1. New Features 1.1 Directory and documentation - Only common files (SCP and libraries) are in the top level directory. Individual simulator files are in their individual directories. - simh_doc.txt has been split up. simh_doc.txt now documents only SCP. The individual simulators are documented in separate text files in their own directories. - mingw_build.bat is a batch file for the MINGW/gcc environment that will build all the simulators, assuming the root directory structure is at c:\sim. - Makefile is a UNIX make file for the gcc environment that will build all the simulators, assuming the root directory is at c:\sim. 1.2 SCP - DO <file name> executes the SCP commands in the specified file. - Replicated registers in unit structures can now be declared as arrays for examine, modify, save, and restore. Most replicated unit registers (for example, mag tape position registers) have been changed to arrays. - The ADD/REMOVE commands have been replaced by SET unit ONLINE and SET unit OFFLINE, respectively. - Register names that are unique within an entire simulator do not have to be prefaced with the device name. - The ATTACH command can attach files read only, either under user option (-r), or because the attached file is ready only. - The SET/SHOW capabilities have been extended. New forms include: SET <dev> param{=value}{ param ...} SET <unit> param{=value}{ param ...} SHOW <dev> {param param ...} SHOW <unit> {param param ...} - Multiple breakpoints have been implemented. Breakpoints are set/cleared/displayed by: BREAK addr_list{[count]} NOBREAK addr_list SHOW BREAK addr_list 1.3 PDP-11 simulator - Unibus map implemented, with 22b RP controller (URH70) or 18b RP controller (URH11) (in debug). - All DMA peripherals rewritten to use map. - Many peripherals modified for source sharing with VAX. - RQDX3 implemented. - Bugs fixed in RK11 and RL11 write check. 1.4 PDP-10 simulator - ITS 1-proceed implemented. - Bugs fixed in ITS PC sampling and LPMR 1.5 18b PDP simulator - Interrupts split out to multiple levels to allow easier expansion. 1.5 IBM System 3 Simulator - Written by Charles (Dutch) Owen. 1.6 VAX Simulator (in debug) - Simulates MicroVAX 3800 (KA655) with 16MB-64MB memory, RQDX3, RLV12, TSV11, DZV11, LPV11, PCV11. - CDROM capability has been added to the RQDX3, to allow testing with VMS hobbyist images. 1.7 SDS 940 Simulator (not tested) - Simulates SDS 940, 16K-64K memory, fixed and moving head disk, magtape, line printer, console. 1.8 Altair Z80 - Revised from Charles (Dutch) Owen's original by Peter Schorn. - MITS 8080 with full Z80 simulation. - 4K and 8K BASIC packages, Prolog package. 1.9 Interdata The I4 simulator has been withdrawn for major rework. Look for a complete 16b/32b Interdata simulator sometime next year. 2. Release Notes 2.1 SCP SCP now allows replicated registers in unit structures to be modelled as arrays. All replicated register declarations have been replaced by register array declarations. As a result, save files from prior revisions will generate errors after restoring main memory. 2.2 PDP-11 The Unibus map code is in debug. The map was implemented primarily to allow source sharing with the VAX, which requires a DMA map. DMA devices work correctly with the Unibus map disabled. The RQDX3 simulator has run a complete RSTS/E SYSGEN, with multiple drives, and booted the completed system from scratch. 2.3 VAX The VAX simulator will run the boot code up to the >>> prompt. It can successfully process a SHOW DEVICE command. It runs the HCORE instruction diagnostic. It can boot the hobbyist CD through SYSBOOT and through the date/time dialog and restore the hobbyist CD, using standalone backup. On the boot of the restored disk, it gets to the date/time dialog, and then crashes. 2.4 SDS 940 The SDS 940 is untested, awaiting real code. 2.5 GCC Optimization At -O2 and above, GCC does not correctly compile the simulators which use setjmp-longjmp (PDP-11, PDP-10, VAX). A working hypothesis is that optimized state maintained in registers is being used in the setjmp processing routine. On the PDP-11 and PDP-10, all of this state has been either made global, or volatile, to encourage GCC to keep the state up to date in memory. The VAX is still vulnerable. 3. Work list 3.1 SCP - Better ENABLE/DISABLE. 3.2 PDP-11 RQDX3 Software mapped mode, RCT read simulation, VMS debug.
779 lines
20 KiB
C
779 lines
20 KiB
C
/* s3_disk.c: IBM 5444 Disk Drives
|
|
|
|
Copyright (c) 2001 Charles E. Owen
|
|
Copyright (c) 1993-2001, Robert M. Supnik
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a
|
|
copy of this software and associated documentation files (the "Software"),
|
|
to deal in the Software without restriction, including without limitation
|
|
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
and/or sell copies of the Software, and to permit persons to whom the
|
|
Software is furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
Except as contained in this notice, the name of Robert M Supnik shall not
|
|
be used in advertising or otherwise to promote the sale, use or other dealings
|
|
in this Software without prior written authorization from Robert M Supnik.
|
|
|
|
r1 Removeable disk 1
|
|
f1 Fixed disk 1
|
|
r2 Removeable disk 2
|
|
f2 Fixed disk 2
|
|
*/
|
|
|
|
#include "s3_defs.h"
|
|
#include <ctype.h>
|
|
|
|
extern uint8 M[];
|
|
extern int32 IAR[], level;
|
|
extern FILE *trace;
|
|
extern int32 debug_reg;
|
|
char dbuf[DSK_SECTSIZE]; /* Disk buffer */
|
|
t_stat r1_svc (UNIT *uptr);
|
|
t_stat r1_boot (int32 unitno);
|
|
t_stat r1_attach (UNIT *uptr, char *cptr);
|
|
t_stat r1_reset (DEVICE *dptr);
|
|
t_stat f1_svc (UNIT *uptr);
|
|
t_stat f1_boot (int32 unitno);
|
|
t_stat f1_attach (UNIT *uptr, char *cptr);
|
|
t_stat f1_reset (DEVICE *dptr);
|
|
t_stat r2_svc (UNIT *uptr);
|
|
t_stat r2_boot (int32 unitno);
|
|
t_stat r2_attach (UNIT *uptr, char *cptr);
|
|
t_stat r2_reset (DEVICE *dptr);
|
|
t_stat f2_svc (UNIT *uptr);
|
|
t_stat f2_boot (int32 unitno);
|
|
t_stat f2_attach (UNIT *uptr, char *cptr);
|
|
t_stat f2_reset (DEVICE *dptr);
|
|
|
|
char opstr[5][5] = { "SIO", "LIO", "TIO", "SNS", "APL" };
|
|
|
|
int32 DDAR[2]; /* Data address register */
|
|
int32 DCAR[2]; /* Disk Control Address Register */
|
|
int32 diskerr[2] = { 0, 0 }; /* Error status */
|
|
int32 notrdy[2] = { 0, 0 }; /* Not ready error */
|
|
int32 seekbusy[2] = { 0, 0 }; /* Drive busy flags */
|
|
int32 seekhead[2] = { 0, 0 }; /* Disk head 0,1 */
|
|
int32 found[2] = { 0, 0 }; /* Scan found bit */
|
|
int32 RIDsect[2] = { 0, 0 }; /* for Read ID */
|
|
|
|
/* Disk data structures
|
|
|
|
xy_dev CDR descriptor
|
|
xy_unit CDR unit descriptor
|
|
xy_reg CDR register list
|
|
|
|
x = F or R
|
|
y = 1 or 2
|
|
*/
|
|
|
|
UNIT r1_unit = {
|
|
UDATA (&r1_svc, UNIT_FIX+UNIT_ATTABLE, 0), 100 };
|
|
|
|
REG r1_reg[] = {
|
|
{ FLDATA (NOTRDY, notrdy[0], 0) },
|
|
{ FLDATA (SEEK, seekbusy[0], 0) },
|
|
{ HRDATA (DAR, DDAR[0], 16) },
|
|
{ HRDATA (CAR, DCAR[0], 16) },
|
|
{ HRDATA (ERR, diskerr[0], 16) },
|
|
{ DRDATA (CYL, r1_unit.u3, 8) },
|
|
{ DRDATA (HEAD, seekhead[0], 8) },
|
|
{ DRDATA (POS, r1_unit.pos, 31), PV_LEFT },
|
|
{ DRDATA (TIME, r1_unit.wait, 24), PV_LEFT },
|
|
{ BRDATA (BUF, dbuf, 8, 8, 256) },
|
|
{ NULL } };
|
|
|
|
DEVICE r1_dev = {
|
|
"R1", &r1_unit, r1_reg, NULL,
|
|
1, 10, 31, 1, 8, 7,
|
|
NULL, NULL, &r1_reset,
|
|
&r1_boot, &r1_attach, NULL };
|
|
|
|
UNIT f1_unit = {
|
|
UDATA (&f1_svc, UNIT_FIX+UNIT_ATTABLE, 0), 100 };
|
|
|
|
REG f1_reg[] = {
|
|
{ FLDATA (NOTRDY, notrdy[0], 0) },
|
|
{ FLDATA (SEEK, seekbusy[0], 0) },
|
|
{ HRDATA (DAR, DDAR[0], 16) },
|
|
{ HRDATA (CAR, DCAR[0], 16) },
|
|
{ HRDATA (ERR, diskerr[0], 16) },
|
|
{ DRDATA (CYL, f1_unit.u3, 8) },
|
|
{ DRDATA (HEAD, seekhead[0], 8) },
|
|
{ DRDATA (POS, f1_unit.pos, 31), PV_LEFT },
|
|
{ DRDATA (TIME, f1_unit.wait, 24), PV_LEFT },
|
|
{ BRDATA (BUF, dbuf, 8, 8, 256) },
|
|
{ NULL } };
|
|
|
|
DEVICE f1_dev = {
|
|
"F1", &f1_unit, f1_reg, NULL,
|
|
1, 10, 31, 1, 8, 7,
|
|
NULL, NULL, &f1_reset,
|
|
&f1_boot, &f1_attach, NULL };
|
|
|
|
UNIT r2_unit = {
|
|
UDATA (&r2_svc, UNIT_FIX+UNIT_ATTABLE, 0), 100 };
|
|
|
|
REG r2_reg[] = {
|
|
{ FLDATA (NOTRDY, notrdy[1], 0) },
|
|
{ FLDATA (SEEK, seekbusy[1], 0) },
|
|
{ HRDATA (DAR, DDAR[1], 16) },
|
|
{ HRDATA (CAR, DCAR[1], 16) },
|
|
{ HRDATA (ERR, diskerr[1], 16) },
|
|
{ DRDATA (CYL, r2_unit.u3, 8) },
|
|
{ DRDATA (HEAD, seekhead[1], 8) },
|
|
{ DRDATA (POS, r2_unit.pos, 31), PV_LEFT },
|
|
{ DRDATA (TIME, r2_unit.wait, 24), PV_LEFT },
|
|
{ BRDATA (BUF, dbuf, 8, 8, 256) },
|
|
{ NULL } };
|
|
|
|
DEVICE r2_dev = {
|
|
"R2", &r2_unit, r2_reg, NULL,
|
|
1, 10, 31, 1, 8, 7,
|
|
NULL, NULL, &r2_reset,
|
|
&r2_boot, &r2_attach, NULL };
|
|
|
|
UNIT f2_unit = {
|
|
UDATA (&f2_svc, UNIT_FIX+UNIT_ATTABLE, 0), 100 };
|
|
|
|
REG f2_reg[] = {
|
|
{ FLDATA (NOTRDY, notrdy[1], 0) },
|
|
{ FLDATA (SEEK, seekbusy[1], 0) },
|
|
{ HRDATA (DAR, DDAR[1], 16) },
|
|
{ HRDATA (CAR, DCAR[1], 16) },
|
|
{ HRDATA (ERR, diskerr[1], 16) },
|
|
{ DRDATA (CYL, f2_unit.u3, 8) },
|
|
{ DRDATA (HEAD, seekhead[1], 8) },
|
|
{ DRDATA (POS, f2_unit.pos, 31), PV_LEFT },
|
|
{ DRDATA (TIME, f2_unit.wait, 24), PV_LEFT },
|
|
{ BRDATA (BUF, dbuf, 8, 8, 256) },
|
|
{ NULL } };
|
|
|
|
DEVICE f2_dev = {
|
|
"F2", &f2_unit, f2_reg, NULL,
|
|
1, 10, 31, 1, 8, 7,
|
|
NULL, NULL, &f2_reset,
|
|
&f2_boot, &f2_attach, NULL };
|
|
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
|
|
/* 5444: master routines */
|
|
|
|
int32 dsk1 (int32 op, int32 m, int32 n, int32 data)
|
|
{
|
|
int32 r;
|
|
|
|
r = dsk(0, op, m, n, data);
|
|
return (r);
|
|
}
|
|
|
|
int32 dsk2 (int32 op, int32 m, int32 n, int32 data)
|
|
{
|
|
int32 r;
|
|
|
|
r = dsk(1, op, m, n, data);
|
|
return (r);
|
|
}
|
|
|
|
/* 5444: operational routine */
|
|
|
|
int32 dsk (int32 disk, int32 op, int32 m, int32 n, int32 data)
|
|
{
|
|
int32 iodata, i, j, u, sect, nsects, addr, r, c, res;
|
|
int32 F, C, S, N, usave;
|
|
UNIT *uptr;
|
|
|
|
u = m;
|
|
if (disk == 1) u += 2;
|
|
F = GetMem(DCAR[disk]+0); /* Flag bits */
|
|
C = GetMem(DCAR[disk]+1); /* Cylinder */
|
|
S = GetMem(DCAR[disk]+2); /* Sector */
|
|
N = GetMem(DCAR[disk]+3); /* Number of sectors */
|
|
switch (u) {
|
|
case 0:
|
|
uptr = r1_dev.units;
|
|
break;
|
|
case 1:
|
|
uptr = f1_dev.units;
|
|
break;
|
|
case 2:
|
|
uptr = r2_dev.units;
|
|
break;
|
|
case 3:
|
|
uptr = f2_dev.units;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (debug_reg & 0x02)
|
|
fprintf(trace, "==> %04X %s %01X,%d,%04X DAR=%04X CAR=%04X C=%02X, S=%02X, N=%02X\n",
|
|
IAR[level],
|
|
opstr[op],
|
|
m, n, data,
|
|
DDAR[disk],
|
|
DCAR[disk],
|
|
C, S, N);
|
|
|
|
switch (op) {
|
|
|
|
/* SIO 5444 */
|
|
case 0:
|
|
if ((uptr->flags & UNIT_ATT) == 0)
|
|
return SCPE_UNATT;
|
|
diskerr[disk] = 0; /* SIO resets errors */
|
|
found[disk] = 0; /* ... and found bit */
|
|
iodata = 0;
|
|
switch (n) {
|
|
case 0x00: /* Seek */
|
|
if (S & 0x80)
|
|
seekhead[disk] = 1;
|
|
else
|
|
seekhead[disk] = 0;
|
|
if (S & 1) {
|
|
uptr -> u3 += N;
|
|
} else {
|
|
uptr -> u3 -= N;
|
|
}
|
|
if (uptr -> u3 < 0)
|
|
uptr -> u3 = 0;
|
|
if (uptr -> u3 > 203) {
|
|
uptr -> u3 = 0;
|
|
diskerr[disk] |= 0x0100;
|
|
if (debug_reg & 0x02)
|
|
fprintf(trace, "==> Seek Past End of Disk\n");
|
|
}
|
|
|
|
/*sim_activate(uptr, uptr -> wait);*/
|
|
sim_activate(uptr, 1);
|
|
|
|
/* Seek arms are the same for both disks on a drive:
|
|
update the other arm */
|
|
|
|
usave = uptr -> u3;
|
|
if (u == 0) uptr = f1_dev.units;
|
|
if (u == 1) uptr = r1_dev.units;
|
|
if (u == 2) uptr = f2_dev.units;
|
|
if (u == 3) uptr = r2_dev.units;
|
|
uptr -> u3 = usave;
|
|
|
|
seekbusy[disk] = 1;
|
|
iodata = SCPE_OK;
|
|
break;
|
|
|
|
case 0x01: /* Read */
|
|
switch (data) {
|
|
case 0: /* Read data */
|
|
sect = (S >> 2) & 0x3F;
|
|
nsects = N + 1;
|
|
addr = DDAR[disk];
|
|
|
|
for (i = 0; i < nsects; i++) {
|
|
r = read_sector(uptr, dbuf, sect);
|
|
if (r != 1 || uptr->u3 != C) {
|
|
diskerr[disk] |= 0x0800;
|
|
break;
|
|
}
|
|
for (j = 0; j < DSK_SECTSIZE; j++) {
|
|
PutMem(addr, dbuf[j]);
|
|
addr++;
|
|
}
|
|
|
|
if ((sect == 55) ) { /* HJS MODS */
|
|
S = sect;
|
|
N = nsects - i - 2;
|
|
if (N > -1) diskerr[disk] |= 0x0020; /* end of cyl. */
|
|
DDAR[disk] = addr & 0xFFFF; /* HJS mod */
|
|
PutMem(DCAR[disk]+2, S << 2);
|
|
PutMem(DCAR[disk]+3, N);
|
|
sim_activate(uptr, 1);
|
|
iodata = SCPE_OK;
|
|
break;
|
|
}
|
|
|
|
sect++;
|
|
S = sect - 1;
|
|
N = nsects - i - 2;
|
|
if (sect == 24)
|
|
sect = 32;
|
|
}
|
|
DDAR[disk] = addr & 0xFFFF; /* HJS mod */
|
|
PutMem(DCAR[disk]+2, S << 2);
|
|
PutMem(DCAR[disk]+3, N);
|
|
/*sim_activate(uptr, uptr -> wait);*/
|
|
sim_activate(uptr, 1);
|
|
iodata = SCPE_OK;
|
|
break;
|
|
case 1: /* Read ID */
|
|
if (uptr -> u3 > 0 && uptr -> u3 < 4)
|
|
PutMem(DCAR[disk], 1);
|
|
else
|
|
PutMem(DCAR[disk], 0);
|
|
PutMem(DCAR[disk]+1, uptr -> u3);
|
|
PutMem(DCAR[disk]+2, RIDsect[disk]);
|
|
RIDsect[disk]++;
|
|
if (RIDsect[disk] > 23)
|
|
RIDsect[disk] = 32;
|
|
if (RIDsect[disk] > 55)
|
|
RIDsect[disk] = 0;
|
|
break;
|
|
case 2: /* Read Diagnostic */
|
|
iodata = STOP_INVDEV;
|
|
break;
|
|
case 3: /* Verify */
|
|
sect = (S >> 2) & 0x3F;
|
|
nsects = N + 1;
|
|
addr = DDAR[disk];
|
|
for (i = 0; i < nsects; i++) {
|
|
r = read_sector(uptr, dbuf, sect);
|
|
if (r != 1 || uptr->u3 != C) {
|
|
diskerr[disk] |= 0x0800;
|
|
break;
|
|
}
|
|
if ((sect == 55) ) { /* HJS MODS */
|
|
S = sect;
|
|
N = nsects - i - 2;
|
|
if (N > -1) diskerr[disk] |= 0x0020; /* end of cyl. */
|
|
DDAR[disk] = addr & 0xFFFF;
|
|
PutMem(DCAR[disk]+2, S << 2);
|
|
PutMem(DCAR[disk]+3, N);
|
|
sim_activate(uptr, 1);
|
|
iodata = SCPE_OK;
|
|
break;
|
|
}
|
|
sect++;
|
|
S = sect - 1;
|
|
N = nsects - i - 2;
|
|
if (sect == 24)
|
|
sect = 32;
|
|
}
|
|
DDAR[disk] = addr & 0xFFFF;
|
|
PutMem(DCAR[disk]+2, S << 2);
|
|
PutMem(DCAR[disk]+3, N);
|
|
/*sim_activate(uptr, uptr -> wait);*/
|
|
sim_activate(uptr, 1);
|
|
break;
|
|
default:
|
|
return STOP_INVDEV;
|
|
}
|
|
break;
|
|
case 0x02: /* Write */
|
|
switch (data) {
|
|
case 0: /* Write Data */
|
|
sect = (S >> 2) & 0x3F;
|
|
nsects = N + 1;
|
|
addr = DDAR[disk];
|
|
for (i = 0; i < nsects; i++) {
|
|
for (j = 0; j < DSK_SECTSIZE; j++) {
|
|
dbuf[j] = GetMem(addr);
|
|
addr++;
|
|
}
|
|
r = write_sector(uptr, dbuf, sect);
|
|
if (r != 1 || uptr->u3 != C) {
|
|
diskerr[disk] |= 0x0400;
|
|
break;
|
|
}
|
|
if ((sect == 55) ) { /* HJS MODS */
|
|
S = sect;
|
|
N = nsects - i - 2;
|
|
if (N > -1) diskerr[disk] |= 0x0020; /* end of cyl. */
|
|
DDAR[disk] = addr & 0xFFFF;
|
|
PutMem(DCAR[disk]+2, S << 2);
|
|
PutMem(DCAR[disk]+3, N);
|
|
sim_activate(uptr, 1);
|
|
iodata = SCPE_OK;
|
|
break;
|
|
}
|
|
sect++;
|
|
S = sect - 1;
|
|
N = nsects - i - 2;
|
|
if (sect == 24)
|
|
sect = 32;
|
|
}
|
|
DDAR[disk] = addr & 0xFFFF; /* HJS mod */
|
|
PutMem(DCAR[disk]+2, S << 2);
|
|
PutMem(DCAR[disk]+3, N);
|
|
/*sim_activate(uptr, uptr -> wait);*/
|
|
sim_activate(uptr, 1);
|
|
break;
|
|
case 1: /* Write identifier */
|
|
if (seekhead[disk] == 0)
|
|
S = 0;
|
|
else
|
|
S = 0x80;
|
|
N = 23;
|
|
|
|
sect = (S >> 2) & 0x3F;
|
|
nsects = N + 1;
|
|
addr = DDAR[disk];
|
|
for (i = 0; i < nsects; i++) {
|
|
for (j = 0; j < DSK_SECTSIZE; j++) {
|
|
dbuf[j] = GetMem(addr);
|
|
}
|
|
r = write_sector(uptr, dbuf, sect);
|
|
if (r != 1) {
|
|
diskerr[disk] |= 0x0400;
|
|
break;
|
|
}
|
|
if ((sect == 55) ) {
|
|
S = sect;
|
|
N = nsects - i - 2;
|
|
if (N > 0) diskerr[disk] |= 0x0020;
|
|
DDAR[disk] = addr & 0xFFFF;
|
|
PutMem(DCAR[disk]+2, S << 2);
|
|
PutMem(DCAR[disk]+3, N);
|
|
sim_activate(uptr, 1);
|
|
iodata = SCPE_OK;
|
|
break;
|
|
}
|
|
sect++;
|
|
S = sect - 1;
|
|
N = nsects - i - 2;
|
|
if (sect == 24)
|
|
sect = 32;
|
|
}
|
|
DDAR[disk] = addr & 0xFFFF;
|
|
PutMem(DCAR[disk]+2, S << 2);
|
|
PutMem(DCAR[disk]+3, N);
|
|
/*sim_activate(uptr, uptr -> wait);*/
|
|
sim_activate(uptr, 1);
|
|
break;
|
|
default:
|
|
return STOP_INVDEV;
|
|
}
|
|
break;
|
|
case 0x03: /* Scan */
|
|
sect = (S >> 2) & 0x3F;
|
|
nsects = N + 1;
|
|
addr = DDAR[disk];
|
|
for (i = 0; i < nsects; i++) {
|
|
r = read_sector(uptr, dbuf, sect);
|
|
if (r != 1 || uptr->u3 != C) {
|
|
diskerr[disk] |= 0x0800;
|
|
break;
|
|
}
|
|
res = 0;
|
|
for (j = 0; j < DSK_SECTSIZE; j++) {
|
|
c = GetMem(addr);
|
|
if (j != 0xff) {
|
|
if (dbuf[i] < c)
|
|
res = 1;
|
|
if (dbuf[i] > c)
|
|
res = 3;
|
|
}
|
|
addr++;
|
|
}
|
|
if (res == 0)
|
|
found[disk] = 1;
|
|
if (res == data)
|
|
break;
|
|
if ((sect == 55) ) { /* HJS MODS */
|
|
S = sect;
|
|
N = nsects - i - 2;
|
|
if (N > -1) diskerr[disk] |= 0x0020; /* end of cyl. */
|
|
DDAR[disk] = addr & 0xFFFF;
|
|
PutMem(DCAR[disk]+2, S << 2);
|
|
PutMem(DCAR[disk]+3, N);
|
|
sim_activate(uptr, 1);
|
|
iodata = SCPE_OK;
|
|
break;
|
|
}
|
|
sect++;
|
|
S = sect - 1;
|
|
N = nsects - i - 2;
|
|
if (sect == 24)
|
|
sect = 32;
|
|
}
|
|
PutMem(DCAR[disk]+2, S << 2);
|
|
PutMem(DCAR[disk]+3, N);
|
|
/*sim_activate(uptr, uptr -> wait);*/
|
|
sim_activate(uptr, 1);
|
|
break;
|
|
default:
|
|
return STOP_INVDEV;
|
|
}
|
|
return iodata;
|
|
|
|
/* LIO 5444 */
|
|
case 1:
|
|
if ((uptr->flags & UNIT_ATT) == 0)
|
|
return SCPE_UNATT;
|
|
switch (n) {
|
|
case 0x04: /* Data Addr */
|
|
DDAR[disk] = data;
|
|
break;
|
|
case 0x06: /* Control Addr */
|
|
DCAR[disk] = data;
|
|
break;
|
|
default:
|
|
return STOP_INVDEV;
|
|
}
|
|
return SCPE_OK;
|
|
case 2: /* TIO 5444 */
|
|
if ((uptr->flags & UNIT_ATT) == 0)
|
|
return SCPE_UNATT << 16;
|
|
iodata = 0;
|
|
switch (n) {
|
|
case 0x00: /* Error */
|
|
if (diskerr[disk] || notrdy[disk])
|
|
iodata = 1;
|
|
if ((uptr -> flags & UNIT_ATT) == 0)
|
|
iodata = 1;
|
|
break;
|
|
case 0x02: /* Busy */
|
|
if (sim_is_active (uptr))
|
|
iodata = 1;
|
|
break;
|
|
case 0x04:
|
|
if (found[disk])
|
|
iodata = 1;
|
|
break;
|
|
default:
|
|
return (STOP_INVDEV << 16);
|
|
}
|
|
return ((SCPE_OK << 16) | iodata);
|
|
|
|
/* SNS 5444 */
|
|
case 3:
|
|
if ((uptr->flags & UNIT_ATT) == 0)
|
|
return SCPE_UNATT << 16;
|
|
iodata = 0;
|
|
switch (n) {
|
|
case 0x01:
|
|
break;
|
|
case 0x02:
|
|
iodata = diskerr[disk];
|
|
if (notrdy[disk])
|
|
iodata |= 0x4000;
|
|
if ((uptr -> flags & UNIT_ATT) == 0)
|
|
iodata |= 0x4000;
|
|
if (seekbusy[disk])
|
|
iodata |= 0x0010;
|
|
if (uptr -> u3 == 0)
|
|
iodata |= 0x0040;
|
|
break;
|
|
case 0x03:
|
|
iodata = 0;
|
|
break;
|
|
case 0x04:
|
|
iodata = DDAR[disk];
|
|
break;
|
|
case 0x06:
|
|
iodata = DCAR[disk];
|
|
break;
|
|
default:
|
|
return (STOP_INVDEV << 16);
|
|
}
|
|
iodata |= ((SCPE_OK << 16) & 0xffff0000);
|
|
return (iodata);
|
|
|
|
/* APL 5444 */
|
|
case 4:
|
|
if ((uptr->flags & UNIT_ATT) == 0)
|
|
return SCPE_UNATT << 16;
|
|
iodata = 0;
|
|
switch (n) {
|
|
case 0x00: /* Error */
|
|
if (diskerr[disk] || notrdy[disk])
|
|
iodata = 1;
|
|
if ((uptr -> flags & UNIT_ATT) == 0)
|
|
iodata = 1;
|
|
break;
|
|
case 0x02: /* Busy */
|
|
if (sim_is_active (uptr))
|
|
iodata = 1;
|
|
break;
|
|
default:
|
|
return (STOP_INVDEV << 16);
|
|
}
|
|
return ((SCPE_OK << 16) | iodata);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Disk unit service. If a stacker select is active, copy to the
|
|
selected stacker. Otherwise, copy to the normal stacker. If the
|
|
unit is unattached, simply exit.
|
|
*/
|
|
|
|
t_stat r1_svc (UNIT *uptr)
|
|
{
|
|
seekbusy[0] = 0;
|
|
return SCPE_OK;
|
|
}
|
|
t_stat f1_svc (UNIT *uptr)
|
|
{
|
|
seekbusy[0] = 0;
|
|
return SCPE_OK;
|
|
}
|
|
t_stat r2_svc (UNIT *uptr)
|
|
{
|
|
seekbusy[1] = 0;
|
|
return SCPE_OK;
|
|
}
|
|
t_stat f2_svc (UNIT *uptr)
|
|
{
|
|
seekbusy[1] = 0;
|
|
return SCPE_OK;
|
|
}
|
|
|
|
|
|
/* Disk reset */
|
|
|
|
t_stat r1_reset (DEVICE *dptr)
|
|
{
|
|
diskerr[0] = notrdy[0] = seekbusy[0] = 0; /* clear indicators */
|
|
found[0] = 0;
|
|
sim_cancel (&r1_unit); /* clear event */
|
|
r1_unit.u3 = 0; /* cylinder 0 */
|
|
return SCPE_OK;
|
|
}
|
|
t_stat f1_reset (DEVICE *dptr)
|
|
{
|
|
diskerr[0] = notrdy[0] = seekbusy[0] = 0; /* clear indicators */
|
|
found[0] = 0;
|
|
sim_cancel (&f1_unit); /* clear event */
|
|
f1_unit.u3 = 0; /* cylinder 0 */
|
|
return SCPE_OK;
|
|
}
|
|
t_stat r2_reset (DEVICE *dptr)
|
|
{
|
|
diskerr[1] = notrdy[1] = seekbusy[1] = 0; /* clear indicators */
|
|
found[1] = 0;
|
|
sim_cancel (&r2_unit); /* clear event */
|
|
r2_unit.u3 = 0; /* cylinder 0 */
|
|
return SCPE_OK;
|
|
}
|
|
t_stat f2_reset (DEVICE *dptr)
|
|
{
|
|
diskerr[1] = notrdy[1] = seekbusy[1] = 0; /* clear indicators */
|
|
found[1] = 0;
|
|
sim_cancel (&f2_unit); /* clear event */
|
|
f2_unit.u3 = 0; /* cylinder 0 */
|
|
return SCPE_OK;
|
|
}
|
|
|
|
/* Disk unit attach */
|
|
|
|
t_stat r1_attach (UNIT *uptr, char *cptr)
|
|
{
|
|
diskerr[0] = notrdy[0] = seekbusy[0] = 0; /* clear status */
|
|
found[0] = 0;
|
|
uptr -> u3 = 0; /* cylinder 0 */
|
|
return attach_unit (uptr, cptr);
|
|
}
|
|
t_stat f1_attach (UNIT *uptr, char *cptr)
|
|
{
|
|
diskerr[0] = notrdy[0] = seekbusy[0] = 0; /* clear status */
|
|
found[0] = 0;
|
|
uptr -> u3 = 0; /* cylinder 0 */
|
|
return attach_unit (uptr, cptr);
|
|
}
|
|
t_stat r2_attach (UNIT *uptr, char *cptr)
|
|
{
|
|
diskerr[1] = notrdy[1] = seekbusy[1] = 0; /* clear status */
|
|
found[1] = 0;
|
|
uptr -> u3 = 0; /* cylinder 0 */
|
|
return attach_unit (uptr, cptr);
|
|
}
|
|
t_stat f2_attach (UNIT *uptr, char *cptr)
|
|
{
|
|
diskerr[1] = notrdy[1] = seekbusy[1] = 0; /* clear status */
|
|
found[1] = 0;
|
|
uptr -> u3 = 0; /* cylinder 0 */
|
|
return attach_unit (uptr, cptr);
|
|
}
|
|
|
|
/* Bootstrap routine */
|
|
|
|
t_stat r1_boot (int32 unitno)
|
|
{
|
|
int i;
|
|
r1_unit.u3 = 0;
|
|
read_sector(r1_dev.units, dbuf, 0);
|
|
for (i = 0; i < 256; i++) {
|
|
M[i] = dbuf[i];
|
|
}
|
|
return SCPE_OK;
|
|
}
|
|
t_stat f1_boot (int32 unitno)
|
|
{
|
|
int i;
|
|
f1_unit.u3 = 0;
|
|
read_sector(f1_dev.units, dbuf, 0);
|
|
for (i = 0; i < 256; i++) {
|
|
M[i] = dbuf[i];
|
|
}
|
|
return SCPE_OK;
|
|
}
|
|
t_stat r2_boot (int32 unitno)
|
|
{
|
|
int i;
|
|
r2_unit.u3 = 0;
|
|
read_sector(r2_dev.units, dbuf, 0);
|
|
for (i = 0; i < 256; i++) {
|
|
M[i] = dbuf[i];
|
|
}
|
|
return SCPE_OK;
|
|
}
|
|
t_stat f2_boot (int32 unitno)
|
|
{
|
|
int i;
|
|
f2_unit.u3 = 0;
|
|
read_sector(f2_dev.units, dbuf, 0);
|
|
for (i = 0; i < 256; i++) {
|
|
M[i] = dbuf[i];
|
|
}
|
|
return SCPE_OK;
|
|
}
|
|
|
|
|
|
/* Raw Disk Data In/Out */
|
|
|
|
int32 read_sector(UNIT *uptr, char *dbuf, int32 sect)
|
|
{
|
|
static int32 rtn, realsect;
|
|
static long pos;
|
|
|
|
/* calculate real sector no */
|
|
if (sect > 23)
|
|
realsect = sect - 8;
|
|
else
|
|
realsect = sect;
|
|
/* physically read the sector */
|
|
pos = DSK_CYLSIZE * uptr -> u3;
|
|
pos += DSK_SECTSIZE * realsect;
|
|
rtn = fseek(uptr -> fileref, pos, 0);
|
|
rtn = fread(dbuf, DSK_SECTSIZE, 1, uptr -> fileref);
|
|
return (rtn);
|
|
}
|
|
|
|
int32 write_sector(UNIT *uptr, char *dbuf, int32 sect)
|
|
{
|
|
static int32 rtn, realsect;
|
|
static long pos;
|
|
|
|
/* calculate real sector no */
|
|
if (sect > 23)
|
|
realsect = sect - 8;
|
|
else
|
|
realsect = sect;
|
|
if (uptr -> u3 == 0 && realsect == 32)
|
|
rtn = 0;
|
|
/* physically write the sector */
|
|
pos = DSK_CYLSIZE * uptr -> u3;
|
|
pos += DSK_SECTSIZE * realsect;
|
|
rtn = fseek(uptr -> fileref, pos, 0);
|
|
rtn = fwrite(dbuf, DSK_SECTSIZE, 1, uptr -> fileref);
|
|
return (rtn);
|
|
}
|