simh-testsetgenerator/S3/s3_sys.c
Bob Supnik 701f0fe028 Notes For V2.8
1. New Features

1.1 Directory and documentation

- Only common files (SCP and libraries) are in the top level
  directory.  Individual simulator files are in their individual
  directories.
- simh_doc.txt has been split up.  simh_doc.txt now documents
  only SCP.  The individual simulators are documented in separate
  text files in their own directories.
- mingw_build.bat is a batch file for the MINGW/gcc environment
  that will build all the simulators, assuming the root directory
  structure is at c:\sim.
- Makefile is a UNIX make file for the gcc environment that will
  build all the simulators, assuming the root directory is at
  c:\sim.

1.2 SCP

- DO <file name> executes the SCP commands in the specified file.
- Replicated registers in unit structures can now be declared as
  arrays for examine, modify, save, and restore.  Most replicated
  unit registers (for example, mag tape position registers) have
  been changed to arrays.
- The ADD/REMOVE commands have been replaced by SET unit ONLINE
  and SET unit OFFLINE, respectively.
- Register names that are unique within an entire simulator do
  not have to be prefaced with the device name.
- The ATTACH command can attach files read only, either under
  user option (-r), or because the attached file is ready only.
- The SET/SHOW capabilities have been extended.  New forms include:

	SET <dev> param{=value}{ param ...}
	SET <unit> param{=value}{ param ...}
	SHOW <dev> {param param ...}
	SHOW <unit> {param param ...}

- Multiple breakpoints have been implemented.  Breakpoints are
  set/cleared/displayed by:

	BREAK addr_list{[count]}
	NOBREAK addr_list
	SHOW BREAK addr_list

1.3 PDP-11 simulator

- Unibus map implemented, with 22b RP controller (URH70) or 18b
  RP controller (URH11) (in debug).
- All DMA peripherals rewritten to use map.
- Many peripherals modified for source sharing with VAX.
- RQDX3 implemented.
- Bugs fixed in RK11 and RL11 write check.

1.4 PDP-10 simulator

- ITS 1-proceed implemented.
- Bugs fixed in ITS PC sampling and LPMR

1.5 18b PDP simulator

- Interrupts split out to multiple levels to allow easier
  expansion.

1.5 IBM System 3 Simulator

- Written by Charles (Dutch) Owen.

1.6 VAX Simulator (in debug)

- Simulates MicroVAX 3800 (KA655) with 16MB-64MB memory, RQDX3,
  RLV12, TSV11, DZV11, LPV11, PCV11.
- CDROM capability has been added to the RQDX3, to allow testing
  with VMS hobbyist images.

1.7 SDS 940 Simulator (not tested)

- Simulates SDS 940, 16K-64K memory, fixed and moving head
  disk, magtape, line printer, console.

1.8 Altair Z80

- Revised from Charles (Dutch) Owen's original by Peter Schorn.
- MITS 8080 with full Z80 simulation.
- 4K and 8K BASIC packages, Prolog package.

1.9 Interdata

The I4 simulator has been withdrawn for major rework.  Look for
a complete 16b/32b Interdata simulator sometime next year.

2. Release Notes

2.1 SCP

SCP now allows replicated registers in unit structures to be
modelled as arrays.  All replicated register declarations have
been replaced by register array declarations.  As a result,
save files from prior revisions will generate errors after
restoring main memory.

2.2 PDP-11

The Unibus map code is in debug.  The map was implemented primarily
to allow source sharing with the VAX, which requires a DMA map.
DMA devices work correctly with the Unibus map disabled.

The RQDX3 simulator has run a complete RSTS/E SYSGEN, with multiple
drives, and booted the completed system from scratch.

2.3 VAX

The VAX simulator will run the boot code up to the >>> prompt.  It
can successfully process a SHOW DEVICE command.  It runs the HCORE
instruction diagnostic.  It can boot the hobbyist CD through SYSBOOT
and through the date/time dialog and restore the hobbyist CD, using
standalone backup.  On the boot of the restored disk, it gets to the
date/time dialog, and then crashes.

2.4 SDS 940

The SDS 940 is untested, awaiting real code.

2.5 GCC Optimization

At -O2 and above, GCC does not correctly compile the simulators which
use setjmp-longjmp (PDP-11, PDP-10, VAX).  A working hypothesis is
that optimized state maintained in registers is being used in the
setjmp processing routine.  On the PDP-11 and PDP-10, all of this
state has been either made global, or volatile, to encourage GCC to
keep the state up to date in memory.  The VAX is still vulnerable.

3. Work list

3.1 SCP

- Better ENABLE/DISABLE.

3.2 PDP-11 RQDX3

Software mapped mode, RCT read simulation, VMS debug.
2011-04-15 08:33:38 -07:00

925 lines
24 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* ibms3_sys.c: IBM System/3 system interface
(C) Copyright 2001 by Charles E. Owen
Commercial use prohibited
*/
#include <ctype.h>
#include "s3_defs.h"
extern DEVICE cpu_dev;
extern DEVICE pkb_dev;
extern DEVICE cdr_dev;
extern DEVICE cdp_dev;
extern DEVICE stack_dev;
extern DEVICE lpt_dev;
extern DEVICE r1_dev;
extern DEVICE f1_dev;
extern DEVICE r2_dev;
extern DEVICE f2_dev;
extern UNIT cpu_unit;
extern REG cpu_reg[];
extern unsigned char M[];
extern int32 saved_PC, IAR[];
extern char ebcdic_to_ascii[256];
extern char *get_glyph (char *cptr, char *gbuf, char term);
extern unsigned int32 get_uint (char *cptr, int32 radix, unsigned int32 max,
int32 *status);
char *parse_addr(char *cptr, char *gbuf, int32 *addr, int32 *addrtype);
/* SCP data structures
sim_name simulator name string
sim_PC pointer to saved PC register descriptor
sim_emax number of words needed for examine
sim_devices array of pointers to simulated devices
sim_stop_messages array of pointers to stop messages
sim_load binary loader
*/
char sim_name[] = "System/3";
REG *sim_PC = &cpu_reg[0];
int32 sim_emax = 6;
DEVICE *sim_devices[] = { &cpu_dev,
&pkb_dev,
&cdr_dev,
&cdp_dev,
&stack_dev,
&lpt_dev,
&r1_dev,
&f1_dev,
&r2_dev,
&f2_dev,
NULL };
const char *sim_stop_messages[] = {
"Unknown error",
"Unknown I/O Instruction",
"HALT instruction",
"Breakpoint",
"Invalid Opcode",
"Invalid Qbyte",
"Invalid Address",
"Invalid Device Command",
"ATTN Card Reader"
};
/* This is the opcode master defintion table. Each possible opcode mnemonic
is defined here, with enough information to translate to and from
symbolic to binary machine code.
First field is the opcode's mnemonic
Second field is the hex of the right nybble of the binary opcode
Third field is the Q code for those with implicit Q codes
Fourth field is the symbolic format of the operands:
0 - (Q-byte),(R-byte)
1 - (Q-byte),(Address)
2 - (Address),(Address),(Qbyte)
3 - (Address),(Qbyte)
4 - (device),(modifier),(function) -- these 3 make up qbyte
5 - (device),(modifier),(function),(control)
6 - (device),(modifier),(function),(Address)
7 - (displacement) -- Q byte is implicit in opcode
8 - (address) -- Qbyte is implicit in opcode
9 - (Address),(Address) -- Qbyte is implicit in opcode
Fifth Field is the group number:
0 - Command Group (left op nybble is F)
1 - One Address Operations A (Left Nybble C, D, or E)
2 - Two Address Operations (Left Nybble 0,1,2,4,5,6,8,9, or A)
3 - One Address Operations B (left Nybble 3, 7, or B)
There is duplication in this table -- IBM defines different opcodes
that resolve to the same binary machine instruction -- e.g. JE and
JZ. On input this is no problem, on output, define the one you
want to appear first, the second will never appear on output.
*/
int32 nopcode = 75;
struct opdef opcode[75] = {
"HPL", 0x00,0,0,0, /* Halt Program Level */
"A", 0x06,0,1,3, /* Add to Register: A R,AADD */
"ST", 0x04,0,1,3, /* Store Register */
"L", 0x05,0,1,3, /* Load Register */
"LA", 0x02,0,1,1, /* Load Address */
"ZAZ", 0x04,0,2,2, /* Zero and Add Zoned */
"AZ", 0x06,0,2,2, /* Add Zoned Decimal */
"SZ", 0x07,0,2,2, /* Subtract Zoned Decimal */
"ALC", 0x0E,0,2,2, /* Add Logical: ALC BADD,AADD,LEN */
"SLC", 0x0F,0,2,2, /* Sub Logical: SLC BADD,AADD,LEN */
"MVC", 0x0C,0,2,2, /* Move Chars MVX BADD,AADD,LEN */
"ED", 0x0A,0,2,2, /* Edit: ED BADD,AADD,LEN */
"ITC", 0x0B,0,2,2, /* Insert Chars: ITC BADD,AADD,LEN */
"CLC", 0x0D,0,2,2, /* Compare Logical: CLC BADD,AADD,LEN */
"MVI", 0x0C,0,3,3, /* Move Immediate */
"SBN", 0x0A,0,3,3, /* Set Bits On */
"SBF", 0x0B,0,3,3, /* Set Bits Off */
"CLI", 0x0D,0,3,3, /* Compare Immediate */
"TBN", 0x08,0,3,3, /* Test Bits On */
"TBF", 0x09,0,3,3, /* Test Bits Off */
"APL", 0x01,0,4,0, /* Advance Program Level */
"SIO", 0x03,0,5,0, /* Start I/O */
"SNS", 0x00,0,6,3, /* Sense I/O */
"LIO", 0x01,0,6,3, /* Load I/O */
"TIO", 0x01,0,6,1, /* Test I/O */
"J", 0x02,0,7,0, /* Jump Unconditional */
"J", 0x02,0x87,7,0, /* Alternate J */
"JH", 0x02,132,7,0, /* Jump if High */
"JL", 0x02,130,7,0, /* Jump if Low */
"JE", 0x02,129,7,0, /* Jump if Equal */
"JNH", 0x02,4,7,0, /* Jump if Not High */
"JNL", 0x02,2,7,0, /* Jump if Not Low */
"JNE", 0x02,1,7,0, /* Jump if Not Equal */
"JOZ", 0x02,136,7,0, /* Jump if Overflow Zoned */
"JOL", 0x02,160,7,0, /* Jump if Overflow Logical */
"JNOZ", 0x02,8,7,0, /* Jump if No Overflow Zoned */
"JNOL", 0x02,32,7,0, /* Jump if No Overflow Logical */
"JT", 0x02,16,7,0, /* Jump if True */
"JF", 0x02,144,7,0, /* Jump if False */
"JP", 0x02,132,7,0, /* Jump if Plus */
"JM", 0x02,130,7,0, /* Jump if Minus */
"JZ", 0x02,129,7,0, /* Jump if Zero */
"JNP", 0x02,4,7,0, /* Jump if Not Plus */
"JNM", 0x02,2,7,0, /* Jump if Not Minus */
"JNZ", 0x02,1,7,0, /* Jump if Not Zero */
"NOPJ", 0x02,0x80,7,0, /* Never Jump - NOP */
"B", 0x00,0x00,8,1, /* Branch Unconditional */
"B", 0x00,0x87,8,1, /* Alternate B */
"BH", 0x00,0x84,8,1, /* Branch if High */
"BL", 0x00,0x82,8,1, /* Branch if Low */
"BE", 0x00,0x81,8,1, /* Branch if Equal */
"BNH", 0x00,0x04,8,1, /* Branch if Not High */
"BNL", 0x00,0x02,8,1, /* Branch if Not Low */
"BNE", 0x00,0x01,8,1, /* Branch if Not Equal */
"BOZ", 0x00,0x88,8,1, /* Branch if Overflow Zoned */
"BOL", 0x00,0xA0,8,1, /* Branch if Overflow Logical */
"BNOZ", 0x00,0x08,8,1, /* Branch if No Overflow Zoned */
"BNOL", 0x00,0x20,8,1, /* Branch if No Overflow Logical */
"BT", 0x00,0x10,8,1, /* Branch if True */
"BF", 0x00,0x90,8,1, /* Branch if False */
"BP", 0x00,0x84,8,1, /* Branch if Plus */
"BM", 0x00,0x82,8,1, /* Branch if Minus */
"BZ", 0x00,0x81,8,1, /* Branch if Zero */
"BNP", 0x00,0x04,8,1, /* Branch if Not Plus */
"BNM", 0x00,0x02,8,1, /* Branch if Not Minus */
"BNZ", 0x00,0x01,8,1, /* Branch if Not Zero */
"NOPB", 0x00,0x80,8,1, /* Never Branch - NOP */
"MZZ", 0x08,0,9,2, /* Move Zone to Zone */
"MNZ", 0x08,1,9,2, /* Move Numeric to Zone */
"MZN", 0x08,2,9,2, /* Move Zone to Numeric */
"MNN", 0x08,3,9,2, /* Move Numeric to Numeric */
"MVX", 0x08,0,2,2, /* Move Hex: MVX BADD,AADD,CODE */
"JC", 0x02,0,3,0, /* Jump on Specified Condition bits */
"BC", 0x00,0,3,1, /* Branch on Specified Condition */
"***", 0x00,0,0,0
};
int32 regcode[15] = { 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01,
0x80, 0xC0, 0xA0, 0x90, 0x88, 0x84, 0x82, 0x81 };
char regname[15][8] = { "(P2IAR)",
"(P1IAR)",
"(IAR)",
"(ARR)",
"(PSR)",
"(XR2)",
"(XR1)",
"(IAR0)",
"(IAR1)",
"(IAR2)",
"(IAR3)",
"(IAR4)",
"(IAR5)",
"(IAR6)",
"(IAR7)" };
/* This is the binary loader. The input file is considered to be
a string of literal bytes with no special format. The
load starts at the current value of the P1IAR.
*/
int32 sim_load (FILE *fileref, char *cptr, char *fnam, int flag)
{
int32 i, addr = 0, cnt = 0;
if ((*cptr != 0) || (flag != 0)) return SCPE_ARG;
addr = IAR[8];
while ((i = getc (fileref)) != EOF) {
M[addr] = i & 0xff;
addr++;
cnt++;
} /* end while */
printf ("%d Bytes loaded.\n", cnt);
return (SCPE_OK);
}
/* Symbolic output
Inputs:
*of = output stream
addr = current PC
*val = pointer to values
*uptr = pointer to unit
sw = switches
Outputs:
status = error code
*/
int32 fprint_sym (FILE *of, int32 addr, unsigned int32 *val,
UNIT *uptr, int32 sw)
{
int32 r;
char strg[256];
strcpy(strg, "");
r = printf_sym(of, strg, addr, val, uptr, sw);
if (sw & SWMASK ('A'))
strcpy(strg, "");
else
fprintf(of, "%s", strg);
return (r);
}
int32 printf_sym (FILE *of, char *strg, int32 addr, unsigned int32 *val,
UNIT *uptr, int32 sw)
{
int32 cflag, c1, c2, group, len1, len2, inst, adr, aaddr, baddr;
int32 oplen, groupno, i, j, vpos, qbyte, da, m, n;
char bld[128], bldaddr[32], boperand[32], aoperand[32], regoperand[32];
int32 blk[16], blt[16];
int32 blkadd;
cflag = (uptr == NULL) || (uptr == &cpu_unit);
c1 = val[0] & 0xff;
if (sw & SWMASK ('A')) {
for (i = 0; i < 16; i++) {
blkadd = addr + (i*16);
for (j = 0; j < 16; j++) {
blk[j] = M[blkadd+j] & 0xff;
c2 = ebcdic_to_ascii[blk[j]];
if (c2 < 040 || c2 > 0177 || blk[j] == 07) {
blt[j] = '.';
} else {
blt[j] = c2;
}
}
if (i == 0) {
fprintf(of, "%02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X [%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c]\n ",
blk[0], blk[1], blk[2], blk[3], blk[4], blk[5], blk[6], blk[7],
blk[8], blk[9], blk[10], blk[11], blk[12], blk[13], blk[14], blk[15],
blt[0], blt[1], blt[2], blt[3], blt[4], blt[5], blt[6], blt[7],
blt[8], blt[9], blt[10], blt[11], blt[12], blt[13], blt[14], blt[15]);
} else {
fprintf(of, "%X\t%02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X [%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c]\n ",
blkadd, blk[0], blk[1], blk[2], blk[3], blk[4], blk[5], blk[6], blk[7],
blk[8], blk[9], blk[10], blk[11], blk[12], blk[13], blk[14], blk[15],
blt[0], blt[1], blt[2], blt[3], blt[4], blt[5], blt[6], blt[7],
blt[8], blt[9], blt[10], blt[11], blt[12], blt[13], blt[14], blt[15]);
}
}
return SCPE_OK; }
if (sw & SWMASK ('C')) {
c2 = ebcdic_to_ascii[c1];
if (c2 < 040 || c2 > 0177) {
sprintf(strg, "<%02X>", c1 & 0xff);
} else {
sprintf (strg, "%c", c2 & 0xff);
}
return SCPE_OK; }
if (!(sw & SWMASK ('M'))) return SCPE_ARG;
inst = val[0] & 0x0f;
len1 = (val[0] >> 6) & 3;
len2 = (val[0] >> 4) & 3;
group = (val[0] >> 4) & 0x0f;
qbyte = val[1];
/* Get total length of instruction */
if (group == 0x0f) {
oplen = 3;
} else {
oplen = 2;
if (len1 == 0) oplen += 2;
if (len1 == 1 || len1 == 2) oplen++;
if (len2 == 0) oplen += 2;
if (len2 == 1 || len2 == 2) oplen++;
}
/* Find which group it belongs to */
switch (group) {
case 0x0f:
groupno = 0;
break;
case 0x0c:
case 0x0d:
case 0x0e:
groupno = 1;
break;
case 0x03:
case 0x07:
case 0x0b:
groupno = 3;
break;
default:
groupno = 2;
break;
}
/* find the table entry */
for (i = 0; i < nopcode; i++) {
if (opcode[i].form < 7) { /* Explicit Q */
if (opcode[i].group == groupno &&
opcode[i].opmask == inst) break;
} else { /* Implicit Q */
if (opcode[i].group == groupno &&
opcode[i].opmask == inst &&
opcode[i].q == qbyte) break;
}
}
/* print the opcode */
if (i >= nopcode) {
sprintf(strg, "%02X", val[0]);
oplen = 1;
} else {
sprintf(bld, "%s ", opcode[i].op);
/* Extract the addresses into aaddr and baddr */
strcpy(aoperand, "ERROR");
strcpy(boperand, "ERROR");
vpos = 2;
aaddr = baddr = 0;
switch (len1) {
case 0:
baddr = ((val[vpos] << 8) & 0xff00) | (val[vpos + 1] & 0x00ff);
sprintf(boperand, "%04X", baddr);
vpos = 4;
break;
case 1:
baddr = val[vpos] & 255;
sprintf(boperand, "(%02X,XR1)", baddr);
vpos = 3;
break;
case 2:
baddr = val[vpos] & 255;
sprintf(boperand, "(%02X,XR2)", baddr);
vpos = 3;
break;
default:
baddr = 0;
break;
}
switch (len2) {
case 0:
aaddr = ((val[vpos] << 8) & 0xff00) | (val[vpos + 1] & 0x00ff);
if (group == 0x0C || group == 0x0D || group == 0x0E)
sprintf(boperand, "%04X", aaddr);
else
sprintf(aoperand, "%04X", aaddr);
break;
case 1:
aaddr = val[vpos] & 255;
if (group == 0x0C || group == 0x0D || group == 0x0E)
sprintf(boperand, "(%02X,XR1)", aaddr);
else
sprintf(aoperand, "(%02X,XR1)", aaddr);
break;
case 2:
aaddr = val[vpos] & 255;
if (group == 0x0C || group == 0x0D || group == 0x0E)
sprintf(boperand, "(%02X,XR2)", aaddr);
else
sprintf(aoperand, "(%02X,XR2)", aaddr);
break;
default:
aaddr = 0;
break;
}
/* Display the operands in the correct format */
da = (qbyte >> 4) & 0x0f;
m = (qbyte >> 3) & 0x01;
n = (qbyte) & 0x07;
switch (opcode[i].form) {
case 0:
sprintf(bldaddr, "%02X,%02X", qbyte, val[2]);
break;
case 1:
if (inst == 2 || inst == 4 || inst == 5 || inst == 6) {
for (i = 0; i < 16; i++) {
if (regcode[i] == qbyte)
break;
}
if (i < 16) {
sprintf(bldaddr, "%s,%s", regname[i], boperand);
} else {
sprintf(bldaddr, "%02X,%s", qbyte, boperand);
}
} else {
sprintf(bldaddr, "%02X,%s", qbyte, boperand);
}
break;
case 2:
if (inst > 9 || inst == 4 || inst == 6 || inst == 7)
qbyte++; /* special +1 for length display */
sprintf(bldaddr, "%s,%s,%d", boperand, aoperand, qbyte);
break;
case 3:
if (strcmp(opcode[i].op, "JC") == 0) {
sprintf(bldaddr, "%04X,%02X", addr+oplen+val[2], qbyte);
} else {
sprintf(bldaddr, "%s,%02X", boperand, qbyte);
}
break;
case 4:
sprintf(bldaddr, "%d,%d,%d", da, m, n);
break;
case 5:
sprintf(bldaddr, "%d,%d,%d,%02X", da, m, n, val[2]);
break;
case 6:
sprintf(bldaddr, "%d,%d,%d,%s", da, m, n, boperand);
break;
case 7:
sprintf(bldaddr, "%04X", addr+oplen+val[2]);
break;
case 8:
sprintf(bldaddr, "%s", boperand);
break;
default:
sprintf(bldaddr, "%s,%s", boperand, aoperand);
break;
}
sprintf(strg, "%s%s", bld, bldaddr);
}
return -(oplen - 1);
}
/* Symbolic input
Inputs:
*cptr = pointer to input string
addr = current PC
*uptr = pointer to unit
*val = pointer to output values
sw = switches
Outputs:
status = error status
*/
int32 parse_sym (char *cptr, int32 addr, UNIT *uptr, unsigned int32 *val, int32 sw)
{
int32 cflag, i = 0, j, k, r, oplen, addtyp, saveaddr, vptr;
char gbuf[CBUFSIZE];
cflag = (uptr == NULL) || (uptr == &cpu_unit);
while (isspace (*cptr)) cptr++; /* absorb spaces */
if ((sw & SWMASK ('A')) || ((*cptr == '\'') && cptr++)) { /* ASCII char? */
if (cptr[0] == 0) return SCPE_ARG; /* must have 1 char */
val[0] = (unsigned int) cptr[0];
return SCPE_OK; }
if ((sw & SWMASK ('C')) || ((*cptr == '"') && cptr++)) { /* ASCII string? */
if (cptr[0] == 0) return SCPE_ARG; /* must have 1 char */
val[0] = ((unsigned int) cptr[0] << 8) + (unsigned int) cptr[1];
return SCPE_OK; }
/* An instruction: get opcode (all characters until null, comma, left paren,
or numeric (including spaces).
*/
while (1) {
if (*cptr == ',' || *cptr == '\0' || *cptr == '(' ||
isdigit(*cptr))
break;
gbuf[i] = toupper(*cptr);
cptr++;
i++;
}
/* kill trailing spaces if any */
gbuf[i] = '\0';
for (j = i - 1; gbuf[j] == ' '; j--) {
gbuf[j] = '\0';
}
/* find opcode in table */
for (j = 0; j < nopcode; j++) {
if (strcmp(gbuf, opcode[j].op) == 0)
break;
}
if (j >= nopcode) /* not found */
return SCPE_ARG;
oplen = 2; /* start with op & q */
val[0] = opcode[j].opmask; /* store opcode right nybble */
switch (opcode[j].form) { /* Get operands based on operand format */
case 0: /* Single Byte Operand */
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ','); /* Get Q Byte */
sscanf(gbuf, "%x", &r);
val[1] = r;
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, 0); /* Get R Byte */
sscanf(gbuf, "%x", &r);
val[2] = r;
oplen = 3;
val[0] = 0xf0 | opcode[j].opmask;
break;
case 1:
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
if (opcode[j].opmask == 2 ||
opcode[j].opmask == 4 ||
opcode[j].opmask == 5 ||
opcode[j].opmask == 6) {
if (isdigit(gbuf[0])) {
sscanf(gbuf, "%x", &r);
} else {
for (i = 0; i < 16; i++) {
if (strcmp(gbuf, regname[i]) == 0)
break;
}
if (i < 16) {
r = regcode[i];
} else {
return SCPE_ARG;
}
}
} else {
sscanf(gbuf, "%x", &r);
}
if (r > 255) return SCPE_ARG;
val[1] = r;
if (*cptr == ',') cptr++;
cptr = parse_addr(cptr, gbuf, &addr, &addtyp);
switch(addtyp) {
case 0:
val[2] = (addr >> 8) & 0x00ff;
val[3] = addr & 0xff;
oplen = 4;
if (opcode[j].group == 1)
val[0] = 0xC0 | opcode[j].opmask;
else
val[0] = 0x30 | opcode[j].opmask;
break;
case 1:
val[2] = addr & 0xff;
oplen = 3;
if (opcode[j].group == 1)
val[0] = 0xD0 | opcode[j].opmask;
else
val[0] = 0x70 | opcode[j].opmask;
break;
case 2:
val[2] = addr & 0xff;
oplen = 3;
if (opcode[j].group == 1)
val[0] = 0xE0 | opcode[j].opmask;
else
val[0] = 0xB0 | opcode[j].opmask;
break;
default:
return SCPE_ARG;
break;
}
break;
case 2:
oplen = 2;
cptr = parse_addr(cptr, gbuf, &addr, &addtyp);
switch(addtyp) {
case 0:
val[2] = (addr >> 8) & 0xff;
val[3] = addr & 0xff;
oplen += 2;
vptr = 4;
val[0] = 0x00 | opcode[j].opmask;
break;
case 1:
val[2] = addr & 0xff;
oplen += 1;
vptr = 3;
val[0] = 0x40 | opcode[j].opmask;
break;
case 2:
val[2] = addr & 0xff;
oplen += 1;
vptr = 3;
val[0] = 0x80 | opcode[j].opmask;
break;
default:
return SCPE_ARG;
break;
}
if (*cptr == ',') cptr++;
cptr = parse_addr(cptr, gbuf, &addr, &addtyp);
switch(addtyp) {
case 0:
val[vptr] = (addr >> 8) & 0xff;
val[vptr+1] = addr & 0xff;
oplen += 2;
break;
case 1:
val[vptr] = addr & 0xff;
oplen += 1;
val[0] = 0x10 | val[0];
break;
case 2:
val[vptr] = addr & 0xff;
oplen += 1;
val[0] = 0x20 | val[0];
break;
default:
return SCPE_ARG;
break;
}
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, 0);
sscanf(gbuf, "%d", &r);
if (opcode[j].opmask > 9 ||
opcode[j].opmask == 4 ||
opcode[j].opmask == 6 ||
opcode[j].opmask == 7) r--; /* special: length -1 */
val[1] = r;
if (*cptr == ',') cptr++;
break;
case 3:
saveaddr = addr;
if (*cptr == ',') cptr++;
cptr = parse_addr(cptr, gbuf, &addr, &addtyp);
switch(addtyp) {
case 0:
if (opcode[j].group == 0) { /* Group 0 form 3 is JC with explicit Q */
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, 0);
sscanf(gbuf, "%x", &r);
if ((addr - (saveaddr+3)) > 255 || (addr - (saveaddr+3)) < 1)
return SCPE_ARG;
val[2] = addr - (saveaddr+3);
val[1] = r;
val[0] = 0xf0 | opcode[j].opmask;
oplen = 3;
} else {
val[2] = (addr >> 8) & 0x00ff;
val[3] = addr & 0xff;
oplen = 4;
if (opcode[j].group == 1)
val[0] = 0xC0 | opcode[j].opmask;
else
val[0] = 0x30 | opcode[j].opmask;
}
break;
case 1:
val[2] = addr & 0xff;
oplen = 3;
if (opcode[j].group == 1)
val[0] = 0xD0 | opcode[j].opmask;
else
val[0] = 0x70 | opcode[j].opmask;
break;
case 2:
val[2] = addr & 0xff;
oplen = 3;
if (opcode[j].group == 1)
val[0] = 0xE0 | opcode[j].opmask;
else
val[0] = 0xB0 | opcode[j].opmask;
break;
default:
return SCPE_ARG;
break;
}
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, 0);
sscanf(gbuf, "%x", &r);
if (r > 255) return SCPE_ARG;
val[1] = r;
break;
case 4:
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
sscanf(gbuf, "%d", &r);
if (r > 15) return SCPE_ARG;
val[1] = (r << 4) & 0xf0;
val[0] = 0xf0 | opcode[j].opmask;
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
sscanf(gbuf, "%d", &r);
if (r > 1) return SCPE_ARG;
val[1] |= (r << 3) & 0x08;
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, 0);
sscanf(gbuf, "%d", &r);
if (r > 7) return SCPE_ARG;
val[1] |= r & 0x07;
val[2] = 0;
oplen = 3;
break;
case 5:
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
sscanf(gbuf, "%d", &r);
if (r > 15) return SCPE_ARG;
val[1] = (r << 4) & 0xf0;
val[0] = 0xf0 | opcode[j].opmask;
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
sscanf(gbuf, "%d", &r);
if (r > 1) return SCPE_ARG;
val[1] |= (r << 3) & 0x08;
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
sscanf(gbuf, "%d", &r);
if (r > 7) return SCPE_ARG;
val[1] |= r & 0x07;
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, 0);
sscanf(gbuf, "%x", &r);
if (r > 255) return SCPE_ARG;
val[2] = r;
oplen = 3;
break;
case 6:
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
sscanf(gbuf, "%d", &r);
if (r > 15) return SCPE_ARG;
val[1] = (r << 4) & 0xf0;
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
sscanf(gbuf, "%d", &r);
if (r > 1) return SCPE_ARG;
val[1] |= (r << 3) & 0x08;
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
sscanf(gbuf, "%d", &r);
if (r > 7) return SCPE_ARG;
val[1] |= r & 0x07;
if (*cptr == ',') cptr++;
cptr = parse_addr(cptr, gbuf, &addr, &addtyp);
switch(addtyp) {
case 0:
val[2] = (addr >> 8) & 0x00ff;
val[3] = addr & 0xff;
oplen = 4;
if (opcode[j].group == 1)
val[0] = 0xC0 | opcode[j].opmask;
else
val[0] = 0x30 | opcode[j].opmask;
break;
case 1:
val[2] = addr & 0xff;
oplen = 3;
if (opcode[j].group == 1)
val[0] = 0xD0 | opcode[j].opmask;
else
val[0] = 0x70 | opcode[j].opmask;
break;
case 2:
val[2] = addr & 0xff;
oplen = 3;
if (opcode[j].group == 1)
val[0] = 0xE0 | opcode[j].opmask;
else
val[0] = 0xB0 | opcode[j].opmask;
break;
default:
return SCPE_ARG;
break;
}
break;
case 7:
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, 0);
sscanf(gbuf, "%x", &r);
if ((r - (addr+3)) > 255 || (r - (addr+3)) < 1) return SCPE_ARG;
val[2] = r - (addr+3);
val[1] = opcode[j].q;
val[0] = 0xf0 | opcode[j].opmask;
oplen = 3;
break;
case 8:
if (*cptr == ',') cptr++;
cptr = parse_addr(cptr, gbuf, &addr, &addtyp);
switch(addtyp) {
case 0:
val[2] = (addr >> 8) & 0x00ff;
val[3] = addr & 0xff;
oplen = 4;
val[0] = 0xC0 | opcode[j].opmask;
break;
case 1:
val[2] = addr & 0xff;
oplen = 3;
val[0] = 0xD0 | opcode[j].opmask;
break;
case 2:
val[2] = addr & 0xff;
oplen = 3;
val[0] = 0xE0 | opcode[j].opmask;
break;
default:
return SCPE_ARG;
break;
}
val[1] = opcode[j].q;
break;
case 9:
oplen = 2;
val[0] = 0;
cptr = parse_addr(cptr, gbuf, &addr, &addtyp);
switch(addtyp) {
case 0:
val[2] = (addr >> 8) & 0xff;
val[3] = addr & 0xff;
oplen += 2;
vptr = 4;
val[0] = 0x00 | opcode[j].opmask;
break;
case 1:
val[2] = addr & 0xff;
oplen += 1;
vptr = 3;
val[0] = 0x40 | opcode[j].opmask;
break;
case 2:
val[2] = addr & 0xff;
oplen += 1;
vptr = 3;
val[0] = 0x80 | opcode[j].opmask;
break;
default:
return SCPE_ARG;
break;
}
if (*cptr == ',') cptr++;
cptr = parse_addr(cptr, gbuf, &addr, &addtyp);
switch(addtyp) {
case 0:
val[vptr] = (addr >> 8) & 0xff;
val[vptr+1] = addr & 0xff;
oplen += 2;
break;
case 1:
val[vptr] = addr & 0xff;
oplen += 1;
val[0] = 0x10 | val[0];
break;
case 2:
val[vptr] = addr & 0xff;
oplen += 1;
val[0] = 0x20 | val[0];
break;
default:
return SCPE_ARG;
break;
}
val[1] = opcode[j].q;
break;
default:
break;
}
return (-(oplen-1));
}
char *parse_addr(char *cptr, char *gbuf, int32 *addr, int32 *addrtype)
{
int32 nybble = 0;
char temp[32];
cptr = get_glyph(cptr, gbuf, ',');
if (gbuf[0] == '(') { /* XR relative */
strcpy(temp, gbuf+1);
sscanf(temp, "%x", addr);
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
nybble = -1;
if (strcmp(gbuf, "XR1)") == 0)
nybble = 1;
if (strcmp(gbuf, "XR2)") == 0)
nybble = 2;
} else { /* Direct */
sscanf(gbuf, "%x", addr);
nybble = 0;
}
*addrtype = nybble;
return cptr;
}