simh-testsetgenerator/PDP8/pdp8_df.c
Bob Supnik 701f0fe028 Notes For V2.8
1. New Features

1.1 Directory and documentation

- Only common files (SCP and libraries) are in the top level
  directory.  Individual simulator files are in their individual
  directories.
- simh_doc.txt has been split up.  simh_doc.txt now documents
  only SCP.  The individual simulators are documented in separate
  text files in their own directories.
- mingw_build.bat is a batch file for the MINGW/gcc environment
  that will build all the simulators, assuming the root directory
  structure is at c:\sim.
- Makefile is a UNIX make file for the gcc environment that will
  build all the simulators, assuming the root directory is at
  c:\sim.

1.2 SCP

- DO <file name> executes the SCP commands in the specified file.
- Replicated registers in unit structures can now be declared as
  arrays for examine, modify, save, and restore.  Most replicated
  unit registers (for example, mag tape position registers) have
  been changed to arrays.
- The ADD/REMOVE commands have been replaced by SET unit ONLINE
  and SET unit OFFLINE, respectively.
- Register names that are unique within an entire simulator do
  not have to be prefaced with the device name.
- The ATTACH command can attach files read only, either under
  user option (-r), or because the attached file is ready only.
- The SET/SHOW capabilities have been extended.  New forms include:

	SET <dev> param{=value}{ param ...}
	SET <unit> param{=value}{ param ...}
	SHOW <dev> {param param ...}
	SHOW <unit> {param param ...}

- Multiple breakpoints have been implemented.  Breakpoints are
  set/cleared/displayed by:

	BREAK addr_list{[count]}
	NOBREAK addr_list
	SHOW BREAK addr_list

1.3 PDP-11 simulator

- Unibus map implemented, with 22b RP controller (URH70) or 18b
  RP controller (URH11) (in debug).
- All DMA peripherals rewritten to use map.
- Many peripherals modified for source sharing with VAX.
- RQDX3 implemented.
- Bugs fixed in RK11 and RL11 write check.

1.4 PDP-10 simulator

- ITS 1-proceed implemented.
- Bugs fixed in ITS PC sampling and LPMR

1.5 18b PDP simulator

- Interrupts split out to multiple levels to allow easier
  expansion.

1.5 IBM System 3 Simulator

- Written by Charles (Dutch) Owen.

1.6 VAX Simulator (in debug)

- Simulates MicroVAX 3800 (KA655) with 16MB-64MB memory, RQDX3,
  RLV12, TSV11, DZV11, LPV11, PCV11.
- CDROM capability has been added to the RQDX3, to allow testing
  with VMS hobbyist images.

1.7 SDS 940 Simulator (not tested)

- Simulates SDS 940, 16K-64K memory, fixed and moving head
  disk, magtape, line printer, console.

1.8 Altair Z80

- Revised from Charles (Dutch) Owen's original by Peter Schorn.
- MITS 8080 with full Z80 simulation.
- 4K and 8K BASIC packages, Prolog package.

1.9 Interdata

The I4 simulator has been withdrawn for major rework.  Look for
a complete 16b/32b Interdata simulator sometime next year.

2. Release Notes

2.1 SCP

SCP now allows replicated registers in unit structures to be
modelled as arrays.  All replicated register declarations have
been replaced by register array declarations.  As a result,
save files from prior revisions will generate errors after
restoring main memory.

2.2 PDP-11

The Unibus map code is in debug.  The map was implemented primarily
to allow source sharing with the VAX, which requires a DMA map.
DMA devices work correctly with the Unibus map disabled.

The RQDX3 simulator has run a complete RSTS/E SYSGEN, with multiple
drives, and booted the completed system from scratch.

2.3 VAX

The VAX simulator will run the boot code up to the >>> prompt.  It
can successfully process a SHOW DEVICE command.  It runs the HCORE
instruction diagnostic.  It can boot the hobbyist CD through SYSBOOT
and through the date/time dialog and restore the hobbyist CD, using
standalone backup.  On the boot of the restored disk, it gets to the
date/time dialog, and then crashes.

2.4 SDS 940

The SDS 940 is untested, awaiting real code.

2.5 GCC Optimization

At -O2 and above, GCC does not correctly compile the simulators which
use setjmp-longjmp (PDP-11, PDP-10, VAX).  A working hypothesis is
that optimized state maintained in registers is being used in the
setjmp processing routine.  On the PDP-11 and PDP-10, all of this
state has been either made global, or volatile, to encourage GCC to
keep the state up to date in memory.  The VAX is still vulnerable.

3. Work list

3.1 SCP

- Better ENABLE/DISABLE.

3.2 PDP-11 RQDX3

Software mapped mode, RCT read simulation, VMS debug.
2011-04-15 08:33:38 -07:00

280 lines
9.1 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* pdp8_df.c: DF32 fixed head disk simulator
Copyright (c) 1993-2001, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
df DF32 fixed head disk
28-Nov-01 RMS Added RL8A support
25-Apr-01 RMS Added device enable/disable support
The DF32 is a head-per-track disk. It uses the three cycle data break
facility. To minimize overhead, the entire DF32 is buffered in memory.
Two timing parameters are provided:
df_time Interword timing, must be non-zero
df_burst Burst mode, if 0, DMA occurs cycle by cycle; otherwise,
DMA occurs in a burst
*/
#include "pdp8_defs.h"
#include <math.h>
/* Constants */
#define DF_NUMWD 2048 /* words/track */
#define DF_NUMTR 16 /* tracks/disk */
#define DF_NUMDK 4 /* disks/controller */
#define DF_SIZE (DF_NUMDK * DF_NUMTR * DF_NUMWD) /* words/drive */
#define DF_WC 07750 /* word count */
#define DF_MA 07751 /* mem address */
#define DF_WMASK (DF_NUMWD - 1) /* word mask */
/* Parameters in the unit descriptor */
#define FUNC u4 /* function */
#define DF_READ 2 /* read */
#define DF_WRITE 4 /* write */
/* Status register */
#define DFS_PCA 04000 /* photocell status */
#define DFS_DEX 03700 /* disk addr extension */
#define DFS_MEX 00070 /* mem addr extension */
#define DFS_DRL 00004 /* data late error */
#define DFS_WLS 00002 /* write lock error */
#define DFS_PER 00001 /* parity error */
#define DFS_ERR (DFS_DRL + DFS_WLS + DFS_PER)
#define DFS_V_DEX 6
#define DFS_V_MEX 3
#define GET_MEX(x) (((x) & DFS_MEX) << (12 - DFS_V_MEX))
#define GET_DEX(x) (((x) & DFS_DEX) << (12 - DFS_V_DEX))
#define GET_POS(x) ((int) fmod (sim_gtime() / ((double) (x)), \
((double) DF_NUMWD)))
#define UPDATE_PCELL if (GET_POS (df_time) < 6) df_sta = df_sta | DFS_PCA; \
else df_sta = df_sta & ~DFS_PCA
extern uint16 M[];
extern int32 int_req, dev_enb, stop_inst;
extern UNIT cpu_unit;
extern int32 rf_devenb;
int32 df_sta = 0; /* status register */
int32 df_da = 0; /* disk address */
int32 df_done = 0; /* done flag */
int32 df_wlk = 0; /* write lock */
int32 df_time = 10; /* inter-word time */
int32 df_burst = 1; /* burst mode flag */
int32 df_stopioe = 1; /* stop on error */
t_stat df_svc (UNIT *uptr);
t_stat pcell_svc (UNIT *uptr);
t_stat df_reset (DEVICE *dptr);
t_stat df_boot (int32 unitno);
/* DF32 data structures
df_dev RF device descriptor
df_unit RF unit descriptor
pcell_unit photocell timing unit (orphan)
df_reg RF register list
*/
UNIT df_unit =
{ UDATA (&df_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_BUFABLE+UNIT_MUSTBUF,
DF_SIZE) };
REG df_reg[] = {
{ ORDATA (STA, df_sta, 12) },
{ ORDATA (DA, df_da, 12) },
{ ORDATA (WC, M[DF_WC], 12) },
{ ORDATA (MA, M[DF_MA], 12) },
{ FLDATA (DONE, df_done, 0) },
{ FLDATA (INT, int_req, INT_V_DF) },
{ ORDATA (WLS, df_wlk, 8) },
{ DRDATA (TIME, df_time, 24), REG_NZ + PV_LEFT },
{ FLDATA (BURST, df_burst, 0) },
{ FLDATA (STOP_IOE, df_stopioe, 0) },
{ FLDATA (*DEVENB, dev_enb, INT_V_DF), REG_HRO },
{ NULL } };
DEVICE df_dev = {
"DF", &df_unit, df_reg, NULL,
1, 8, 17, 1, 8, 12,
NULL, NULL, &df_reset,
&df_boot, NULL, NULL };
/* IOT routines */
int32 df60 (int32 pulse, int32 AC)
{
int32 t;
UPDATE_PCELL; /* update photocell */
if (pulse & 1) { /* DCMA */
df_da = 0; /* clear disk addr */
df_done = 0; /* clear done */
df_sta = df_sta & ~DFS_ERR; /* clear errors */
int_req = int_req & ~INT_DF; } /* clear int req */
if (pulse & 6) { /* DMAR, DMAW */
df_da = df_da | AC; /* disk addr |= AC */
df_unit.FUNC = pulse & ~1; /* save function */
t = (df_da & DF_WMASK) - GET_POS (df_time); /* delta to new loc */
if (t < 0) t = t + DF_NUMWD; /* wrap around? */
sim_activate (&df_unit, t * df_time); /* schedule op */
AC = 0; } /* clear AC */
return AC;
}
/* Based on the hardware implementation. DEAL and DEAC work as follows:
6615 pulse 1 = clear df_sta<dex,mex>
pulse 4 = df_sta = df_sta | AC<dex,mex>
AC = AC | old_df_sta
6616 pulse 2 = clear AC, skip if address confirmed
pulse 4 = df_sta = df_sta | AC<dex,mex> = 0 (nop)
AC = AC | old_df_sta
*/
int32 df61 (int32 pulse, int32 AC)
{
int32 old_df_sta = df_sta;
UPDATE_PCELL; /* update photocell */
if (pulse & 1) /* DCEA */
df_sta = df_sta & ~(DFS_DEX | DFS_MEX); /* clear dex, mex */
if (pulse & 2) /* DSAC */
AC = ((df_da & DF_WMASK) == GET_POS (df_time))? IOT_SKP: 0;
if (pulse & 4) {
df_sta = df_sta | (AC & (DFS_DEX | DFS_MEX)); /* DEAL */
AC = AC | old_df_sta; } /* DEAC */
return AC;
}
int32 df62 (int32 pulse, int32 AC)
{
UPDATE_PCELL; /* update photocell */
if (pulse & 1) { /* DFSE */
if ((df_sta & DFS_ERR) == 0) AC = AC | IOT_SKP; }
if (pulse & 2) { /* DFSC */
if (pulse & 4) AC = AC & ~07777; /* for DMAC */
else if (df_done) AC = AC | IOT_SKP; }
if (pulse & 4) AC = AC | df_da; /* DMAC */
return AC;
}
/* Unit service
Note that for reads and writes, memory addresses wrap around in the
current field. This code assumes the entire disk is buffered.
*/
t_stat df_svc (UNIT *uptr)
{
int32 pa, t, mex;
t_addr da;
UPDATE_PCELL; /* update photocell */
if ((uptr -> flags & UNIT_BUF) == 0) { /* not buf? abort */
df_done = 1;
int_req = int_req | INT_DF; /* update int req */
return IORETURN (df_stopioe, SCPE_UNATT); }
mex = GET_MEX (df_sta);
da = GET_DEX (df_sta) | df_da; /* form disk addr */
do { M[DF_WC] = (M[DF_WC] + 1) & 07777; /* incr word count */
M[DF_MA] = (M[DF_MA] + 1) & 07777; /* incr mem addr */
pa = mex | M[DF_MA]; /* add extension */
if (uptr -> FUNC == DF_READ) {
if (MEM_ADDR_OK (pa)) /* read, check nxm */
M[pa] = *(((int16 *) uptr -> filebuf) + da); }
else { t = (da >> 14) & 07;
if ((df_wlk >> t) & 1) df_sta = df_sta | DFS_WLS;
else { *(((int16 *) uptr -> filebuf) + da) = M[pa];
if (da >= uptr -> hwmark)
uptr -> hwmark = da + 1; } }
da = (da + 1) & 0377777; } /* incr disk addr */
while ((M[DF_WC] != 0) && (df_burst != 0)); /* brk if wc, no brst */
if (M[DF_WC] != 0) /* more to do? */
sim_activate (&df_unit, df_time); /* sched next */
else { if (uptr -> FUNC != DF_READ) da = (da - 1) & 0377777;
df_done = 1; /* done */
int_req = int_req | INT_DF; } /* update int req */
df_sta = (df_sta & ~DFS_DEX) | ((da >> (12 - DFS_V_DEX)) & DFS_DEX);
df_da = da & 07777; /* separate disk addr */
return SCPE_OK;
}
/* Reset routine */
t_stat df_reset (DEVICE *dptr)
{
if (dev_enb & INT_DF) /* DF? no RF or RL */
dev_enb = dev_enb & ~(INT_RF | INT_RL);
df_sta = df_da = 0;
df_done = 1;
int_req = int_req & ~INT_DF; /* clear interrupt */
sim_cancel (&df_unit);
return SCPE_OK;
}
/* Bootstrap routine */
#define OS8_START 07750
#define OS8_LEN (sizeof (os8_rom) / sizeof (int32))
#define DM4_START 00200
#define DM4_LEN (sizeof (dm4_rom) / sizeof (int32))
static const int32 os8_rom[] = {
07600, /* 7750, CLA CLL ; also word count */
06603, /* 7751, DMAR ; also address */
06622, /* 7752, DFSC ; done? */
05352, /* 7753, JMP .-1 ; no */
05752 /* 7754, JMP @.-2 ; enter boot */
};
static const int32 dm4_rom[] = {
00200, 07600, /* 0200, CLA CLL */
00201, 06603, /* 0201, DMAR ; read */
00202, 06622, /* 0202, DFSC ; done? */
00203, 05202, /* 0203, JMP .-1 ; no */
00204, 05600, /* 0204, JMP @.-4 ; enter boot */
07750, 07576, /* 7750, 7576 ; word count */
07751, 07576 /* 7751, 7576 ; address */
};
t_stat df_boot (int32 unitno)
{
int32 i;
extern int32 sim_switches, saved_PC;
if (sim_switches & SWMASK ('D')) {
for (i = 0; i < DM4_LEN; i = i + 2)
M[dm4_rom[i]] = dm4_rom[i + 1];
saved_PC = DM4_START; }
else { for (i = 0; i < OS8_LEN; i++)
M[OS8_START + i] = os8_rom[i];
saved_PC = OS8_START; }
return SCPE_OK;
}