC & 010000;
|
||
break;
|
||
case 017: /* DCA, indir, curr */
|
||
CURR_PAGE;
|
||
INDIRECT;
|
||
if (MEM_ADDR_OK (MA)) M[MA] = LAC & 07777;
|
||
LAC = LAC & 010000;
|
||
break;
|
||
|
||
/* Opcode 4, JMS */
|
||
|
||
case 020: /* JMS, dir, zero */
|
||
ZERO_PAGE_J;
|
||
CHANGE_FIELD;
|
||
MA = IF | MA;
|
||
old_PC = PC;
|
||
if (MEM_ADDR_OK (MA)) M[MA] = PC;
|
||
PC = (MA + 1) & 07777;
|
||
break;
|
||
case 021: /* JMS, dir, curr */
|
||
CURR_PAGE_J;
|
||
CHANGE_FIELD;
|
||
MA = IF | MA;
|
||
old_PC = PC;
|
||
if (MEM_ADDR_OK (MA)) M[MA] = PC;
|
||
PC = (MA + 1) & 07777;
|
||
break;
|
||
case 022: /* JMS, indir, zero */
|
||
ZERO_PAGE;
|
||
INDIRECT_J;
|
||
CHANGE_FIELD;
|
||
MA = IF | MA;
|
||
old_PC = PC;
|
||
if (MEM_ADDR_OK (MA)) M[MA] = PC;
|
||
PC = (MA + 1) & 07777;
|
||
break;
|
||
case 023: /* JMS, indir, curr */
|
||
CURR_PAGE;
|
||
INDIRECT_J;
|
||
CHANGE_FIELD;
|
||
MA = IF | MA;
|
||
old_PC = PC;
|
||
if (MEM_ADDR_OK (MA)) M[MA] = PC;
|
||
PC = (MA + 1) & 07777;
|
||
break;
|
||
|
||
/* Opcode 5, JMP */
|
||
|
||
case 024: /* JMP, dir, zero */
|
||
ZERO_PAGE_J;
|
||
CHANGE_FIELD;
|
||
old_PC = PC;
|
||
PC = MA;
|
||
break;
|
||
case 025: /* JMP, dir, curr */
|
||
CURR_PAGE_J;
|
||
CHANGE_FIELD;
|
||
old_PC = PC;
|
||
PC = MA;
|
||
break;
|
||
case 026: /* JMP, indir, zero */
|
||
ZERO_PAGE;
|
||
INDIRECT_J;
|
||
CHANGE_FIELD;
|
||
old_PC = PC;
|
||
PC = MA;
|
||
break;
|
||
case 027: /* JMP, indir, curr */
|
||
CURR_PAGE;
|
||
INDIRECT_J;
|
||
CHANGE_FIELD;
|
||
old_PC = PC;
|
||
PC = MA;
|
||
break;
|
||
|
||
/* Opcode 7, OPR group 1 */
|
||
|
||
case 034:case 035: /* OPR, group 1 */
|
||
switch ((IR >> 4) & 017) { /* decode IR<4:7> */
|
||
case 0: /* nop */
|
||
break;
|
||
case 1: /* CML */
|
||
LAC = LAC ^ 010000;
|
||
break;
|
||
case 2: /* CMA */
|
||
LAC = LAC ^ 07777;
|
||
break;
|
||
case 3: /* CMA CML */
|
||
LAC = LAC ^ 017777;
|
||
break;
|
||
case 4: /* CLL */
|
||
LAC = LAC & 07777;
|
||
break;
|
||
case 5: /* CLL CML = STL */
|
||
LAC = LAC | 010000;
|
||
break;
|
||
case 6: /* CLL CMA */
|
||
LAC = (LAC ^ 07777) & 07777;
|
||
break;
|
||
case 7: /* CLL CMA CML */
|
||
LAC = (LAC ^ 07777) | 010000;
|
||
break;
|
||
case 010: /* CLA */
|
||
LAC = LAC & 010000;
|
||
break;
|
||
case 011: /* CLA CML */
|
||
LAC = (LAC & 010000) ^ 010000;
|
||
break;
|
||
case 012: /* CLA CMA = STA */
|
||
LAC = LAC | 07777;
|
||
break;
|
||
case 013: /* CLA CMA CML */
|
||
LAC = (LAC | 07777) ^ 010000;
|
||
break;
|
||
case 014: /* CLA CLL */
|
||
LAC = 0;
|
||
break;
|
||
case 015: /* CLA CLL CML */
|
||
LAC = 010000;
|
||
break;
|
||
case 016: /* CLA CLL CMA */
|
||
LAC = 07777;
|
||
break;
|
||
case 017: /* CLA CLL CMA CML */
|
||
LAC = 017777;
|
||
break; } /* end switch opers */
|
||
|
||
/* OPR group 1, continued */
|
||
|
||
if (IR & 01) LAC = (LAC + 1) & 017777; /* IAC */
|
||
switch ((IR >> 1) & 07) { /* decode IR<8:10> */
|
||
case 0: /* nop */
|
||
break;
|
||
case 1: /* BSW */
|
||
LAC = (LAC & 010000) | ((LAC >> 6) & 077) | ((LAC & 077) << 6);
|
||
break;
|
||
case 2: /* RAL */
|
||
LAC = ((LAC << 1) | (LAC >> 12)) & 017777;
|
||
break;
|
||
case 3: /* RTL */
|
||
LAC = ((LAC << 2) | (LAC >> 11)) & 017777;
|
||
break;
|
||
case 4: /* RAR */
|
||
LAC = ((LAC >> 1) | (LAC << 12)) & 017777;
|
||
break;
|
||
case 5: /* RTR */
|
||
LAC = ((LAC >> 2) | (LAC << 11)) & 017777;
|
||
break;
|
||
case 6: /* RAL RAR - undef */
|
||
LAC = LAC & (IR | 010000); /* uses AND path */
|
||
break;
|
||
case 7: /* RTL RTR - undef */
|
||
LAC = (LAC & 010000) | (MA & 07600) | (IR & 0177);
|
||
break; } /* uses address path */
|
||
break; /* end group 1 */
|
||
|
||
/* OPR group 2 */
|
||
|
||
case 036:case 037: /* OPR, groups 2, 3 */
|
||
if ((IR & 01) == 0) { /* group 2 */
|
||
switch ((IR >> 3) & 017) { /* decode IR<6:8> */
|
||
case 0: /* nop */
|
||
break;
|
||
case 1: /* SKP */
|
||
PC = (PC + 1) & 07777;
|
||
break;
|
||
case 2: /* SNL */
|
||
if (LAC >= 010000) PC = (PC + 1) & 07777;
|
||
break;
|
||
case 3: /* SZL */
|
||
if (LAC < 010000) PC = (PC + 1) & 07777;
|
||
break;
|
||
case 4: /* SZA */
|
||
if ((LAC & 07777) == 0) PC = (PC + 1) & 07777;
|
||
break;
|
||
case 5: /* SNA */
|
||
if ((LAC & 07777) != 0) PC = (PC + 1) & 07777;
|
||
break;
|
||
case 6: /* SZA | SNL */
|
||
if ((LAC == 0) || (LAC >= 010000))
|
||
PC = (PC + 1) & 07777;
|
||
break;
|
||
case 7: /* SNA & SZL */
|
||
if ((LAC != 0) && (LAC < 010000)) PC = (PC + 1) & 07777;
|
||
break;
|
||
case 010: /* SMA */
|
||
if ((LAC & 04000) != 0) PC = (PC + 1) & 07777;
|
||
break;
|
||
case 011: /* SPA */
|
||
if ((LAC & 04000) == 0) PC = (PC + 1) & 07777;
|
||
break;
|
||
case 012: /* SMA | SNL */
|
||
if (LAC >= 04000) PC = (PC + 1) & 07777;
|
||
break;
|
||
case 013: /* SPA & SZL */
|
||
if (LAC < 04000) PC = (PC + 1) & 07777;
|
||
break;
|
||
case 014: /* SMA | SZA */
|
||
if (((LAC & 04000) != 0) || ((LAC & 07777) == 0))
|
||
PC = (PC + 1) & 07777;
|
||
break;
|
||
case 015: /* SPA & SNA */
|
||
if (((LAC & 04000) == 0) && ((LAC & 07777) != 0))
|
||
PC = (PC + 1) & 07777;
|
||
break;
|
||
case 016: /* SMA | SZA | SNL */
|
||
if ((LAC >= 04000) || (LAC == 0)) PC = (PC + 1) & 07777;
|
||
break;
|
||
case 017: /* SPA & SNA & SZL */
|
||
if ((LAC < 04000) && (LAC != 0)) PC = (PC + 1) & 07777;
|
||
break; } /* end switch skips */
|
||
if (IR & 0200) LAC = LAC & 010000; /* CLA */
|
||
if ((IR & 06) && UF) int_req = int_req | INT_UF;
|
||
else { if (IR & 04) LAC = LAC | OSR; /* OSR */
|
||
if (IR & 02) reason = STOP_HALT; } /* HLT */
|
||
break; } /* end group 2 */
|
||
|
||
/* OPR group 3 standard
|
||
|
||
MQA!MQL exchanges AC and MQ, as follows:
|
||
|
||
temp = MQ;
|
||
MQ = LAC & 07777;
|
||
LAC = LAC & 010000 | temp;
|
||
*/
|
||
|
||
temp = MQ; /* group 3 */
|
||
if (IR & 0200) LAC = LAC & 010000; /* CLA */
|
||
if (IR & 0020) { /* MQL */
|
||
MQ = LAC & 07777;
|
||
LAC = LAC & 010000; }
|
||
if (IR & 0100) LAC = LAC | temp; /* MQA */
|
||
if ((IR & 0056) && (cpu_unit.flags & UNIT_NOEAE)) {
|
||
reason = stop_inst; /* EAE not present */
|
||
break; }
|
||
|
||
/* OPR group 3 EAE
|
||
|
||
The EAE operates in two modes:
|
||
|
||
Mode A, PDP-8/I compatible
|
||
Mode B, extended capability
|
||
|
||
Mode B provides eight additional subfunctions; in addition, some
|
||
of the Mode A functions operate differently in Mode B.
|
||
|
||
The mode switch instructions are decoded explicitly and cannot be
|
||
microprogrammed with other EAE functions (SWAB performs an MQL as
|
||
part of standard group 3 decoding). If mode switching is decoded,
|
||
all other EAE timing is suppressed.
|
||
*/
|
||
|
||
if (IR == 07431) { /* SWAB */
|
||
emode = 1; /* set mode flag */
|
||
break; }
|
||
if (IR == 07447) { /* SWBA */
|
||
emode = gtf = 0; /* clear mode, gtf */
|
||
break; }
|
||
|
||
/* If not switching modes, the EAE operation is determined by the mode
|
||
and IR<6,8:10>:
|
||
|
||
<6:10> mode A mode B comments
|
||
|
||
0x000 NOP NOP
|
||
0x001 SCL ACS
|
||
0x010 MUY MUY if mode B, next = address
|
||
0x011 DVI DVI if mode B, next = address
|
||
0x100 NMI NMI if mode B, clear AC if
|
||
result = 4000'0000
|
||
0x101 SHL SHL if mode A, extra shift
|
||
0x110 ASR ASR if mode A, extra shift
|
||
0x111 LSR LSR if mode A, extra shift
|
||
1x000 SCA SCA
|
||
1x001 SCA + SCL DAD
|
||
1x010 SCA + MUY DST
|
||
1x011 SCA + DVI SWBA NOP if not detected earlier
|
||
1x100 SCA + NMI DPSZ
|
||
1x101 SCA + SHL DPIC must be combined with MQA!MQL
|
||
1x110 SCA + ASR DCM must be combined with MQA!MQL
|
||
1x111 SCA + LSR SAM
|
||
|
||
EAE instructions which fetch memory operands use the CPU's DEFER
|
||
state to read the first word; if the address operand is in locations
|
||
x0010 - x0017, it is autoincremented.
|
||
*/
|
||
|
||
/* EAE continued */
|
||
|
||
if (emode == 0) gtf = 0; /* mode A? clr gtf */
|
||
switch ((IR >> 1) & 027) { /* decode IR<6,8:10> */
|
||
case 020: /* mode A, B: SCA */
|
||
LAC = LAC | SC;
|
||
break;
|
||
case 0: /* mode A, B: NOP */
|
||
break;
|
||
case 021: /* mode B: DAD */
|
||
if (emode) {
|
||
MA = IF | PC;
|
||
INDIRECT; /* defer state */
|
||
MQ = MQ + M[MA];
|
||
MA = DF | ((MA + 1) & 07777);
|
||
LAC = (LAC & 07777) + M[MA] + (MQ >> 12);
|
||
MQ = MQ & 07777;
|
||
PC = (PC + 1) & 07777;
|
||
break; }
|
||
LAC = LAC | SC; /* mode A: SCA then */
|
||
case 1: /* mode B: ACS */
|
||
if (emode) {
|
||
SC = LAC & 037;
|
||
LAC = LAC & 010000;
|
||
break; }
|
||
SC = (~M[IF | PC]) & 037; /* mode A: SCL */
|
||
PC = (PC + 1) & 07777;
|
||
break;
|
||
case 022: /* mode B: DST */
|
||
if (emode) {
|
||
MA = IF | PC;
|
||
INDIRECT; /* defer state */
|
||
if (MEM_ADDR_OK (MA)) M[MA] = MQ & 07777;
|
||
MA = DF | ((MA + 1) & 07777);
|
||
if (MEM_ADDR_OK (MA)) M[MA] = LAC & 07777;
|
||
PC = (PC + 1) & 07777;
|
||
break; }
|
||
LAC = LAC | SC; /* mode A: SCA then */
|
||
case 2: /* MUY */
|
||
MA = IF | PC;
|
||
if (emode) { INDIRECT; } /* mode B: defer */
|
||
temp = (MQ * M[MA]) + (LAC & 07777);
|
||
LAC = (temp >> 12) & 07777;
|
||
MQ = temp & 07777;
|
||
PC = (PC + 1) & 07777;
|
||
SC = 014; /* 12 shifts */
|
||
break;
|
||
|
||
/* EAE continued */
|
||
|
||
case 023: /* mode B: SWBA */
|
||
if (emode) break;
|
||
LAC = LAC | SC; /* mode A: SCA then */
|
||
case 3: /* DVI */
|
||
MA = IF | PC;
|
||
if (emode) { INDIRECT; } /* mode B: defer */
|
||
if ((LAC & 07777) >= M[MA]) { /* overflow? */
|
||
LAC = LAC | 010000; /* set link */
|
||
MQ = ((MQ << 1) + 1) & 07777; /* rotate MQ */
|
||
SC = 01; } /* 1 shift */
|
||
else { temp = ((LAC & 07777) << 12) | MQ;
|
||
MQ = temp / M[MA];
|
||
LAC = temp % M[MA];
|
||
SC = 015; } /* 13 shifts */
|
||
PC = (PC + 1) & 07777;
|
||
break;
|
||
case 024: /* mode B: DPSZ */
|
||
if (emode) {
|
||
if (((LAC | MQ) & 07777) == 0) PC = (PC + 1) & 07777;
|
||
break; }
|
||
LAC = LAC | SC; /* mode A: SCA then */
|
||
case 4: /* NMI */
|
||
temp = (LAC << 12) | MQ; /* preserve link */
|
||
for (SC = 0; ((temp & 017777777) != 0) &&
|
||
(temp & 040000000) == ((temp << 1) & 040000000); SC++)
|
||
temp = temp << 1;
|
||
LAC = (temp >> 12) & 017777;
|
||
MQ = temp & 07777;
|
||
if (emode && ((LAC & 07777) == 04000) && (MQ == 0))
|
||
LAC = LAC & 010000; /* clr if 4000'0000 */
|
||
break;
|
||
case 025: /* mode B: DPIC */
|
||
if (emode) {
|
||
temp = (LAC + 1) & 07777; /* SWP already done! */
|
||
LAC = MQ + (temp == 0);
|
||
MQ = temp;
|
||
break; }
|
||
LAC = LAC | SC; /* mode A: SCA then */
|
||
case 5: /* SHL */
|
||
SC = (M[IF | PC] & 037) + (emode ^ 1); /* shift+1 if mode A */
|
||
if (SC > 25) temp = 0; /* >25? result = 0 */
|
||
else temp = ((LAC << 12) | MQ) << SC; /* <=25? shift LAC:MQ */
|
||
LAC = (temp >> 12) & 017777;
|
||
MQ = temp & 07777;
|
||
PC = (PC + 1) & 07777;
|
||
SC = emode? 037: 0; /* SC = 0 if mode A */
|
||
break;
|
||
|
||
/* EAE continued */
|
||
|
||
case 026: /* mode B: DCM */
|
||
if (emode) {
|
||
temp = (-LAC) & 07777; /* SWP already done! */
|
||
LAC = (MQ ^ 07777) + (temp == 0);
|
||
MQ = temp;
|
||
break; }
|
||
LAC = LAC | SC; /* mode A: SCA then */
|
||
case 6: /* ASR */
|
||
SC = (M[IF | PC] & 037) + (emode ^ 1); /* shift+1 if mode A */
|
||
temp = ((LAC & 07777) << 12) | MQ; /* sext from AC0 */
|
||
if (LAC & 04000) temp = temp | ~037777777;
|
||
if (emode && (SC != 0)) gtf = (temp >> (SC - 1)) & 1;
|
||
if (SC > 25) temp = (LAC & 04000)? -1: 0;
|
||
else temp = temp >> SC;
|
||
LAC = (temp >> 12) & 017777;
|
||
MQ = temp & 07777;
|
||
PC = (PC + 1) & 07777;
|
||
SC = emode? 037: 0; /* SC = 0 if mode A */
|
||
break;
|
||
case 027: /* mode B: SAM */
|
||
if (emode) {
|
||
temp = LAC & 07777;
|
||
LAC = MQ + (temp ^ 07777) + 1; /* L'AC = MQ - AC */
|
||
gtf = (temp <= MQ) ^ ((temp ^ MQ) >> 11);
|
||
break; }
|
||
LAC = LAC | SC; /* mode A: SCA then */
|
||
case 7: /* LSR */
|
||
SC = (M[IF | PC] & 037) + (emode ^ 1); /* shift+1 if mode A */
|
||
temp = ((LAC & 07777) << 12) | MQ; /* clear link */
|
||
if (emode && (SC != 0)) gtf = (temp >> (SC - 1)) & 1;
|
||
if (SC > 24) temp = 0; /* >24? result = 0 */
|
||
else temp = temp >> SC; /* <=24? shift AC:MQ */
|
||
LAC = (temp >> 12) & 07777;
|
||
MQ = temp & 07777;
|
||
PC = (PC + 1) & 07777;
|
||
SC = emode? 037: 0; /* SC = 0 if mode A */
|
||
break; } /* end switch */
|
||
break; /* end case 7 */
|
||
|
||
/* Opcode 6, IOT */
|
||
|
||
case 030:case 031:case 032:case 033: /* IOT */
|
||
if (UF) { /* privileged? */
|
||
int_req = int_req | INT_UF;
|
||
break; }
|
||
device = (IR >> 3) & 077; /* device = IR<3:8> */
|
||
pulse = IR & 07; /* pulse = IR<9:11> */
|
||
iot_data = LAC & 07777; /* AC unchanged */
|
||
switch (device) { /* decode IR<3:8> */
|
||
case 0: /* CPU control */
|
||
switch (pulse) { /* decode IR<9:11> */
|
||
case 0: /* SKON */
|
||
if (int_req & INT_ION) PC = (PC + 1) & 07777;
|
||
int_req = int_req & ~INT_ION;
|
||
break;
|
||
case 1: /* ION */
|
||
int_req = (int_req | INT_ION) & ~INT_NO_ION_PENDING;
|
||
break;
|
||
case 2: /* IOF */
|
||
int_req = int_req & ~INT_ION;
|
||
break;
|
||
case 3: /* SRQ */
|
||
if (int_req & INT_ALL) PC = (PC + 1) & 07777;
|
||
break;
|
||
case 4: /* GTF */
|
||
LAC = (LAC & 010000) |
|
||
((LAC & 010000) >> 1) | (gtf << 10) |
|
||
(((int_req & INT_ALL) != 0) << 9) |
|
||
(((int_req & INT_ION) != 0) << 7) | SF;
|
||
break;
|
||
case 5: /* RTF */
|
||
gtf = ((LAC & 02000) >> 10);
|
||
UB = (LAC & 0100) >> 6;
|
||
IB = (LAC & 0070) << 9;
|
||
DF = (LAC & 0007) << 12;
|
||
LAC = ((LAC & 04000) << 1) | iot_data;
|
||
int_req = (int_req | INT_ION) & ~INT_NO_CIF_PENDING;
|
||
break;
|
||
case 6: /* SGT */
|
||
if (gtf) PC = (PC + 1) & 07777;
|
||
break;
|
||
case 7: /* CAF */
|
||
gtf = 0;
|
||
emode = 0;
|
||
int_req = int_req & INT_NO_CIF_PENDING;
|
||
dev_done = 0;
|
||
int_enable = INT_INIT_ENABLE;
|
||
LAC = 0;
|
||
break; } /* end switch pulse */
|
||
continue; /* skip rest of IOT */
|
||
|
||
/* IOT, continued: memory extension */
|
||
|
||
case 020:case 021:case 022:case 023:
|
||
case 024:case 025:case 026:case 027: /* memory extension */
|
||
switch (pulse) { /* decode IR<9:11> */
|
||
case 1: /* CDF */
|
||
DF = (IR & 0070) << 9;
|
||
break;
|
||
case 2: /* CIF */
|
||
IB = (IR & 0070) << 9;
|
||
int_req = int_req & ~INT_NO_CIF_PENDING;
|
||
break;
|
||
case 3: /* CDF CIF */
|
||
DF = IB = (IR & 0070) << 9;
|
||
int_req = int_req & ~INT_NO_CIF_PENDING;
|
||
break;
|
||
case 4:
|
||
switch (device & 07) { /* decode IR<6:8> */
|
||
case 0: /* CINT */
|
||
int_req = int_req & ~INT_UF;
|
||
break;
|
||
case 1: /* RDF */
|
||
LAC = LAC | (DF >> 9);
|
||
break;
|
||
case 2: /* RIF */
|
||
LAC = LAC | (IF >> 9);
|
||
break;
|
||
case 3: /* RIB */
|
||
LAC = LAC | SF;
|
||
break;
|
||
case 4: /* RMF */
|
||
UB = (SF & 0100) >> 6;
|
||
IB = (SF & 0070) << 9;
|
||
DF = (SF & 0007) << 12;
|
||
int_req = int_req & ~INT_NO_CIF_PENDING;
|
||
break;
|
||
case 5: /* SINT */
|
||
if (int_req & INT_UF) PC = (PC + 1) & 07777;
|
||
break;
|
||
case 6: /* CUF */
|
||
UB = 0;
|
||
int_req = int_req & ~INT_NO_CIF_PENDING;
|
||
break;
|
||
case 7: /* SUF */
|
||
UB = 1;
|
||
int_req = int_req & ~INT_NO_CIF_PENDING;
|
||
break; } /* end switch device */
|
||
break;
|
||
default:
|
||
reason = stop_inst;
|
||
break; } /* end switch pulse */
|
||
continue; /* skip rest of IOT */
|
||
|
||
/* IOT, continued: other special cases */
|
||
|
||
case 010: /* power fail */
|
||
switch (pulse) { /* decode IR<9:11> */
|
||
case 1: /* SBE */
|
||
break;
|
||
case 2: /* SPL */
|
||
if (int_req & INT_PWR) PC = (PC + 1) & 07777;
|
||
break;
|
||
case 3: /* CAL */
|
||
int_req = int_req & ~INT_PWR;
|
||
break;
|
||
default:
|
||
reason = stop_inst;
|
||
break; } /* end switch pulse */
|
||
continue; /* skip rest of IOT */
|
||
default: /* unknown device */
|
||
reason = stop_inst; /* stop on flag */
|
||
continue; /* skip rest of IOT */
|
||
|
||
/* IOT, continued: I/O devices */
|
||
|
||
case 1: /* PTR */
|
||
iot_data = ptr (pulse, iot_data);
|
||
break;
|
||
case 2: /* PTP */
|
||
iot_data = ptp (pulse, iot_data);
|
||
break;
|
||
case 3: /* TTI */
|
||
iot_data = tti (pulse, iot_data);
|
||
break;
|
||
case 4: /* TTO */
|
||
iot_data = tto (pulse, iot_data);
|
||
break;
|
||
case 013: /* CLK */
|
||
iot_data = clk (pulse, iot_data);
|
||
break;
|
||
case 040: case 042: case 044: case 046: /* KL8A in */
|
||
iot_data = ttix (IR, iot_data);
|
||
break;
|
||
case 041: case 043: case 045: case 047: /* KL8A out */
|
||
iot_data = ttox (IR, iot_data);
|
||
break;
|
||
case 060: /* DF32/RF08 */
|
||
if (dev_enb & INT_DF) iot_data = df60 (pulse, iot_data);
|
||
else if (dev_enb & INT_RF) iot_data = rf60 (pulse, iot_data);
|
||
else if (dev_enb & INT_RL) iot_data = rl60 (pulse, iot_data);
|
||
else reason = stop_inst;
|
||
break;
|
||
case 061:
|
||
if (dev_enb & INT_DF) iot_data = df61 (pulse, iot_data);
|
||
else if (dev_enb & INT_RF) iot_data = rf61 (pulse, iot_data);
|
||
else if (dev_enb & INT_RL) iot_data = rl61 (pulse, iot_data);
|
||
else reason = stop_inst;
|
||
break;
|
||
case 062:
|
||
if (dev_enb & INT_DF) iot_data = df62 (pulse, iot_data);
|
||
else if (dev_enb & INT_RF) iot_data = rf62 (pulse, iot_data);
|
||
else reason = stop_inst;
|
||
break;
|
||
case 064:
|
||
if (dev_enb & INT_RF) iot_data = rf64 (pulse, iot_data);
|
||
else reason = stop_inst;
|
||
break;
|
||
case 066: /* LPT */
|
||
iot_data = lpt (pulse, iot_data);
|
||
break;
|
||
case 070: /* TM8E */
|
||
if (dev_enb & INT_MT) iot_data = mt70 (pulse, iot_data);
|
||
else reason = stop_inst;
|
||
break;
|
||
case 071:
|
||
if (dev_enb & INT_MT) iot_data = mt71 (pulse, iot_data);
|
||
else reason = stop_inst;
|
||
break;
|
||
case 072:
|
||
if (dev_enb & INT_MT) iot_data = mt72 (pulse, iot_data);
|
||
else reason = stop_inst;
|
||
break;
|
||
case 074: /* RK8E */
|
||
if (dev_enb & INT_RK) iot_data = rk (pulse, iot_data);
|
||
else reason = stop_inst;
|
||
break;
|
||
case 075: /* RX8E */
|
||
if (dev_enb & INT_RX) iot_data = rx (pulse, iot_data);
|
||
break;
|
||
case 076: /* TC01/TC08 */
|
||
if (dev_enb & INT_DTA) iot_data = dt76 (pulse, iot_data);
|
||
else reason = stop_inst;
|
||
break;
|
||
case 077:
|
||
if (dev_enb & INT_DTA) iot_data = dt77 (pulse, iot_data);
|
||
else reason = stop_inst;
|
||
break; } /* end switch device */
|
||
LAC = (LAC & 010000) | (iot_data & 07777);
|
||
if (iot_data & IOT_SKP) PC = (PC + 1) & 07777;
|
||
if (iot_data >= IOT_REASON) reason = iot_data >> IOT_V_REASON;
|
||
break; } /* end switch opcode */
|
||
} /* end while */
|
||
|
||
/* Simulation halted */
|
||
|
||
saved_PC = IF | (PC & 07777); /* save copies */
|
||
saved_DF = DF & 070000;
|
||
saved_LAC = LAC & 017777;
|
||
saved_MQ = MQ & 07777;
|
||
return reason;
|
||
} /* end sim_instr */
|
||
|
||
/* Reset routine */
|
||
|
||
t_stat cpu_reset (DEVICE *dptr)
|
||
{
|
||
int_req = (int_req & ~INT_ION) | INT_NO_CIF_PENDING;
|
||
saved_DF = IB = saved_PC & 070000;
|
||
UF = UB = gtf = emode = 0;
|
||
sim_brk_types = sim_brk_dflt = SWMASK ('E');
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Memory examine */
|
||
|
||
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
|
||
{
|
||
if (addr >= MEMSIZE) return SCPE_NXM;
|
||
if (vptr != NULL) *vptr = M[addr] & 07777;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Memory deposit */
|
||
|
||
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
|
||
{
|
||
if (addr >= MEMSIZE) return SCPE_NXM;
|
||
M[addr] = val & 07777;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Memory size change */
|
||
|
||
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
|
||
{
|
||
int32 mc = 0;
|
||
t_addr i;
|
||
|
||
if ((val <= 0) || (val > MAXMEMSIZE) || ((val & 07777) != 0))
|
||
return SCPE_ARG;
|
||
for (i = val; i < MEMSIZE; i++) mc = mc | M[i];
|
||
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
|
||
return SCPE_OK;
|
||
MEMSIZE = val;
|
||
for (i = MEMSIZE; i < MAXMEMSIZE; i++) M[i] = 0;
|
||
return SCPE_OK;
|
||
}
|