simh-testsetgenerator/PDP8/pdp8_rk.c
Bob Supnik 701f0fe028 Notes For V2.8
1. New Features

1.1 Directory and documentation

- Only common files (SCP and libraries) are in the top level
  directory.  Individual simulator files are in their individual
  directories.
- simh_doc.txt has been split up.  simh_doc.txt now documents
  only SCP.  The individual simulators are documented in separate
  text files in their own directories.
- mingw_build.bat is a batch file for the MINGW/gcc environment
  that will build all the simulators, assuming the root directory
  structure is at c:\sim.
- Makefile is a UNIX make file for the gcc environment that will
  build all the simulators, assuming the root directory is at
  c:\sim.

1.2 SCP

- DO <file name> executes the SCP commands in the specified file.
- Replicated registers in unit structures can now be declared as
  arrays for examine, modify, save, and restore.  Most replicated
  unit registers (for example, mag tape position registers) have
  been changed to arrays.
- The ADD/REMOVE commands have been replaced by SET unit ONLINE
  and SET unit OFFLINE, respectively.
- Register names that are unique within an entire simulator do
  not have to be prefaced with the device name.
- The ATTACH command can attach files read only, either under
  user option (-r), or because the attached file is ready only.
- The SET/SHOW capabilities have been extended.  New forms include:

	SET <dev> param{=value}{ param ...}
	SET <unit> param{=value}{ param ...}
	SHOW <dev> {param param ...}
	SHOW <unit> {param param ...}

- Multiple breakpoints have been implemented.  Breakpoints are
  set/cleared/displayed by:

	BREAK addr_list{[count]}
	NOBREAK addr_list
	SHOW BREAK addr_list

1.3 PDP-11 simulator

- Unibus map implemented, with 22b RP controller (URH70) or 18b
  RP controller (URH11) (in debug).
- All DMA peripherals rewritten to use map.
- Many peripherals modified for source sharing with VAX.
- RQDX3 implemented.
- Bugs fixed in RK11 and RL11 write check.

1.4 PDP-10 simulator

- ITS 1-proceed implemented.
- Bugs fixed in ITS PC sampling and LPMR

1.5 18b PDP simulator

- Interrupts split out to multiple levels to allow easier
  expansion.

1.5 IBM System 3 Simulator

- Written by Charles (Dutch) Owen.

1.6 VAX Simulator (in debug)

- Simulates MicroVAX 3800 (KA655) with 16MB-64MB memory, RQDX3,
  RLV12, TSV11, DZV11, LPV11, PCV11.
- CDROM capability has been added to the RQDX3, to allow testing
  with VMS hobbyist images.

1.7 SDS 940 Simulator (not tested)

- Simulates SDS 940, 16K-64K memory, fixed and moving head
  disk, magtape, line printer, console.

1.8 Altair Z80

- Revised from Charles (Dutch) Owen's original by Peter Schorn.
- MITS 8080 with full Z80 simulation.
- 4K and 8K BASIC packages, Prolog package.

1.9 Interdata

The I4 simulator has been withdrawn for major rework.  Look for
a complete 16b/32b Interdata simulator sometime next year.

2. Release Notes

2.1 SCP

SCP now allows replicated registers in unit structures to be
modelled as arrays.  All replicated register declarations have
been replaced by register array declarations.  As a result,
save files from prior revisions will generate errors after
restoring main memory.

2.2 PDP-11

The Unibus map code is in debug.  The map was implemented primarily
to allow source sharing with the VAX, which requires a DMA map.
DMA devices work correctly with the Unibus map disabled.

The RQDX3 simulator has run a complete RSTS/E SYSGEN, with multiple
drives, and booted the completed system from scratch.

2.3 VAX

The VAX simulator will run the boot code up to the >>> prompt.  It
can successfully process a SHOW DEVICE command.  It runs the HCORE
instruction diagnostic.  It can boot the hobbyist CD through SYSBOOT
and through the date/time dialog and restore the hobbyist CD, using
standalone backup.  On the boot of the restored disk, it gets to the
date/time dialog, and then crashes.

2.4 SDS 940

The SDS 940 is untested, awaiting real code.

2.5 GCC Optimization

At -O2 and above, GCC does not correctly compile the simulators which
use setjmp-longjmp (PDP-11, PDP-10, VAX).  A working hypothesis is
that optimized state maintained in registers is being used in the
setjmp processing routine.  On the PDP-11 and PDP-10, all of this
state has been either made global, or volatile, to encourage GCC to
keep the state up to date in memory.  The VAX is still vulnerable.

3. Work list

3.1 SCP

- Better ENABLE/DISABLE.

3.2 PDP-11 RQDX3

Software mapped mode, RCT read simulation, VMS debug.
2011-04-15 08:33:38 -07:00

398 lines
13 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* pdp8_rk.c: RK8E cartridge disk simulator
Copyright (c) 1993-2001, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
rk RK8E/RK05 cartridge disk
30-Nov-01 RMS Added read only unit, extended SET/SHOW support
24-Nov-01 RMS Converted FLG to array, made register names consistent
25-Apr-01 RMS Added device enable/disable support
29-Jun-96 RMS Added unit enable/disable support
*/
#include "pdp8_defs.h"
/* Constants */
#define RK_NUMSC 16 /* sectors/surface */
#define RK_NUMSF 2 /* surfaces/cylinder */
#define RK_NUMCY 203 /* cylinders/drive */
#define RK_NUMWD 256 /* words/sector */
#define RK_SIZE (RK_NUMCY * RK_NUMSF * RK_NUMSC * RK_NUMWD) /* words/drive */
#define RK_NUMDR 4 /* drives/controller */
#define RK_M_NUMDR 03
/* Flags in the unit flags word */
#define UNIT_V_HWLK (UNIT_V_UF + 0) /* hwre write lock */
#define UNIT_V_SWLK (UNIT_V_UF + 1) /* swre write lock */
#define UNIT_W_UF 3 /* user flags width */
#define UNIT_HWLK (1 << UNIT_V_HWLK)
#define UNIT_SWLK (1 << UNIT_V_SWLK)
#define UNIT_WPRT (UNIT_HWLK|UNIT_SWLK|UNIT_RO) /* write protect */
/* Parameters in the unit descriptor */
#define CYL u3 /* current cylinder */
#define FUNC u4 /* function */
/* Status register */
#define RKS_DONE 04000 /* transfer done */
#define RKS_HMOV 02000 /* heads moving */
#define RKS_SKFL 00400 /* drive seek fail */
#define RKS_NRDY 00200 /* drive not ready */
#define RKS_BUSY 00100 /* control busy error */
#define RKS_TMO 00040 /* timeout error */
#define RKS_WLK 00020 /* write lock error */
#define RKS_CRC 00010 /* CRC error */
#define RKS_DLT 00004 /* data late error */
#define RKS_STAT 00002 /* drive status error */
#define RKS_CYL 00001 /* cyl address error */
#define RKS_ERR (RKS_BUSY+RKS_TMO+RKS_WLK+RKS_CRC+RKS_DLT+RKS_STAT+RKS_CYL)
/* Command register */
#define RKC_M_FUNC 07 /* function */
#define RKC_READ 0
#define RKC_RALL 1
#define RKC_WLK 2
#define RKC_SEEK 3
#define RKC_WRITE 4
#define RKC_WALL 5
#define RKC_V_FUNC 9
#define RKC_IE 00400 /* interrupt enable */
#define RKC_SKDN 00200 /* int on seek done */
#define RKC_HALF 00100 /* 128W sector */
#define RKC_MEX 00070 /* memory extension */
#define RKC_V_MEX 3
#define RKC_M_DRV 03 /* drive select */
#define RKC_V_DRV 1
#define RKC_CYHI 00001 /* high cylinder addr */
#define GET_FUNC(x) (((x) >> RKC_V_FUNC) & RKC_M_FUNC)
#define GET_DRIVE(x) (((x) >> RKC_V_DRV) & RKC_M_DRV)
#define GET_MEX(x) (((x) & RKC_MEX) << (12 - RKC_V_MEX))
/* Disk address */
#define RKD_V_SECT 0 /* sector */
#define RKD_M_SECT 017
#define RKD_V_SUR 4 /* surface */
#define RKD_M_SUR 01
#define RKD_V_CYL 5 /* cylinder */
#define RKD_M_CYL 0177
#define GET_CYL(x,y) ((((x) & RKC_CYHI) << (12-RKD_V_CYL)) | \
(((y) >> RKD_V_CYL) & RKD_M_CYL))
#define GET_DA(x,y) ((((x) & RKC_CYHI) << 12) | y)
/* Reset commands */
#define RKX_CLS 0 /* clear status */
#define RKX_CLC 1 /* clear control */
#define RKX_CLD 2 /* clear drive */
#define RKX_CLSA 3 /* clear status alt */
#define RK_INT_UPDATE \
if (((rk_sta & (RKS_DONE + RKS_ERR)) != 0) && \
((rk_cmd & RKC_IE) != 0)) int_req = int_req | INT_RK; \
else int_req = int_req & ~INT_RK
#define RK_MIN 10
#define MAX(x,y) (((x) > (y))? (x): (y))
extern uint16 M[];
extern int32 int_req, dev_enb, stop_inst;
extern UNIT cpu_unit;
int32 rk_busy = 0; /* controller busy */
int32 rk_sta = 0; /* status register */
int32 rk_cmd = 0; /* command register */
int32 rk_da = 0; /* disk address */
int32 rk_ma = 0; /* memory address */
int32 rk_swait = 10, rk_rwait = 10; /* seek, rotate wait */
int32 rk_stopioe = 1; /* stop on error */
t_stat rk_svc (UNIT *uptr);
t_stat rk_reset (DEVICE *dptr);
t_stat rk_boot (int32 unitno);
void rk_go (int32 function, int32 cylinder);
/* RK-8E data structures
rk_dev RK device descriptor
rk_unit RK unit list
rk_reg RK register list
rk_mod RK modifiers list
*/
UNIT rk_unit[] = {
{ UDATA (&rk_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE, RK_SIZE) },
{ UDATA (&rk_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE, RK_SIZE) },
{ UDATA (&rk_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE, RK_SIZE) },
{ UDATA (&rk_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE, RK_SIZE) } };
REG rk_reg[] = {
{ ORDATA (RKSTA, rk_sta, 12) },
{ ORDATA (RKCMD, rk_cmd, 12) },
{ ORDATA (RKDA, rk_da, 12) },
{ ORDATA (RKMA, rk_ma, 12) },
{ FLDATA (BUSY, rk_busy, 0) },
{ FLDATA (INT, int_req, INT_V_RK) },
{ DRDATA (STIME, rk_swait, 24), PV_LEFT },
{ DRDATA (RTIME, rk_rwait, 24), PV_LEFT },
{ URDATA (FLG, rk_unit[0].flags, 8, UNIT_W_UF, UNIT_V_UF - 1,
RK_NUMDR, REG_HRO) },
{ FLDATA (STOP_IOE, rk_stopioe, 0) },
{ FLDATA (*DEVENB, dev_enb, INT_V_RK), REG_HRO },
{ NULL } };
MTAB rk_mod[] = {
{ UNIT_HWLK, 0, "write enabled", "ENABLED", NULL },
{ UNIT_HWLK, UNIT_HWLK, "write locked", "LOCKED", NULL },
{ 0 } };
DEVICE rk_dev = {
"RK", rk_unit, rk_reg, rk_mod,
RK_NUMDR, 8, 24, 1, 8, 12,
NULL, NULL, &rk_reset,
&rk_boot, NULL, NULL };
/* IOT routine */
int32 rk (int32 pulse, int32 AC)
{
int32 i;
UNIT *uptr;
switch (pulse) { /* decode IR<9:11> */
case 0: /* unused */
return (stop_inst << IOT_V_REASON) + AC;
case 1: /* DSKP */
return (rk_sta & (RKS_DONE + RKS_ERR))? /* skip on done, err */
IOT_SKP + AC: AC;
case 2: /* DCLR */
rk_sta = 0; /* clear status */
switch (AC & 03) { /* decode AC<10:11> */
case RKX_CLS: /* clear status */
if (rk_busy != 0) rk_sta = rk_sta | RKS_BUSY;
case RKX_CLSA: /* clear status alt */
break;
case RKX_CLC: /* clear control */
rk_cmd = rk_busy = 0; /* clear registers */
rk_ma = rk_da = 0;
for (i = 0; i < RK_NUMDR; i++) sim_cancel (&rk_unit[i]);
break;
case RKX_CLD: /* reset drive */
if (rk_busy != 0) rk_sta = rk_sta | RKS_BUSY;
else rk_go (RKC_SEEK, 0); /* seek to 0 */
break; } /* end switch AC */
break;
case 3: /* DLAG */
if (rk_busy != 0) rk_sta = rk_sta | RKS_BUSY;
else { rk_da = AC; /* load disk addr */
rk_go (GET_FUNC (rk_cmd), GET_CYL (rk_cmd, rk_da)); }
break;
case 4: /* DLCA */
if (rk_busy != 0) rk_sta = rk_sta | RKS_BUSY;
else rk_ma = AC; /* load curr addr */
break;
case 5: /* DRST */
uptr = rk_dev.units + GET_DRIVE (rk_cmd); /* selected unit */
rk_sta = rk_sta & ~(RKS_HMOV + RKS_NRDY); /* clear dynamic */
if ((uptr -> flags & UNIT_ATT) == 0) rk_sta = rk_sta | RKS_NRDY;
if (sim_is_active (uptr)) rk_sta = rk_sta | RKS_HMOV;
return rk_sta;
case 6: /* DLDC */
if (rk_busy != 0) rk_sta = rk_sta | RKS_BUSY;
else { rk_cmd = AC; /* load command */
rk_sta = 0; } /* clear status */
break;
case 7: /* DMAN */
break; } /* end case pulse */
RK_INT_UPDATE; /* update int req */
return 0; /* clear AC */
}
/* Initiate new function
Called with function, cylinder, to allow recalibrate as well as
load and go to be processed by this routine.
Assumes that the controller is idle, and that updating of interrupt
request will be done by the caller.
*/
void rk_go (int32 func, int32 cyl)
{
int32 t;
UNIT *uptr;
if (func == RKC_RALL) func = RKC_READ; /* all? use standard */
if (func == RKC_WALL) func = RKC_WRITE;
uptr = rk_dev.units + GET_DRIVE (rk_cmd); /* selected unit */
if ((uptr -> flags & UNIT_ATT) == 0) { /* not attached? */
rk_sta = rk_sta | RKS_DONE | RKS_NRDY | RKS_STAT;
return; }
if (sim_is_active (uptr) || (cyl >= RK_NUMCY)) { /* busy or bad cyl? */
rk_sta = rk_sta | RKS_DONE | RKS_STAT;
return; }
if ((func == RKC_WRITE) && (uptr -> flags & UNIT_WPRT)) {
rk_sta = rk_sta | RKS_DONE | RKS_WLK; /* write and locked? */
return; }
if (func == RKC_WLK) { /* write lock? */
uptr -> flags = uptr -> flags | UNIT_SWLK;
rk_sta = rk_sta | RKS_DONE;
return; }
t = abs (cyl - uptr -> CYL) * rk_swait; /* seek time */
if (func == RKC_SEEK) { /* seek? */
sim_activate (uptr, MAX (RK_MIN, t)); /* schedule */
rk_sta = rk_sta | RKS_DONE; } /* set done */
else { sim_activate (uptr, t + rk_rwait); /* schedule */
rk_busy = 1; } /* set busy */
uptr -> FUNC = func; /* save func */
uptr -> CYL = cyl; /* put on cylinder */
return;
}
/* Unit service
If seek, complete seek command
Else complete data transfer command
The unit control block contains the function and cylinder address for
the current command.
Note that memory addresses wrap around in the current field.
*/
static uint16 fill[RK_NUMWD/2] = { 0 };
t_stat rk_svc (UNIT *uptr)
{
int32 err, wc, wc1, awc, swc, pa, da;
UNIT *seluptr;
if (uptr -> FUNC == RKC_SEEK) { /* seek? */
seluptr = rk_dev.units + GET_DRIVE (rk_cmd); /* see if selected */
if ((uptr == seluptr) && ((rk_cmd & RKC_SKDN) != 0)) {
rk_sta = rk_sta | RKS_DONE;
RK_INT_UPDATE; }
return SCPE_OK; }
if ((uptr -> flags & UNIT_ATT) == 0) { /* not att? abort */
rk_sta = rk_sta | RKS_DONE | RKS_NRDY | RKS_STAT;
rk_busy = 0;
RK_INT_UPDATE;
return IORETURN (rk_stopioe, SCPE_UNATT); }
if ((uptr -> FUNC == RKC_WRITE) && (uptr -> flags & UNIT_WPRT)) {
rk_sta = rk_sta | RKS_DONE | RKS_WLK; /* write and locked? */
rk_busy = 0;
RK_INT_UPDATE;
return SCPE_OK; }
pa = GET_MEX (rk_cmd) | rk_ma; /* phys address */
da = GET_DA (rk_cmd, rk_da) * RK_NUMWD * sizeof (int16);/* disk address */
swc = wc = (rk_cmd & RKC_HALF)? RK_NUMWD / 2: RK_NUMWD; /* get transfer size */
if ((wc1 = ((rk_ma + wc) - 010000)) > 0) wc = wc - wc1; /* if wrap, limit */
err = fseek (uptr -> fileref, da, SEEK_SET); /* locate sector */
if ((uptr -> FUNC == RKC_READ) && (err == 0) && MEM_ADDR_OK (pa)) { /* read? */
awc = fxread (&M[pa], sizeof (int16), wc, uptr -> fileref);
for ( ; awc < wc; awc++) M[pa + awc] = 0; /* fill if eof */
err = ferror (uptr -> fileref);
if ((wc1 > 0) && (err == 0)) { /* field wraparound? */
pa = pa & 070000; /* wrap phys addr */
awc = fxread (&M[pa], sizeof (int16), wc1, uptr -> fileref);
for ( ; awc < wc1; awc++) M[pa + awc] = 0; /* fill if eof */
err = ferror (uptr -> fileref); } }
if ((uptr -> FUNC == RKC_WRITE) && (err == 0)) { /* write? */
fxwrite (&M[pa], sizeof (int16), wc, uptr -> fileref);
err = ferror (uptr -> fileref);
if ((wc1 > 0) && (err == 0)) { /* field wraparound? */
pa = pa & 070000; /* wrap phys addr */
fxwrite (&M[pa], sizeof (int16), wc1, uptr -> fileref);
err = ferror (uptr -> fileref); }
if ((rk_cmd & RKC_HALF) && (err == 0)) { /* fill half sector */
fxwrite (fill, sizeof (int16), RK_NUMWD/2, uptr -> fileref);
err = ferror (uptr -> fileref); } }
rk_ma = (rk_ma + swc) & 07777; /* incr mem addr reg */
rk_sta = rk_sta | RKS_DONE; /* set done */
rk_busy = 0;
RK_INT_UPDATE;
if (err != 0) {
perror ("RK I/O error");
clearerr (uptr -> fileref);
return SCPE_IOERR; }
return SCPE_OK;
}
/* Reset routine */
t_stat rk_reset (DEVICE *dptr)
{
int32 i;
UNIT *uptr;
rk_cmd = rk_ma = rk_da = rk_sta = rk_busy = 0;
int_req = int_req & ~INT_RK; /* clear interrupt */
for (i = 0; i < RK_NUMDR; i++) { /* stop all units */
uptr = rk_dev.units + i;
sim_cancel (uptr);
uptr -> flags = uptr -> flags & ~UNIT_SWLK;
uptr -> CYL = uptr -> FUNC = 0; }
return SCPE_OK;
}
/* Bootstrap routine */
#define BOOT_START 023
#define BOOT_UNIT 032
#define BOOT_LEN (sizeof (boot_rom) / sizeof (int))
static const int32 boot_rom[] = {
06007, /* 23, CAF */
06744, /* 24, DLCA ; addr = 0 */
01032, /* 25, TAD UNIT ; unit no */
06746, /* 26, DLDC ; command, unit */
06743, /* 27, DLAG ; disk addr, go */
01032, /* 30, TAD UNIT ; unit no, for OS */
05031, /* 31, JMP . */
00000 /* UNIT, 0 ; in bits <9:10> */
};
t_stat rk_boot (int32 unitno)
{
int32 i;
extern int32 saved_PC;
for (i = 0; i < BOOT_LEN; i++) M[BOOT_START + i] = boot_rom[i];
M[BOOT_UNIT] = (unitno & RK_M_NUMDR) << 1;
saved_PC = BOOT_START;
return SCPE_OK;
}