Additionally, calls to sim_activate_after with delay values that exceed twice the tick size of the calibrated clock are now coscheduled with the calibrated clock.
2488 lines
95 KiB
C
2488 lines
95 KiB
C
/* sim_timer.c: simulator timer library
|
|
|
|
Copyright (c) 1993-2010, Robert M Supnik
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a
|
|
copy of this software and associated documentation files (the "Software"),
|
|
to deal in the Software without restriction, including without limitation
|
|
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
and/or sell copies of the Software, and to permit persons to whom the
|
|
Software is furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
Except as contained in this notice, the name of Robert M Supnik shall not be
|
|
used in advertising or otherwise to promote the sale, use or other dealings
|
|
in this Software without prior written authorization from Robert M Supnik.
|
|
|
|
21-Oct-11 MP Fixed throttling in several ways:
|
|
- Sleep for the observed clock tick size while throttling
|
|
- Recompute the throttling wait once every 10 seconds
|
|
to account for varying instruction mixes during
|
|
different phases of a simulator execution or to
|
|
accommodate the presence of other load on the host
|
|
system.
|
|
- Each of the pre-existing throttling modes (Kcps,
|
|
Mcps, and %) all compute the appropriate throttling
|
|
interval dynamically. These dynamic computations
|
|
assume that 100% of the host CPU is dedicated to
|
|
the current simulator during this computation.
|
|
This assumption may not always be true and under
|
|
certain conditions may never provide a way to
|
|
correctly determine the appropriate throttling
|
|
wait. An additional throttling mode has been added
|
|
which allows the simulator operator to explicitly
|
|
state the desired throttling wait parameters.
|
|
These are specified by:
|
|
SET THROT insts/delay
|
|
where 'insts' is the number of instructions to
|
|
execute before sleeping for 'delay' milliseconds.
|
|
22-Apr-11 MP Fixed Asynch I/O support to reasonably account cycles
|
|
when an idle wait is terminated by an external event
|
|
05-Jan-11 MP Added Asynch I/O support
|
|
29-Dec-10 MP Fixed clock resolution determination for Unix platforms
|
|
22-Sep-08 RMS Added "stability threshold" for idle routine
|
|
27-May-08 RMS Fixed bug in Linux idle routines (from Walter Mueller)
|
|
18-Jun-07 RMS Modified idle to exclude counted delays
|
|
22-Mar-07 RMS Added sim_rtcn_init_all
|
|
17-Oct-06 RMS Added idle support (based on work by Mark Pizzolato)
|
|
Added throttle support
|
|
16-Aug-05 RMS Fixed C++ declaration and cast problems
|
|
02-Jan-04 RMS Split out from SCP
|
|
|
|
This library includes the following routines:
|
|
|
|
sim_timer_init - initialize timing system
|
|
sim_rtc_init - initialize calibration
|
|
sim_rtc_calb - calibrate clock
|
|
sim_idle - virtual machine idle
|
|
sim_os_msec - return elapsed time in msec
|
|
sim_os_sleep - sleep specified number of seconds
|
|
sim_os_ms_sleep - sleep specified number of milliseconds
|
|
sim_idle_ms_sleep - sleep specified number of milliseconds
|
|
or until awakened by an asynchronous
|
|
event
|
|
sim_timespec_diff subtract two timespec values
|
|
sim_timer_activate_after schedule unit for specific time
|
|
|
|
|
|
The calibration, idle, and throttle routines are OS-independent; the _os_
|
|
routines are not.
|
|
*/
|
|
|
|
#define NOT_MUX_USING_CODE /* sim_tmxr library provider or agnostic */
|
|
|
|
#include "sim_defs.h"
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#define SIM_INTERNAL_CLK (SIM_NTIMERS+(1<<30))
|
|
#define SIM_INTERNAL_UNIT sim_internal_timer_unit
|
|
#ifndef MIN
|
|
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
|
|
#endif
|
|
#ifndef MAX
|
|
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
|
|
#endif
|
|
|
|
uint32 sim_idle_ms_sleep (unsigned int msec);
|
|
|
|
/* MS_MIN_GRANULARITY exists here so that timing behavior for hosts systems */
|
|
/* with slow clock ticks can be assessed and tested without actually having */
|
|
/* that slow a clock tick on the development platform */
|
|
//#define MS_MIN_GRANULARITY 20 /* Uncomment to simulate 20ms host tick size.*/
|
|
/* some Solaris and BSD hosts come this way */
|
|
|
|
#if defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1)
|
|
uint32 real_sim_idle_ms_sleep (unsigned int msec);
|
|
uint32 real_sim_os_msec (void);
|
|
uint32 real_sim_os_ms_sleep (unsigned int msec);
|
|
static uint32 real_sim_os_sleep_min_ms = 0;
|
|
static uint32 real_sim_os_sleep_inc_ms = 0;
|
|
|
|
uint32 sim_idle_ms_sleep (unsigned int msec)
|
|
{
|
|
uint32 real_start = real_sim_os_msec ();
|
|
uint32 start = (real_start / MS_MIN_GRANULARITY) * MS_MIN_GRANULARITY;
|
|
uint32 tick_left;
|
|
|
|
if (msec == 0)
|
|
return 0;
|
|
if (real_start == start)
|
|
tick_left = 0;
|
|
else
|
|
tick_left = MS_MIN_GRANULARITY - (real_start - start);
|
|
if (msec <= tick_left)
|
|
real_sim_idle_ms_sleep (tick_left);
|
|
else
|
|
real_sim_idle_ms_sleep (((msec + MS_MIN_GRANULARITY - 1) / MS_MIN_GRANULARITY) * MS_MIN_GRANULARITY);
|
|
|
|
return (sim_os_msec () - start);
|
|
}
|
|
|
|
uint32 sim_os_msec (void)
|
|
{
|
|
return (real_sim_os_msec ()/MS_MIN_GRANULARITY)*MS_MIN_GRANULARITY;
|
|
}
|
|
|
|
uint32 sim_os_ms_sleep (unsigned int msec)
|
|
{
|
|
msec = MS_MIN_GRANULARITY*((msec+MS_MIN_GRANULARITY-1)/MS_MIN_GRANULARITY);
|
|
|
|
return real_sim_os_ms_sleep (msec);
|
|
}
|
|
|
|
#endif /* defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) */
|
|
|
|
t_bool sim_idle_enab = FALSE; /* global flag */
|
|
volatile t_bool sim_idle_wait = FALSE; /* global flag */
|
|
|
|
static int32 sim_calb_tmr = -1; /* the system calibrated timer */
|
|
static int32 sim_calb_tmr_last = -1; /* shadow value when at sim> prompt */
|
|
static double sim_inst_per_sec_last = 0; /* shadow value when at sim> prompt */
|
|
|
|
static uint32 sim_idle_rate_ms = 0;
|
|
static uint32 sim_os_sleep_min_ms = 0;
|
|
static uint32 sim_os_sleep_inc_ms = 0;
|
|
static uint32 sim_os_clock_resoluton_ms = 0;
|
|
static uint32 sim_os_tick_hz = 0;
|
|
static uint32 sim_idle_stable = SIM_IDLE_STDFLT;
|
|
static uint32 sim_idle_calib_pct = 0;
|
|
static uint32 sim_throt_ms_start = 0;
|
|
static uint32 sim_throt_ms_stop = 0;
|
|
static uint32 sim_throt_type = 0;
|
|
static uint32 sim_throt_val = 0;
|
|
static uint32 sim_throt_state = 0;
|
|
static double sim_throt_cps;
|
|
static double sim_throt_inst_start;
|
|
static uint32 sim_throt_sleep_time = 0;
|
|
static int32 sim_throt_wait = 0;
|
|
static UNIT *sim_clock_unit[SIM_NTIMERS+1] = {NULL};
|
|
UNIT * volatile sim_clock_cosched_queue[SIM_NTIMERS+1] = {NULL};
|
|
static int32 sim_cosched_interval[SIM_NTIMERS+1];
|
|
static t_bool sim_catchup_ticks = TRUE;
|
|
#if defined (SIM_ASYNCH_CLOCKS) && !defined (SIM_ASYNCH_IO)
|
|
#undef SIM_ASYNCH_CLOCKS
|
|
#endif
|
|
t_bool sim_asynch_timer = FALSE;
|
|
|
|
#if defined (SIM_ASYNCH_CLOCKS)
|
|
UNIT * volatile sim_wallclock_queue = QUEUE_LIST_END;
|
|
UNIT * volatile sim_wallclock_entry = NULL;
|
|
#endif
|
|
|
|
#define sleep1Samples 100
|
|
|
|
static uint32 _compute_minimum_sleep (void)
|
|
{
|
|
uint32 i, tot, tim;
|
|
|
|
sim_os_set_thread_priority (PRIORITY_ABOVE_NORMAL);
|
|
#if defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1)
|
|
real_sim_idle_ms_sleep (1); /* Start sampling on a tick boundary */
|
|
for (i = 0, tot = 0; i < sleep1Samples; i++)
|
|
tot += real_sim_idle_ms_sleep (1);
|
|
tim = tot / sleep1Samples; /* Truncated average */
|
|
real_sim_os_sleep_min_ms = tim;
|
|
real_sim_idle_ms_sleep (1); /* Start sampling on a tick boundary */
|
|
for (i = 0, tot = 0; i < sleep1Samples; i++)
|
|
tot += real_sim_idle_ms_sleep (real_sim_os_sleep_min_ms + 1);
|
|
tim = tot / sleep1Samples; /* Truncated average */
|
|
real_sim_os_sleep_inc_ms = tim - real_sim_os_sleep_min_ms;
|
|
#endif /* defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) */
|
|
sim_idle_ms_sleep (1); /* Start sampling on a tick boundary */
|
|
for (i = 0, tot = 0; i < sleep1Samples; i++)
|
|
tot += sim_idle_ms_sleep (1);
|
|
tim = tot / sleep1Samples; /* Truncated average */
|
|
sim_os_sleep_min_ms = tim;
|
|
sim_idle_ms_sleep (1); /* Start sampling on a tick boundary */
|
|
for (i = 0, tot = 0; i < sleep1Samples; i++)
|
|
tot += sim_idle_ms_sleep (sim_os_sleep_min_ms + 1);
|
|
tim = tot / sleep1Samples; /* Truncated average */
|
|
sim_os_sleep_inc_ms = tim - sim_os_sleep_min_ms;
|
|
sim_os_set_thread_priority (PRIORITY_NORMAL);
|
|
return sim_os_sleep_min_ms;
|
|
}
|
|
|
|
#if defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1)
|
|
|
|
#define sim_idle_ms_sleep real_sim_idle_ms_sleep
|
|
#define sim_os_msec real_sim_os_msec
|
|
#define sim_os_ms_sleep real_sim_os_ms_sleep
|
|
|
|
#endif /* defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) */
|
|
|
|
#if defined(SIM_ASYNCH_IO)
|
|
uint32 sim_idle_ms_sleep (unsigned int msec)
|
|
{
|
|
uint32 start_time = sim_os_msec();
|
|
struct timespec done_time;
|
|
t_bool timedout = FALSE;
|
|
|
|
clock_gettime(CLOCK_REALTIME, &done_time);
|
|
done_time.tv_sec += (msec/1000);
|
|
done_time.tv_nsec += 1000000*(msec%1000);
|
|
if (done_time.tv_nsec > 1000000000) {
|
|
done_time.tv_sec += done_time.tv_nsec/1000000000;
|
|
done_time.tv_nsec = done_time.tv_nsec%1000000000;
|
|
}
|
|
pthread_mutex_lock (&sim_asynch_lock);
|
|
sim_idle_wait = TRUE;
|
|
if (!pthread_cond_timedwait (&sim_asynch_wake, &sim_asynch_lock, &done_time))
|
|
sim_asynch_check = 0; /* force check of asynch queue now */
|
|
else
|
|
timedout = TRUE;
|
|
sim_idle_wait = FALSE;
|
|
pthread_mutex_unlock (&sim_asynch_lock);
|
|
if (!timedout) {
|
|
AIO_UPDATE_QUEUE;
|
|
}
|
|
return sim_os_msec() - start_time;
|
|
}
|
|
#else
|
|
uint32 sim_idle_ms_sleep (unsigned int msec)
|
|
{
|
|
return sim_os_ms_sleep (msec);
|
|
}
|
|
#endif
|
|
|
|
/* Mark the need for the sim_os_set_thread_priority routine, */
|
|
/* allowing the feature and/or platform dependent code to provide it */
|
|
#define NEED_THREAD_PRIORITY
|
|
|
|
/* If we've got pthreads support then use pthreads mechanisms */
|
|
#if defined(USE_READER_THREAD)
|
|
|
|
#undef NEED_THREAD_PRIORITY
|
|
|
|
#if defined(_WIN32)
|
|
/* On Windows there are several potentially disjoint threading APIs */
|
|
/* in use (base win32 pthreads, libSDL provided threading, and direct */
|
|
/* calls to beginthreadex), so go directly to the Win32 threading APIs */
|
|
/* to manage thread priority */
|
|
t_stat sim_os_set_thread_priority (int below_normal_above)
|
|
{
|
|
const static int val[3] = {THREAD_PRIORITY_BELOW_NORMAL, THREAD_PRIORITY_NORMAL, THREAD_PRIORITY_ABOVE_NORMAL};
|
|
|
|
if ((below_normal_above < -1) || (below_normal_above > 1))
|
|
return SCPE_ARG;
|
|
SetThreadPriority (GetCurrentThread(), val[1 + below_normal_above]);
|
|
return SCPE_OK;
|
|
}
|
|
#else
|
|
/* Native pthreads priority implementation */
|
|
t_stat sim_os_set_thread_priority (int below_normal_above)
|
|
{
|
|
int sched_policy, min_prio, max_prio;
|
|
struct sched_param sched_priority;
|
|
|
|
if ((below_normal_above < -1) || (below_normal_above > 1))
|
|
return SCPE_ARG;
|
|
|
|
pthread_getschedparam (pthread_self(), &sched_policy, &sched_priority);
|
|
min_prio = sched_get_priority_min(sched_policy);
|
|
max_prio = sched_get_priority_max(sched_policy);
|
|
switch (below_normal_above) {
|
|
case PRIORITY_BELOW_NORMAL:
|
|
sched_priority.sched_priority = min_prio;
|
|
break;
|
|
case PRIORITY_NORMAL:
|
|
sched_priority.sched_priority = (max_prio + min_prio) / 2;
|
|
break;
|
|
case PRIORITY_ABOVE_NORMAL:
|
|
sched_priority.sched_priority = max_prio;
|
|
break;
|
|
}
|
|
pthread_setschedparam (pthread_self(), sched_policy, &sched_priority);
|
|
return SCPE_OK;
|
|
}
|
|
#endif
|
|
#endif /* defined(USE_READER_THREAD) */
|
|
|
|
/* OS-dependent timer and clock routines */
|
|
|
|
/* VMS */
|
|
|
|
#if defined (VMS)
|
|
|
|
#if defined (__VAX)
|
|
#define sys$gettim SYS$GETTIM
|
|
#define sys$setimr SYS$SETIMR
|
|
#define lib$emul LIB$EMUL
|
|
#define sys$waitfr SYS$WAITFR
|
|
#define lib$subx LIB$SUBX
|
|
#define lib$ediv LIB$EDIV
|
|
#endif
|
|
|
|
#include <starlet.h>
|
|
#include <lib$routines.h>
|
|
#include <unistd.h>
|
|
|
|
const t_bool rtc_avail = TRUE;
|
|
|
|
uint32 sim_os_msec (void)
|
|
{
|
|
uint32 quo, htod, tod[2];
|
|
int32 i;
|
|
|
|
sys$gettim (tod); /* time 0.1usec */
|
|
|
|
/* To convert to msec, must divide a 64b quantity by 10000. This is actually done
|
|
by dividing the 96b quantity 0'time by 10000, producing 64b of quotient, the
|
|
high 32b of which are discarded. This can probably be done by a clever multiply...
|
|
*/
|
|
|
|
quo = htod = 0;
|
|
for (i = 0; i < 64; i++) { /* 64b quo */
|
|
htod = (htod << 1) | ((tod[1] >> 31) & 1); /* shift divd */
|
|
tod[1] = (tod[1] << 1) | ((tod[0] >> 31) & 1);
|
|
tod[0] = tod[0] << 1;
|
|
quo = quo << 1; /* shift quo */
|
|
if (htod >= 10000) { /* divd work? */
|
|
htod = htod - 10000; /* subtract */
|
|
quo = quo | 1; /* set quo bit */
|
|
}
|
|
}
|
|
return quo;
|
|
}
|
|
|
|
void sim_os_sleep (unsigned int sec)
|
|
{
|
|
sleep (sec);
|
|
return;
|
|
}
|
|
|
|
uint32 sim_os_ms_sleep_init (void)
|
|
{
|
|
return _compute_minimum_sleep ();
|
|
}
|
|
|
|
uint32 sim_os_ms_sleep (unsigned int msec)
|
|
{
|
|
uint32 stime = sim_os_msec ();
|
|
uint32 qtime[2];
|
|
int32 nsfactor = -10000;
|
|
static int32 zero = 0;
|
|
|
|
lib$emul (&msec, &nsfactor, &zero, qtime);
|
|
sys$setimr (2, qtime, 0, 0);
|
|
sys$waitfr (2);
|
|
return sim_os_msec () - stime;
|
|
}
|
|
|
|
#ifdef NEED_CLOCK_GETTIME
|
|
int clock_gettime(int clk_id, struct timespec *tp)
|
|
{
|
|
uint32 secs, ns, tod[2], unixbase[2] = {0xd53e8000, 0x019db1de};
|
|
|
|
if (clk_id != CLOCK_REALTIME)
|
|
return -1;
|
|
|
|
sys$gettim (tod); /* time 0.1usec */
|
|
lib$subx(tod, unixbase, tod); /* convert to unix base */
|
|
lib$ediv(&10000000, tod, &secs, &ns); /* isolate seconds & 100ns parts */
|
|
tp->tv_sec = secs;
|
|
tp->tv_nsec = ns*100;
|
|
return 0;
|
|
}
|
|
#endif /* CLOCK_REALTIME */
|
|
|
|
#elif defined (_WIN32)
|
|
|
|
/* Win32 routines */
|
|
|
|
const t_bool rtc_avail = TRUE;
|
|
|
|
uint32 sim_os_msec (void)
|
|
{
|
|
return timeGetTime ();
|
|
}
|
|
|
|
void sim_os_sleep (unsigned int sec)
|
|
{
|
|
Sleep (sec * 1000);
|
|
return;
|
|
}
|
|
|
|
void sim_timer_exit (void)
|
|
{
|
|
timeEndPeriod (sim_idle_rate_ms);
|
|
return;
|
|
}
|
|
|
|
uint32 sim_os_ms_sleep_init (void)
|
|
{
|
|
TIMECAPS timers;
|
|
|
|
if (timeGetDevCaps (&timers, sizeof (timers)) != TIMERR_NOERROR)
|
|
return 0;
|
|
if (timers.wPeriodMin == 0)
|
|
return 0;
|
|
if (timeBeginPeriod (timers.wPeriodMin) != TIMERR_NOERROR)
|
|
return 0;
|
|
atexit (sim_timer_exit);
|
|
/* return measured actual minimum sleep time */
|
|
return _compute_minimum_sleep ();
|
|
}
|
|
|
|
uint32 sim_os_ms_sleep (unsigned int msec)
|
|
{
|
|
uint32 stime = sim_os_msec();
|
|
|
|
Sleep (msec);
|
|
return sim_os_msec () - stime;
|
|
}
|
|
|
|
#if defined(NEED_CLOCK_GETTIME)
|
|
int clock_gettime(int clk_id, struct timespec *tp)
|
|
{
|
|
t_uint64 now, unixbase;
|
|
|
|
if (clk_id != CLOCK_REALTIME)
|
|
return -1;
|
|
unixbase = 116444736;
|
|
unixbase *= 1000000000;
|
|
GetSystemTimeAsFileTime((FILETIME*)&now);
|
|
now -= unixbase;
|
|
tp->tv_sec = (long)(now/10000000);
|
|
tp->tv_nsec = (now%10000000)*100;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#elif defined (__OS2__)
|
|
|
|
/* OS/2 routines, from Bruce Ray */
|
|
|
|
const t_bool rtc_avail = FALSE;
|
|
|
|
uint32 sim_os_msec (void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void sim_os_sleep (unsigned int sec)
|
|
{
|
|
return;
|
|
}
|
|
|
|
uint32 sim_os_ms_sleep_init (void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
uint32 sim_os_ms_sleep (unsigned int msec)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/* Metrowerks CodeWarrior Macintosh routines, from Ben Supnik */
|
|
|
|
#elif defined (__MWERKS__) && defined (macintosh)
|
|
|
|
#include <Timer.h>
|
|
#include <Mactypes.h>
|
|
#include <sioux.h>
|
|
#include <unistd.h>
|
|
#include <siouxglobals.h>
|
|
#define NANOS_PER_MILLI 1000000
|
|
#define MILLIS_PER_SEC 1000
|
|
|
|
const t_bool rtc_avail = TRUE;
|
|
|
|
uint32 sim_os_msec (void)
|
|
{
|
|
unsigned long long micros;
|
|
UnsignedWide macMicros;
|
|
unsigned long millis;
|
|
|
|
Microseconds (&macMicros);
|
|
micros = *((unsigned long long *) &macMicros);
|
|
millis = micros / 1000LL;
|
|
return (uint32) millis;
|
|
}
|
|
|
|
void sim_os_sleep (unsigned int sec)
|
|
{
|
|
sleep (sec);
|
|
return;
|
|
}
|
|
|
|
uint32 sim_os_ms_sleep_init (void)
|
|
{
|
|
return _compute_minimum_sleep ();
|
|
}
|
|
|
|
uint32 sim_os_ms_sleep (unsigned int milliseconds)
|
|
{
|
|
uint32 stime = sim_os_msec ();
|
|
struct timespec treq;
|
|
|
|
treq.tv_sec = milliseconds / MILLIS_PER_SEC;
|
|
treq.tv_nsec = (milliseconds % MILLIS_PER_SEC) * NANOS_PER_MILLI;
|
|
(void) nanosleep (&treq, NULL);
|
|
return sim_os_msec () - stime;
|
|
}
|
|
|
|
#if defined(NEED_CLOCK_GETTIME)
|
|
int clock_gettime(int clk_id, struct timespec *tp)
|
|
{
|
|
struct timeval cur;
|
|
|
|
if (clk_id != CLOCK_REALTIME)
|
|
return -1;
|
|
gettimeofday (&cur, NULL);
|
|
tp->tv_sec = cur.tv_sec;
|
|
tp->tv_nsec = cur.tv_usec*1000;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#else
|
|
|
|
/* UNIX routines */
|
|
|
|
#include <time.h>
|
|
#include <sys/time.h>
|
|
#include <unistd.h>
|
|
#define NANOS_PER_MILLI 1000000
|
|
#define MILLIS_PER_SEC 1000
|
|
|
|
const t_bool rtc_avail = TRUE;
|
|
|
|
uint32 sim_os_msec (void)
|
|
{
|
|
struct timeval cur;
|
|
struct timezone foo;
|
|
uint32 msec;
|
|
|
|
gettimeofday (&cur, &foo);
|
|
msec = (((uint32) cur.tv_sec) * 1000) + (((uint32) cur.tv_usec) / 1000);
|
|
return msec;
|
|
}
|
|
|
|
void sim_os_sleep (unsigned int sec)
|
|
{
|
|
sleep (sec);
|
|
return;
|
|
}
|
|
|
|
uint32 sim_os_ms_sleep_init (void)
|
|
{
|
|
return _compute_minimum_sleep ();
|
|
}
|
|
|
|
#if !defined(_POSIX_SOURCE)
|
|
#ifdef NEED_CLOCK_GETTIME
|
|
typedef int clockid_t;
|
|
int clock_gettime(clockid_t clk_id, struct timespec *tp)
|
|
{
|
|
struct timeval cur;
|
|
struct timezone foo;
|
|
|
|
if (clk_id != CLOCK_REALTIME)
|
|
return -1;
|
|
gettimeofday (&cur, &foo);
|
|
tp->tv_sec = cur.tv_sec;
|
|
tp->tv_nsec = cur.tv_usec*1000;
|
|
return 0;
|
|
}
|
|
#endif /* CLOCK_REALTIME */
|
|
#endif /* !defined(_POSIX_SOURCE) && defined(SIM_ASYNCH_IO) */
|
|
|
|
uint32 sim_os_ms_sleep (unsigned int milliseconds)
|
|
{
|
|
uint32 stime = sim_os_msec ();
|
|
struct timespec treq;
|
|
|
|
treq.tv_sec = milliseconds / MILLIS_PER_SEC;
|
|
treq.tv_nsec = (milliseconds % MILLIS_PER_SEC) * NANOS_PER_MILLI;
|
|
(void) nanosleep (&treq, NULL);
|
|
return sim_os_msec () - stime;
|
|
}
|
|
|
|
#if defined(NEED_THREAD_PRIORITY)
|
|
#undef NEED_THREAD_PRIORITY
|
|
#include <sys/time.h>
|
|
#include <sys/resource.h>
|
|
|
|
t_stat sim_os_set_thread_priority (int below_normal_above)
|
|
{
|
|
if ((below_normal_above < -1) || (below_normal_above > 1))
|
|
return SCPE_ARG;
|
|
|
|
errno = 0;
|
|
switch (below_normal_above) {
|
|
case PRIORITY_BELOW_NORMAL:
|
|
if ((getpriority (PRIO_PROCESS, 0) <= 0) && /* at or above normal pri? */
|
|
(errno == 0))
|
|
setpriority (PRIO_PROCESS, 0, 10);
|
|
break;
|
|
case PRIORITY_NORMAL:
|
|
if (getpriority (PRIO_PROCESS, 0) != 0) /* at or above normal pri? */
|
|
setpriority (PRIO_PROCESS, 0, 0);
|
|
break;
|
|
case PRIORITY_ABOVE_NORMAL:
|
|
if ((getpriority (PRIO_PROCESS, 0) <= 0) && /* at or above normal pri? */
|
|
(errno == 0))
|
|
setpriority (PRIO_PROCESS, 0, -10);
|
|
break;
|
|
}
|
|
return SCPE_OK;
|
|
}
|
|
#endif /* defined(NEED_THREAD_PRIORITY) */
|
|
|
|
#endif
|
|
|
|
/* If one hasn't been provided yet, then just stub it */
|
|
#if defined(NEED_THREAD_PRIORITY)
|
|
t_stat sim_os_set_thread_priority (int below_normal_above)
|
|
{
|
|
return SCPE_OK;
|
|
}
|
|
#endif
|
|
|
|
#if defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1)
|
|
/* Make sure to use the substitute routines */
|
|
#undef sim_idle_ms_sleep
|
|
#undef sim_os_msec
|
|
#undef sim_os_ms_sleep
|
|
#endif /* defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) */
|
|
|
|
/* diff = min - sub */
|
|
void
|
|
sim_timespec_diff (struct timespec *diff, struct timespec *min, struct timespec *sub)
|
|
{
|
|
/* move the minuend value to the difference and operate there. */
|
|
*diff = *min;
|
|
/* Borrow as needed for the nsec value */
|
|
while (sub->tv_nsec > diff->tv_nsec) {
|
|
--diff->tv_sec;
|
|
diff->tv_nsec += 1000000000;
|
|
}
|
|
diff->tv_nsec -= sub->tv_nsec;
|
|
diff->tv_sec -= sub->tv_sec;
|
|
/* Normalize the result */
|
|
while (diff->tv_nsec > 1000000000) {
|
|
++diff->tv_sec;
|
|
diff->tv_nsec -= 1000000000;
|
|
}
|
|
}
|
|
|
|
/* Forward declarations */
|
|
|
|
static double _timespec_to_double (struct timespec *time);
|
|
static void _double_to_timespec (struct timespec *time, double dtime);
|
|
static t_bool _rtcn_tick_catchup_check (int32 tmr, int32 time);
|
|
static void _rtcn_configure_calibrated_clock (int32 newtmr);
|
|
static void _sim_coschedule_cancel(UNIT *uptr);
|
|
static void _sim_wallclock_cancel (UNIT *uptr);
|
|
static t_bool _sim_wallclock_is_active (UNIT *uptr);
|
|
t_stat sim_timer_show_idle_mode (FILE* st, UNIT* uptr, int32 val, CONST void * desc);
|
|
|
|
|
|
#if defined(SIM_ASYNCH_CLOCKS)
|
|
static int sim_timespec_compare (struct timespec *a, struct timespec *b)
|
|
{
|
|
while (a->tv_nsec > 1000000000) {
|
|
a->tv_nsec -= 1000000000;
|
|
++a->tv_sec;
|
|
}
|
|
while (b->tv_nsec > 1000000000) {
|
|
b->tv_nsec -= 1000000000;
|
|
++b->tv_sec;
|
|
}
|
|
if (a->tv_sec < b->tv_sec)
|
|
return -1;
|
|
if (a->tv_sec > b->tv_sec)
|
|
return 1;
|
|
if (a->tv_nsec < b->tv_nsec)
|
|
return -1;
|
|
if (a->tv_nsec > b->tv_nsec)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
#endif /* defined(SIM_ASYNCH_CLOCKS) */
|
|
|
|
/* OS independent clock calibration package */
|
|
|
|
static int32 rtc_ticks[SIM_NTIMERS+1] = { 0 }; /* ticks */
|
|
static uint32 rtc_hz[SIM_NTIMERS+1] = { 0 }; /* tick rate */
|
|
static uint32 rtc_rtime[SIM_NTIMERS+1] = { 0 }; /* real time */
|
|
static uint32 rtc_vtime[SIM_NTIMERS+1] = { 0 }; /* virtual time */
|
|
static double rtc_gtime[SIM_NTIMERS+1] = { 0 }; /* instruction time */
|
|
static uint32 rtc_nxintv[SIM_NTIMERS+1] = { 0 }; /* next interval */
|
|
static int32 rtc_based[SIM_NTIMERS+1] = { 0 }; /* base delay */
|
|
static int32 rtc_currd[SIM_NTIMERS+1] = { 0 }; /* current delay */
|
|
static int32 rtc_initd[SIM_NTIMERS+1] = { 0 }; /* initial delay */
|
|
static uint32 rtc_elapsed[SIM_NTIMERS+1] = { 0 }; /* sec since init */
|
|
static uint32 rtc_calibrations[SIM_NTIMERS+1] = { 0 }; /* calibration count */
|
|
static double rtc_clock_skew_max[SIM_NTIMERS+1] = { 0 }; /* asynchronous max skew */
|
|
static double rtc_clock_start_gtime[SIM_NTIMERS+1] = { 0 };/* reference instruction time for clock */
|
|
static double rtc_clock_tick_size[SIM_NTIMERS+1] = { 0 }; /* 1/hz */
|
|
static uint32 rtc_calib_initializations[SIM_NTIMERS+1] = { 0 };/* Initialization Count */
|
|
static double rtc_calib_tick_time[SIM_NTIMERS+1] = { 0 }; /* ticks time */
|
|
static double rtc_calib_tick_time_tot[SIM_NTIMERS+1] = { 0 };/* ticks time - total*/
|
|
static uint32 rtc_calib_ticks_acked[SIM_NTIMERS+1] = { 0 };/* ticks Acked */
|
|
static uint32 rtc_calib_ticks_acked_tot[SIM_NTIMERS+1] = { 0 };/* ticks Acked - total */
|
|
static uint32 rtc_clock_ticks[SIM_NTIMERS+1] = { 0 };/* ticks delivered since catchup base */
|
|
static uint32 rtc_clock_ticks_tot[SIM_NTIMERS+1] = { 0 };/* ticks delivered since catchup base - total */
|
|
static double rtc_clock_catchup_base_time[SIM_NTIMERS+1] = { 0 };/* reference time for catchup ticks */
|
|
static uint32 rtc_clock_catchup_ticks[SIM_NTIMERS+1] = { 0 };/* Record of catchups */
|
|
static uint32 rtc_clock_catchup_ticks_tot[SIM_NTIMERS+1] = { 0 };/* Record of catchups - total */
|
|
static t_bool rtc_clock_catchup_pending[SIM_NTIMERS+1] = { 0 };/* clock tick catchup pending */
|
|
static t_bool rtc_clock_catchup_eligible[SIM_NTIMERS+1] = { 0 };/* clock tick catchup eligible */
|
|
static uint32 rtc_clock_time_idled[SIM_NTIMERS+1] = { 0 };/* total time idled */
|
|
static uint32 rtc_clock_time_idled_last[SIM_NTIMERS+1] = { 0 };/* total time idled */
|
|
static uint32 rtc_clock_calib_skip_idle[SIM_NTIMERS+1] = { 0 };/* Calibrations skipped due to idling */
|
|
static uint32 rtc_clock_calib_gap2big[SIM_NTIMERS+1] = { 0 };/* Calibrations skipped Gap Too Big */
|
|
static uint32 rtc_clock_calib_backwards[SIM_NTIMERS+1] = { 0 };/* Calibrations skipped Clock Running Backwards */
|
|
|
|
UNIT sim_timer_units[SIM_NTIMERS+1]; /* one for each timer and one for an */
|
|
/* internal clock if no clocks are registered */
|
|
UNIT sim_internal_timer_unit; /* Internal calibration timer */
|
|
UNIT sim_throttle_unit; /* one for throttle */
|
|
|
|
t_stat sim_throt_svc (UNIT *uptr);
|
|
t_stat sim_timer_tick_svc (UNIT *uptr);
|
|
|
|
#define DBG_IDL TIMER_DBG_IDLE /* idling */
|
|
#define DBG_QUE TIMER_DBG_QUEUE /* queue activities */
|
|
#define DBG_MUX TIMER_DBG_MUX /* tmxr queue activities */
|
|
#define DBG_TRC 0x008 /* tracing */
|
|
#define DBG_CAL 0x010 /* calibration activities */
|
|
#define DBG_TIM 0x020 /* timer thread activities */
|
|
#define DBG_THR 0x040 /* throttle activities */
|
|
#define DBG_ACK 0x080 /* interrupt acknowledgement activities */
|
|
DEBTAB sim_timer_debug[] = {
|
|
{"TRACE", DBG_TRC, "Trace routine calls"},
|
|
{"IDLE", DBG_IDL, "Idling activities"},
|
|
{"QUEUE", DBG_QUE, "Event queuing activities"},
|
|
{"IACK", DBG_ACK, "interrupt acknowledgement activities"},
|
|
{"CALIB", DBG_CAL, "Calibration activities"},
|
|
{"TIME", DBG_TIM, "Activation and scheduling activities"},
|
|
{"THROT", DBG_THR, "Throttling activities"},
|
|
{"MUX", DBG_MUX, "Tmxr scheduling activities"},
|
|
{0}
|
|
};
|
|
|
|
/* Forward device declarations */
|
|
extern DEVICE sim_timer_dev;
|
|
extern DEVICE sim_throttle_dev;
|
|
|
|
|
|
void sim_rtcn_init_all (void)
|
|
{
|
|
int32 tmr;
|
|
|
|
for (tmr = 0; tmr <= SIM_NTIMERS; tmr++)
|
|
if (rtc_initd[tmr] != 0)
|
|
sim_rtcn_init (rtc_initd[tmr], tmr);
|
|
return;
|
|
}
|
|
|
|
int32 sim_rtcn_init (int32 time, int32 tmr)
|
|
{
|
|
return sim_rtcn_init_unit (NULL, time, tmr);
|
|
}
|
|
|
|
int32 sim_rtcn_init_unit (UNIT *uptr, int32 time, int32 tmr)
|
|
{
|
|
if (time == 0)
|
|
time = 1;
|
|
if (tmr == SIM_INTERNAL_CLK)
|
|
tmr = SIM_NTIMERS;
|
|
else {
|
|
if ((tmr < 0) || (tmr >= SIM_NTIMERS))
|
|
return time;
|
|
}
|
|
/*
|
|
* If we'd previously succeeded in calibrating a tick value, then use that
|
|
* delay as a better default to setup when we're re-initialized.
|
|
* Re-initializing happens on any boot or after any breakpoint/continue.
|
|
*/
|
|
if (rtc_currd[tmr])
|
|
time = rtc_currd[tmr];
|
|
if (!uptr)
|
|
uptr = sim_clock_unit[tmr];
|
|
sim_debug (DBG_CAL, &sim_timer_dev, "_sim_rtcn_init_unit(unit=%s, time=%d, tmr=%d)\n", sim_uname(uptr), time, tmr);
|
|
if (uptr) {
|
|
if (!sim_clock_unit[tmr])
|
|
sim_register_clock_unit_tmr (uptr, tmr);
|
|
}
|
|
rtc_clock_start_gtime[tmr] = sim_gtime();
|
|
rtc_rtime[tmr] = sim_os_msec ();
|
|
rtc_vtime[tmr] = rtc_rtime[tmr];
|
|
rtc_nxintv[tmr] = 1000;
|
|
rtc_ticks[tmr] = 0;
|
|
rtc_hz[tmr] = 0;
|
|
rtc_based[tmr] = time;
|
|
rtc_currd[tmr] = time;
|
|
rtc_initd[tmr] = time;
|
|
rtc_elapsed[tmr] = 0;
|
|
rtc_calibrations[tmr] = 0;
|
|
rtc_clock_ticks_tot[tmr] += rtc_clock_ticks[tmr];
|
|
rtc_clock_ticks[tmr] = 0;
|
|
rtc_calib_tick_time_tot[tmr] += rtc_calib_tick_time[tmr];
|
|
rtc_calib_tick_time[tmr] = 0;
|
|
rtc_clock_catchup_pending[tmr] = FALSE;
|
|
rtc_clock_catchup_eligible[tmr] = FALSE;
|
|
rtc_clock_catchup_ticks_tot[tmr] += rtc_clock_catchup_ticks[tmr];
|
|
rtc_clock_catchup_ticks[tmr] = 0;
|
|
rtc_calib_ticks_acked_tot[tmr] += rtc_calib_ticks_acked[tmr];
|
|
rtc_calib_ticks_acked[tmr] = 0;
|
|
++rtc_calib_initializations[tmr];
|
|
_rtcn_configure_calibrated_clock (tmr);
|
|
return time;
|
|
}
|
|
|
|
int32 sim_rtcn_calb (int32 ticksper, int32 tmr)
|
|
{
|
|
uint32 new_rtime, delta_rtime, last_idle_pct;
|
|
int32 delta_vtime;
|
|
double new_gtime;
|
|
int32 new_currd;
|
|
|
|
if (tmr == SIM_INTERNAL_CLK)
|
|
tmr = SIM_NTIMERS;
|
|
else {
|
|
if ((tmr < 0) || (tmr >= SIM_NTIMERS))
|
|
return 10000;
|
|
}
|
|
if (rtc_hz[tmr] != ticksper) { /* changing tick rate? */
|
|
rtc_hz[tmr] = ticksper;
|
|
rtc_clock_tick_size[tmr] = 1.0/ticksper;
|
|
_rtcn_configure_calibrated_clock (tmr);
|
|
rtc_currd[tmr] = (int32)(sim_timer_inst_per_sec()/ticksper);
|
|
}
|
|
if (sim_clock_unit[tmr] == NULL) { /* Not using TIMER units? */
|
|
rtc_clock_ticks[tmr] += 1;
|
|
rtc_calib_tick_time[tmr] += rtc_clock_tick_size[tmr];
|
|
}
|
|
if (rtc_clock_catchup_pending[tmr]) { /* catchup tick? */
|
|
++rtc_clock_catchup_ticks[tmr]; /* accumulating which were catchups */
|
|
rtc_clock_catchup_pending[tmr] = FALSE;
|
|
}
|
|
rtc_ticks[tmr] = rtc_ticks[tmr] + 1; /* count ticks */
|
|
if (rtc_ticks[tmr] < ticksper) /* 1 sec yet? */
|
|
return rtc_currd[tmr];
|
|
rtc_ticks[tmr] = 0; /* reset ticks */
|
|
rtc_elapsed[tmr] = rtc_elapsed[tmr] + 1; /* count sec */
|
|
if (sim_throt_type != SIM_THROT_NONE) {
|
|
rtc_gtime[tmr] = sim_gtime(); /* save instruction time */
|
|
rtc_currd[tmr] = (int32)(sim_throt_cps / ticksper); /* use throttle calibration */
|
|
++rtc_calibrations[tmr]; /* count calibrations */
|
|
sim_debug (DBG_CAL, &sim_timer_dev, "using throttle calibrated value - result: %d\n", rtc_currd[tmr]);
|
|
return rtc_currd[tmr];
|
|
}
|
|
if (!rtc_avail) /* no timer? */
|
|
return rtc_currd[tmr];
|
|
if (sim_calb_tmr != tmr) {
|
|
rtc_currd[tmr] = (int32)(sim_timer_inst_per_sec()/ticksper);
|
|
sim_debug (DBG_CAL, &sim_timer_dev, "calibrated calibrated tmr=%d against system tmr=%d, tickper=%d (result: %d)\n", tmr, sim_calb_tmr, ticksper, rtc_currd[tmr]);
|
|
return rtc_currd[tmr];
|
|
}
|
|
new_rtime = sim_os_msec (); /* wall time */
|
|
++rtc_calibrations[tmr]; /* count calibrations */
|
|
sim_debug (DBG_TRC, &sim_timer_dev, "sim_rtcn_calb(ticksper=%d, tmr=%d)\n", ticksper, tmr);
|
|
if (new_rtime < rtc_rtime[tmr]) { /* time running backwards? */
|
|
/* This happens when the value returned by sim_os_msec wraps (as an uint32) */
|
|
/* Wrapping will happen initially sometime before a simulator has been running */
|
|
/* for 49 days approximately every 49 days thereafter. */
|
|
++rtc_clock_calib_backwards[tmr]; /* Count statistic */
|
|
sim_debug (DBG_CAL, &sim_timer_dev, "time running backwards - OldTime: %u, NewTime: %u, result: %d\n", rtc_rtime[tmr], new_rtime, rtc_currd[tmr]);
|
|
rtc_rtime[tmr] = new_rtime; /* reset wall time */
|
|
return rtc_currd[tmr]; /* can't calibrate */
|
|
}
|
|
delta_rtime = new_rtime - rtc_rtime[tmr]; /* elapsed wtime */
|
|
rtc_rtime[tmr] = new_rtime; /* adv wall time */
|
|
rtc_vtime[tmr] = rtc_vtime[tmr] + 1000; /* adv sim time */
|
|
if (delta_rtime > 30000) { /* gap too big? */
|
|
/* This simulator process has somehow been suspended for a significant */
|
|
/* amount of time. This will certainly happen if the host system has */
|
|
/* slept or hibernated. It also might happen when a simulator */
|
|
/* developer stops the simulator at a breakpoint (a process, not simh */
|
|
/* breakpoint). To accomodate this, we set the calibration state to */
|
|
/* ignore what happened and proceed from here. */
|
|
++rtc_clock_calib_gap2big[tmr]; /* Count statistic */
|
|
rtc_vtime[tmr] = rtc_rtime[tmr]; /* sync virtual and real time */
|
|
rtc_nxintv[tmr] = 1000; /* reset next interval */
|
|
rtc_gtime[tmr] = sim_gtime(); /* save instruction time */
|
|
sim_debug (DBG_CAL, &sim_timer_dev, "gap too big: delta = %d - result: %d\n", delta_rtime, rtc_currd[tmr]);
|
|
return rtc_currd[tmr]; /* can't calibr */
|
|
}
|
|
if (delta_rtime == 0) /* avoid divide by zero */
|
|
last_idle_pct = 0; /* force calibration */
|
|
else
|
|
last_idle_pct = MIN(100, (uint32)(100.0 * (((double)(rtc_clock_time_idled[tmr] - rtc_clock_time_idled_last[tmr])) / ((double)delta_rtime))));
|
|
rtc_clock_time_idled_last[tmr] = rtc_clock_time_idled[tmr];
|
|
if (last_idle_pct > (100 - sim_idle_calib_pct)) {
|
|
rtc_rtime[tmr] = new_rtime; /* save wall time */
|
|
rtc_vtime[tmr] = rtc_vtime[tmr] + 1000; /* adv sim time */
|
|
rtc_gtime[tmr] = sim_gtime(); /* save instruction time */
|
|
++rtc_clock_calib_skip_idle[tmr];
|
|
sim_debug (DBG_CAL, &sim_timer_dev, "skipping calibration due to idling (%d%%) - result: %d\n", last_idle_pct, rtc_currd[tmr]);
|
|
return rtc_currd[tmr]; /* avoid calibrating idle checks */
|
|
}
|
|
new_gtime = sim_gtime();
|
|
if (sim_asynch_timer) {
|
|
/* An asynchronous clock, merely needs to divide the number of */
|
|
/* instructions actually executed by the clock rate. */
|
|
new_currd = (int32)((new_gtime - rtc_gtime[tmr])/ticksper);
|
|
/* avoid excessive swings in the calibrated result */
|
|
if (new_currd > 10*rtc_currd[tmr]) /* don't swing big too fast */
|
|
new_currd = 10*rtc_currd[tmr];
|
|
else
|
|
if (new_currd < rtc_currd[tmr]/10) /* don't swing small too fast */
|
|
new_currd = rtc_currd[tmr]/10;
|
|
rtc_currd[tmr] = new_currd;
|
|
rtc_gtime[tmr] = new_gtime; /* save instruction time */
|
|
sim_debug (DBG_CAL, &sim_timer_dev, "asynch calibration result: %d\n", rtc_currd[tmr]);
|
|
return rtc_currd[tmr]; /* calibrated result */
|
|
}
|
|
rtc_gtime[tmr] = new_gtime; /* save instruction time */
|
|
/* This self regulating algorithm depends directly on the assumption */
|
|
/* that this routine is called back after processing the number of */
|
|
/* instructions which was returned the last time it was called. */
|
|
if (delta_rtime == 0) /* gap too small? */
|
|
rtc_based[tmr] = rtc_based[tmr] * ticksper; /* slew wide */
|
|
else rtc_based[tmr] = (int32) (((double) rtc_based[tmr] * (double) rtc_nxintv[tmr]) /
|
|
((double) delta_rtime)); /* new base rate */
|
|
delta_vtime = rtc_vtime[tmr] - rtc_rtime[tmr]; /* gap */
|
|
if (delta_vtime > SIM_TMAX) /* limit gap */
|
|
delta_vtime = SIM_TMAX;
|
|
else if (delta_vtime < -SIM_TMAX)
|
|
delta_vtime = -SIM_TMAX;
|
|
rtc_nxintv[tmr] = 1000 + delta_vtime; /* next wtime */
|
|
rtc_currd[tmr] = (int32) (((double) rtc_based[tmr] * (double) rtc_nxintv[tmr]) /
|
|
1000.0); /* next delay */
|
|
if (rtc_based[tmr] <= 0) /* never negative or zero! */
|
|
rtc_based[tmr] = 1;
|
|
if (rtc_currd[tmr] <= 0) /* never negative or zero! */
|
|
rtc_currd[tmr] = 1;
|
|
sim_debug (DBG_CAL, &sim_timer_dev, "calibrated tmr=%d, tickper=%d (base=%d, nxintv=%u, result: %d)\n", tmr, ticksper, rtc_based[tmr], rtc_nxintv[tmr], rtc_currd[tmr]);
|
|
AIO_SET_INTERRUPT_LATENCY(rtc_currd[tmr]*ticksper); /* set interrrupt latency */
|
|
return rtc_currd[tmr];
|
|
}
|
|
|
|
/* Prior interfaces - default to timer 0 */
|
|
|
|
int32 sim_rtc_init (int32 time)
|
|
{
|
|
return sim_rtcn_init (time, 0);
|
|
}
|
|
|
|
int32 sim_rtc_calb (int32 ticksper)
|
|
{
|
|
return sim_rtcn_calb (ticksper, 0);
|
|
}
|
|
|
|
/* sim_timer_init - get minimum sleep time available on this host */
|
|
|
|
t_bool sim_timer_init (void)
|
|
{
|
|
int tmr;
|
|
uint32 clock_start, clock_last, clock_now;
|
|
|
|
sim_debug (DBG_TRC, &sim_timer_dev, "sim_timer_init()\n");
|
|
for (tmr=0; tmr<=SIM_NTIMERS; tmr++) {
|
|
sim_timer_units[tmr].action = &sim_timer_tick_svc;
|
|
sim_timer_units[tmr].flags = UNIT_DIS | UNIT_IDLE;
|
|
}
|
|
SIM_INTERNAL_UNIT.flags = UNIT_DIS | UNIT_IDLE;
|
|
sim_register_internal_device (&sim_timer_dev);
|
|
sim_throttle_unit.action = &sim_throt_svc;
|
|
sim_throttle_unit.flags = UNIT_DIS;
|
|
sim_register_internal_device (&sim_throttle_dev);
|
|
sim_register_clock_unit_tmr (&SIM_INTERNAL_UNIT, SIM_INTERNAL_CLK);
|
|
sim_idle_enab = FALSE; /* init idle off */
|
|
sim_idle_rate_ms = sim_os_ms_sleep_init (); /* get OS timer rate */
|
|
|
|
clock_last = clock_start = sim_os_msec ();
|
|
sim_os_clock_resoluton_ms = 1000;
|
|
do {
|
|
uint32 clock_diff;
|
|
|
|
clock_now = sim_os_msec ();
|
|
clock_diff = clock_now - clock_last;
|
|
if ((clock_diff > 0) && (clock_diff < sim_os_clock_resoluton_ms))
|
|
sim_os_clock_resoluton_ms = clock_diff;
|
|
clock_last = clock_now;
|
|
} while (clock_now < clock_start + 100);
|
|
sim_os_tick_hz = 1000/(sim_os_clock_resoluton_ms * (sim_idle_rate_ms/sim_os_clock_resoluton_ms));
|
|
return (sim_idle_rate_ms != 0);
|
|
}
|
|
|
|
/* sim_timer_idle_capable - tell if the host is Idle capable and what the host OS tick size is */
|
|
|
|
t_bool sim_timer_idle_capable (uint32 *host_ms_sleep_1, uint32 *host_tick_ms)
|
|
{
|
|
if (host_tick_ms)
|
|
*host_tick_ms = sim_os_clock_resoluton_ms;
|
|
if (host_ms_sleep_1)
|
|
*host_ms_sleep_1 = sim_os_sleep_min_ms;
|
|
return (sim_idle_rate_ms != 0);
|
|
}
|
|
|
|
/* sim_show_timers - show running timer information */
|
|
t_stat sim_show_timers (FILE* st, DEVICE *dptr, UNIT* uptr, int32 val, CONST char* desc)
|
|
{
|
|
int tmr, clocks;
|
|
struct timespec now;
|
|
time_t time_t_now;
|
|
int32 calb_tmr = (sim_calb_tmr == -1) ? sim_calb_tmr_last : sim_calb_tmr;
|
|
double inst_per_sec = (sim_calb_tmr == -1) ? sim_inst_per_sec_last : sim_timer_inst_per_sec ();
|
|
|
|
fprintf (st, "Minimum Host Sleep Time: %d ms (%dHz)\n", sim_os_sleep_min_ms, sim_os_tick_hz);
|
|
if (sim_os_sleep_min_ms != sim_os_sleep_inc_ms)
|
|
fprintf (st, "Minimum Host Sleep Incr Time: %d ms\n", sim_os_sleep_inc_ms);
|
|
fprintf (st, "Host Clock Resolution: %d ms\n", sim_os_clock_resoluton_ms);
|
|
fprintf (st, "Execution Rate: %.0f instructions/sec\n", inst_per_sec);
|
|
if (sim_idle_enab) {
|
|
fprintf (st, "Idling: Enabled\n");
|
|
fprintf (st, "Time before Idling starts: %d seconds\n", sim_idle_stable);
|
|
}
|
|
if (sim_throt_type != SIM_THROT_NONE) {
|
|
sim_show_throt (st, NULL, uptr, val, desc);
|
|
}
|
|
fprintf (st, "Calibrated Timer: %s\n", (calb_tmr == -1) ? "Undetermined" :
|
|
((calb_tmr == SIM_NTIMERS) ? "Internal Timer" :
|
|
(sim_clock_unit[calb_tmr] ? sim_uname(sim_clock_unit[calb_tmr]) : "")));
|
|
if (calb_tmr == SIM_NTIMERS)
|
|
fprintf (st, "Catchup Ticks: %s for clocks ticking faster than %d Hz\n", sim_catchup_ticks ? "Enabled" : "Disabled", sim_os_tick_hz);
|
|
if (sim_idle_calib_pct == 0)
|
|
fprintf (st, "Calibration: Always\n");
|
|
else
|
|
fprintf (st, "Calibration: Skipped when Idle exceeds %d%%\n", sim_idle_calib_pct);
|
|
fprintf (st, "\n");
|
|
for (tmr=clocks=0; tmr<=SIM_NTIMERS; ++tmr) {
|
|
if (0 == rtc_initd[tmr])
|
|
continue;
|
|
|
|
if (sim_clock_unit[tmr]) {
|
|
++clocks;
|
|
fprintf (st, "%s clock device is %s%s%s\n", sim_name,
|
|
(tmr == SIM_NTIMERS) ? "Internal Calibrated Timer(" : "",
|
|
sim_uname(sim_clock_unit[tmr]),
|
|
(tmr == SIM_NTIMERS) ? ")" : "");
|
|
}
|
|
|
|
fprintf (st, "%s%sTimer %d:\n", sim_asynch_timer ? "Asynchronous " : "", rtc_hz[tmr] ? "Calibrated " : "Uncalibrated ", tmr);
|
|
if (rtc_hz[tmr]) {
|
|
fprintf (st, " Running at: %d Hz\n", rtc_hz[tmr]);
|
|
fprintf (st, " Tick Size: %s\n", sim_fmt_secs (rtc_clock_tick_size[tmr]));
|
|
fprintf (st, " Ticks in current second: %d\n", rtc_ticks[tmr]);
|
|
}
|
|
fprintf (st, " Seconds Running: %u (%s)\n", rtc_elapsed[tmr], sim_fmt_secs ((double)rtc_elapsed[tmr]));
|
|
if (tmr == calb_tmr) {
|
|
fprintf (st, " Calibration Opportunities: %u\n", rtc_calibrations[tmr]);
|
|
if (sim_idle_calib_pct)
|
|
fprintf (st, " Calib Skip Idle Thresh %%: %u\n", sim_idle_calib_pct);
|
|
if (rtc_clock_calib_skip_idle[tmr])
|
|
fprintf (st, " Calibs Skip While Idle: %u\n", rtc_clock_calib_skip_idle[tmr]);
|
|
if (rtc_clock_calib_backwards[tmr])
|
|
fprintf (st, " Calibs Skip Backwards: %u\n", rtc_clock_calib_backwards[tmr]);
|
|
if (rtc_clock_calib_gap2big[tmr])
|
|
fprintf (st, " Calibs Skip Gap Too Big: %u\n", rtc_clock_calib_gap2big[tmr]);
|
|
}
|
|
if (rtc_gtime[tmr])
|
|
fprintf (st, " Instruction Time: %.0f\n", rtc_gtime[tmr]);
|
|
if ((!sim_asynch_timer) && (sim_throt_type == SIM_THROT_NONE)) {
|
|
fprintf (st, " Real Time: %u\n", rtc_rtime[tmr]);
|
|
fprintf (st, " Virtual Time: %u\n", rtc_vtime[tmr]);
|
|
fprintf (st, " Next Interval: %u\n", rtc_nxintv[tmr]);
|
|
fprintf (st, " Base Tick Delay: %d\n", rtc_based[tmr]);
|
|
fprintf (st, " Initial Insts Per Tick: %d\n", rtc_initd[tmr]);
|
|
}
|
|
fprintf (st, " Current Insts Per Tick: %d\n", rtc_currd[tmr]);
|
|
fprintf (st, " Initializations: %d\n", rtc_calib_initializations[tmr]);
|
|
fprintf (st, " Total Ticks: %u\n", rtc_clock_ticks_tot[tmr]+rtc_clock_ticks[tmr]);
|
|
if (rtc_clock_skew_max[tmr] != 0.0)
|
|
fprintf (st, " Peak Clock Skew: %s%s\n", sim_fmt_secs (fabs(rtc_clock_skew_max[tmr])), (rtc_clock_skew_max[tmr] < 0) ? " fast" : " slow");
|
|
if (rtc_calib_ticks_acked[tmr])
|
|
fprintf (st, " Ticks Acked: %u\n", rtc_calib_ticks_acked[tmr]);
|
|
if (rtc_calib_ticks_acked_tot[tmr]+rtc_calib_ticks_acked[tmr] != rtc_calib_ticks_acked[tmr])
|
|
fprintf (st, " Total Ticks Acked: %u\n", rtc_calib_ticks_acked_tot[tmr]+rtc_calib_ticks_acked[tmr]);
|
|
if (rtc_calib_tick_time[tmr])
|
|
fprintf (st, " Tick Time: %s\n", sim_fmt_secs (rtc_calib_tick_time[tmr]));
|
|
if (rtc_calib_tick_time_tot[tmr]+rtc_calib_tick_time[tmr] != rtc_calib_tick_time[tmr])
|
|
fprintf (st, " Total Tick Time: %s\n", sim_fmt_secs (rtc_calib_tick_time_tot[tmr]+rtc_calib_tick_time[tmr]));
|
|
if (rtc_clock_catchup_ticks[tmr])
|
|
fprintf (st, " Catchup Ticks Sched: %u\n", rtc_clock_catchup_ticks[tmr]);
|
|
if (rtc_clock_catchup_ticks_tot[tmr]+rtc_clock_catchup_ticks[tmr] != rtc_clock_catchup_ticks[tmr])
|
|
fprintf (st, " Total Catchup Ticks Sched: %u\n", rtc_clock_catchup_ticks_tot[tmr]+rtc_clock_catchup_ticks[tmr]);
|
|
clock_gettime (CLOCK_REALTIME, &now);
|
|
time_t_now = (time_t)now.tv_sec;
|
|
fprintf (st, " Wall Clock Time Now: %8.8s.%03d\n", 11+ctime(&time_t_now), (int)(now.tv_nsec/1000000));
|
|
if (rtc_clock_catchup_eligible[tmr]) {
|
|
_double_to_timespec (&now, rtc_clock_catchup_base_time[tmr]+rtc_calib_tick_time[tmr]);
|
|
time_t_now = (time_t)now.tv_sec;
|
|
fprintf (st, " Catchup Tick Time: %8.8s.%03d\n", 11+ctime(&time_t_now), (int)(now.tv_nsec/1000000));
|
|
_double_to_timespec (&now, rtc_clock_catchup_base_time[tmr]);
|
|
time_t_now = (time_t)now.tv_sec;
|
|
fprintf (st, " Catchup Base Time: %8.8s.%03d\n", 11+ctime(&time_t_now), (int)(now.tv_nsec/1000000));
|
|
}
|
|
if (rtc_clock_time_idled[tmr])
|
|
fprintf (st, " Total Time Idled: %s\n", sim_fmt_secs (rtc_clock_time_idled[tmr]/1000.0));
|
|
}
|
|
if (clocks == 0)
|
|
fprintf (st, "%s clock device is not specified, co-scheduling is unavailable\n", sim_name);
|
|
return SCPE_OK;
|
|
}
|
|
|
|
t_stat sim_show_clock_queues (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr)
|
|
{
|
|
int tmr;
|
|
|
|
#if defined (SIM_ASYNCH_CLOCKS)
|
|
pthread_mutex_lock (&sim_timer_lock);
|
|
if (sim_asynch_timer) {
|
|
const char *tim;
|
|
|
|
if (sim_wallclock_queue == QUEUE_LIST_END)
|
|
fprintf (st, "%s wall clock event queue empty\n", sim_name);
|
|
else {
|
|
fprintf (st, "%s wall clock event queue status\n", sim_name);
|
|
for (uptr = sim_wallclock_queue; uptr != QUEUE_LIST_END; uptr = uptr->a_next) {
|
|
if ((dptr = find_dev_from_unit (uptr)) != NULL) {
|
|
fprintf (st, " %s", sim_dname (dptr));
|
|
if (dptr->numunits > 1)
|
|
fprintf (st, " unit %d", (int32) (uptr - dptr->units));
|
|
}
|
|
else
|
|
fprintf (st, " Unknown");
|
|
tim = sim_fmt_secs(uptr->a_usec_delay/1000000.0);
|
|
fprintf (st, " after %s\n", tim);
|
|
}
|
|
}
|
|
}
|
|
#endif /* SIM_ASYNCH_CLOCKS */
|
|
for (tmr=0; tmr<=SIM_NTIMERS; ++tmr) {
|
|
if (sim_clock_unit[tmr] == NULL)
|
|
continue;
|
|
if (sim_clock_cosched_queue[tmr] != QUEUE_LIST_END) {
|
|
int32 accum;
|
|
|
|
fprintf (st, "%s clock (%s) co-schedule event queue status\n",
|
|
sim_name, sim_uname(sim_clock_unit[tmr]));
|
|
accum = 0;
|
|
for (uptr = sim_clock_cosched_queue[tmr]; uptr != QUEUE_LIST_END; uptr = uptr->next) {
|
|
if ((dptr = find_dev_from_unit (uptr)) != NULL) {
|
|
fprintf (st, " %s", sim_dname (dptr));
|
|
if (dptr->numunits > 1)
|
|
fprintf (st, " unit %d", (int32) (uptr - dptr->units));
|
|
}
|
|
else
|
|
fprintf (st, " Unknown");
|
|
if (accum > 0)
|
|
fprintf (st, " after %d tick%s", accum, (accum > 1) ? "s" : "");
|
|
fprintf (st, "\n");
|
|
accum = accum + uptr->time;
|
|
}
|
|
}
|
|
}
|
|
#if defined (SIM_ASYNCH_IO)
|
|
pthread_mutex_unlock (&sim_timer_lock);
|
|
#endif /* SIM_ASYNCH_IO */
|
|
return SCPE_OK;
|
|
}
|
|
|
|
REG sim_timer_reg[] = {
|
|
{ NULL }
|
|
};
|
|
|
|
REG sim_throttle_reg[] = {
|
|
{ DRDATAD (THROT_MS_START, sim_throt_ms_start, 32, ""), PV_RSPC|REG_RO},
|
|
{ DRDATAD (THROT_MS_STOP, sim_throt_ms_stop, 32, ""), PV_RSPC|REG_RO},
|
|
{ DRDATAD (THROT_TYPE, sim_throt_type, 32, ""), PV_RSPC|REG_RO},
|
|
{ DRDATAD (THROT_VAL, sim_throt_val, 32, ""), PV_RSPC|REG_RO},
|
|
{ DRDATAD (THROT_STATE, sim_throt_state, 32, ""), PV_RSPC|REG_RO},
|
|
{ DRDATAD (THROT_SLEEP_TIME, sim_throt_sleep_time, 32, ""), PV_RSPC|REG_RO},
|
|
{ DRDATAD (THROT_WAIT, sim_throt_wait, 32, ""), PV_RSPC|REG_RO},
|
|
{ NULL }
|
|
};
|
|
|
|
/* Clear, Set and show catchup */
|
|
|
|
/* Set/Clear catchup */
|
|
|
|
t_stat sim_timer_set_catchup (int32 flag, CONST char *cptr)
|
|
{
|
|
if (flag) {
|
|
if (!sim_catchup_ticks)
|
|
sim_catchup_ticks = TRUE;
|
|
}
|
|
else {
|
|
if (sim_catchup_ticks)
|
|
sim_catchup_ticks = FALSE;
|
|
}
|
|
return SCPE_OK;
|
|
}
|
|
|
|
t_stat sim_timer_show_catchup (FILE *st, UNIT *uptr, int32 val, CONST void *desc)
|
|
{
|
|
fprintf (st, "Calibrated Ticks%s", sim_catchup_ticks ? " with Catchup Ticks" : "");
|
|
return SCPE_OK;
|
|
}
|
|
|
|
/* Set idle calibration threshold */
|
|
|
|
t_stat sim_timer_set_idle_pct (int32 flag, CONST char *cptr)
|
|
{
|
|
t_stat r;
|
|
int32 newpct;
|
|
|
|
if (cptr == NULL)
|
|
return SCPE_ARG;
|
|
newpct = (int32) get_uint (cptr, 10, 100, &r);
|
|
if ((r != SCPE_OK) || (newpct == (int32)(sim_idle_calib_pct)))
|
|
return r;
|
|
if (newpct == 0)
|
|
return SCPE_ARG;
|
|
sim_idle_calib_pct = (uint32)newpct;
|
|
return SCPE_OK;
|
|
}
|
|
|
|
/* Set/Clear asynch */
|
|
|
|
t_stat sim_timer_set_async (int32 flag, CONST char *cptr)
|
|
{
|
|
if (flag) {
|
|
if (sim_asynch_enabled && (!sim_asynch_timer)) {
|
|
sim_asynch_timer = TRUE;
|
|
sim_timer_change_asynch ();
|
|
}
|
|
}
|
|
else {
|
|
if (sim_asynch_timer) {
|
|
sim_asynch_timer = FALSE;
|
|
sim_timer_change_asynch ();
|
|
}
|
|
}
|
|
return SCPE_OK;
|
|
}
|
|
|
|
static CTAB set_timer_tab[] = {
|
|
#if defined (SIM_ASYNCH_CLOCKS)
|
|
{ "ASYNCH", &sim_timer_set_async, 1 },
|
|
{ "NOASYNCH", &sim_timer_set_async, 0 },
|
|
#endif
|
|
{ "CATCHUP", &sim_timer_set_catchup, 1 },
|
|
{ "NOCATCHUP", &sim_timer_set_catchup, 0 },
|
|
{ "CALIB", &sim_timer_set_idle_pct, 0 },
|
|
{ NULL, NULL, 0 }
|
|
};
|
|
|
|
MTAB sim_timer_mod[] = {
|
|
{ 0 },
|
|
};
|
|
|
|
static t_stat sim_timer_clock_reset (DEVICE *dptr);
|
|
|
|
DEVICE sim_timer_dev = {
|
|
"TIMER", sim_timer_units, sim_timer_reg, sim_timer_mod,
|
|
SIM_NTIMERS+1, 0, 0, 0, 0, 0,
|
|
NULL, NULL, &sim_timer_clock_reset, NULL, NULL, NULL,
|
|
NULL, DEV_DEBUG | DEV_NOSAVE, 0, sim_timer_debug};
|
|
|
|
DEVICE sim_throttle_dev = {
|
|
"THROT-TLE", &sim_throttle_unit, sim_throttle_reg, NULL, 1};
|
|
|
|
|
|
/* SET CLOCK command */
|
|
|
|
t_stat sim_set_timers (int32 arg, CONST char *cptr)
|
|
{
|
|
char *cvptr, gbuf[CBUFSIZE];
|
|
CTAB *ctptr;
|
|
t_stat r;
|
|
|
|
if ((cptr == NULL) || (*cptr == 0))
|
|
return SCPE_2FARG;
|
|
while (*cptr != 0) { /* do all mods */
|
|
cptr = get_glyph_nc (cptr, gbuf, ','); /* get modifier */
|
|
if ((cvptr = strchr (gbuf, '='))) /* = value? */
|
|
*cvptr++ = 0;
|
|
get_glyph (gbuf, gbuf, 0); /* modifier to UC */
|
|
if ((ctptr = find_ctab (set_timer_tab, gbuf))) { /* match? */
|
|
r = ctptr->action (ctptr->arg, cvptr); /* do the rest */
|
|
if (r != SCPE_OK)
|
|
return r;
|
|
}
|
|
else return SCPE_NOPARAM;
|
|
}
|
|
return SCPE_OK;
|
|
}
|
|
|
|
/* sim_idle - idle simulator until next event or for specified interval
|
|
|
|
Inputs:
|
|
tmr = calibrated timer to use
|
|
|
|
Must solve the linear equation
|
|
|
|
ms_to_wait = w * ms_per_wait
|
|
|
|
Or
|
|
w = ms_to_wait / ms_per_wait
|
|
*/
|
|
|
|
t_bool sim_idle (uint32 tmr, t_bool sin_cyc)
|
|
{
|
|
uint32 cyc_ms = 0;
|
|
uint32 w_ms, w_idle, act_ms;
|
|
int32 act_cyc;
|
|
|
|
if (rtc_clock_catchup_pending[tmr]) { /* Catchup clock tick pending? */
|
|
sim_debug (DBG_CAL, &sim_timer_dev, "sim_idle(tmr=%d, sin_cyc=%d) - accelerating pending catch-up tick before idling %s\n", tmr, sin_cyc, sim_uname (sim_clock_unit[tmr]));
|
|
sim_activate_abs (&sim_timer_units[tmr], 0);
|
|
if (sin_cyc)
|
|
sim_interval = sim_interval - 1;
|
|
return FALSE;
|
|
}
|
|
if ((!sim_idle_enab) || /* idling disabled */
|
|
((sim_clock_queue == QUEUE_LIST_END) && /* or clock queue empty? */
|
|
(!sim_asynch_timer))|| /* and not asynch? */
|
|
((sim_clock_queue != QUEUE_LIST_END) && /* or clock queue not empty */
|
|
((sim_clock_queue->flags & UNIT_IDLE) == 0))|| /* and event not idle-able? */
|
|
(rtc_elapsed[tmr] < sim_idle_stable)) { /* or timer not stable? */
|
|
sim_debug (DBG_IDL, &sim_timer_dev, "Can't idle: %s - elapsed: %d.%03d\n", !sim_idle_enab ? "idle disabled" :
|
|
((rtc_elapsed[tmr] < sim_idle_stable) ? "not stable" :
|
|
((sim_clock_queue != QUEUE_LIST_END) ? sim_uname (sim_clock_queue) :
|
|
"")), rtc_elapsed[tmr], rtc_ticks[tmr]);
|
|
if (sin_cyc)
|
|
sim_interval = sim_interval - 1;
|
|
return FALSE;
|
|
}
|
|
if (_rtcn_tick_catchup_check(tmr, 0)) {
|
|
sim_debug (DBG_CAL, &sim_timer_dev, "sim_idle(tmr=%d, sin_cyc=%d) - rescheduling catchup tick for %s\n", tmr, sin_cyc, sim_uname (sim_clock_unit[tmr]));
|
|
if (sin_cyc)
|
|
sim_interval = sim_interval - 1;
|
|
return FALSE;
|
|
}
|
|
/*
|
|
When a simulator is in an instruction path (or under other conditions
|
|
which would indicate idling), the countdown of sim_interval will not
|
|
be happening at a pace which is consistent with the rate it happens
|
|
when not in the 'idle capable' state. The consequence of this is that
|
|
the clock calibration may produce calibrated results which vary much
|
|
more than they do when not in the idle able state. Sim_idle also uses
|
|
the calibrated tick size to approximate an adjustment to sim_interval
|
|
to reflect the number of instructions which would have executed during
|
|
the actual idle time, so consistent calibrated numbers produce better
|
|
adjustments.
|
|
|
|
To negate this effect, we accumulate the time actually idled here.
|
|
sim_rtcn_calb compares the accumulated idle time during the most recent
|
|
second and if it exceeds the percentage defined by and sim_idle_calib_pct
|
|
calibration is suppressed. Thus recalibration only happens if things
|
|
didn't idle too much.
|
|
|
|
we also check check sim_idle_enab above so that all simulators can avoid
|
|
directly checking sim_idle_enab before calling sim_idle so that all of
|
|
the bookkeeping on sim_idle_idled is done here in sim_timer where it
|
|
means something, while not idling when it isn't enabled.
|
|
*/
|
|
sim_debug (DBG_TRC, &sim_timer_dev, "sim_idle(tmr=%d, sin_cyc=%d)\n", tmr, sin_cyc);
|
|
cyc_ms = (rtc_currd[tmr] * rtc_hz[tmr]) / 1000; /* cycles per msec */
|
|
if ((sim_idle_rate_ms == 0) || (cyc_ms == 0)) { /* not possible? */
|
|
if (sin_cyc)
|
|
sim_interval = sim_interval - 1;
|
|
sim_debug (DBG_IDL, &sim_timer_dev, "not possible idle_rate_ms=%d - cyc/ms=%d\n", sim_idle_rate_ms, cyc_ms);
|
|
return FALSE;
|
|
}
|
|
w_ms = (uint32) sim_interval / cyc_ms; /* ms to wait */
|
|
/* When the host system has a clock tick which is less frequent than the */
|
|
/* simulated system's clock, idling will cause delays which will miss */
|
|
/* simulated clock ticks. To accomodate this, and still allow idling, if */
|
|
/* the simulator acknowledges the processing of clock ticks, then catchup */
|
|
/* ticks can be used to make up for missed ticks. */
|
|
if (rtc_clock_catchup_eligible[tmr])
|
|
w_idle = (sim_interval * 1000) / rtc_currd[tmr]; /* 1000 * pending fraction of tick */
|
|
else
|
|
w_idle = (w_ms * 1000) / sim_idle_rate_ms; /* 1000 * intervals to wait */
|
|
if (w_idle < 500) { /* shorter than 1/2 the interval? */
|
|
if (sin_cyc)
|
|
sim_interval = sim_interval - 1;
|
|
sim_debug (DBG_IDL, &sim_timer_dev, "no wait\n");
|
|
return FALSE;
|
|
}
|
|
if (sim_clock_queue == QUEUE_LIST_END)
|
|
sim_debug (DBG_IDL, &sim_timer_dev, "sleeping for %d ms - pending event in %d instructions\n", w_ms, sim_interval);
|
|
else
|
|
sim_debug (DBG_IDL, &sim_timer_dev, "sleeping for %d ms - pending event on %s in %d instructions\n", w_ms, sim_uname(sim_clock_queue), sim_interval);
|
|
act_ms = sim_idle_ms_sleep (w_ms); /* wait */
|
|
rtc_clock_time_idled[tmr] += act_ms;
|
|
act_cyc = act_ms * cyc_ms;
|
|
if (act_ms < w_ms) /* awakened early? */
|
|
act_cyc += (cyc_ms * sim_idle_rate_ms) / 2; /* account for half an interval's worth of cycles */
|
|
if (sim_interval > act_cyc)
|
|
sim_interval = sim_interval - act_cyc; /* count down sim_interval */
|
|
else
|
|
sim_interval = 0; /* or fire immediately */
|
|
if (sim_clock_queue == QUEUE_LIST_END)
|
|
sim_debug (DBG_IDL, &sim_timer_dev, "slept for %d ms - pending event in %d instructions\n", act_ms, sim_interval);
|
|
else
|
|
sim_debug (DBG_IDL, &sim_timer_dev, "slept for %d ms - pending event on %s in %d instructions\n", act_ms, sim_uname(sim_clock_queue), sim_interval);
|
|
return TRUE;
|
|
}
|
|
|
|
/* Set idling - implicitly disables throttling */
|
|
|
|
t_stat sim_set_idle (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
|
|
{
|
|
t_stat r;
|
|
uint32 v;
|
|
|
|
if (cptr && *cptr) {
|
|
v = (uint32) get_uint (cptr, 10, SIM_IDLE_STMAX, &r);
|
|
if ((r != SCPE_OK) || (v < SIM_IDLE_STMIN))
|
|
return sim_messagef (SCPE_ARG, "Invalid Stability value: %s. Valid values range from %d to %d.\n", cptr, SIM_IDLE_STMIN, SIM_IDLE_STMAX);
|
|
sim_idle_stable = v;
|
|
}
|
|
sim_idle_enab = TRUE;
|
|
if (sim_throt_type != SIM_THROT_NONE) {
|
|
sim_set_throt (0, NULL);
|
|
sim_printf ("Throttling disabled\n");
|
|
}
|
|
return SCPE_OK;
|
|
}
|
|
|
|
/* Clear idling */
|
|
|
|
t_stat sim_clr_idle (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
|
|
{
|
|
sim_idle_enab = FALSE;
|
|
return SCPE_OK;
|
|
}
|
|
|
|
/* Show idling */
|
|
|
|
t_stat sim_show_idle (FILE *st, UNIT *uptr, int32 val, CONST void *desc)
|
|
{
|
|
if (sim_idle_enab)
|
|
fprintf (st, "idle enabled");
|
|
else
|
|
fprintf (st, "idle disabled");
|
|
if (sim_switches & SWMASK ('D'))
|
|
fprintf (st, ", stability wait = %ds, minimum sleep resolution = %dms", sim_idle_stable, sim_os_sleep_min_ms);
|
|
return SCPE_OK;
|
|
}
|
|
|
|
/* Throttling package */
|
|
|
|
t_stat sim_set_throt (int32 arg, CONST char *cptr)
|
|
{
|
|
CONST char *tptr;
|
|
char c;
|
|
t_value val, val2 = 0;
|
|
|
|
if (arg == 0) {
|
|
if ((cptr != NULL) && (*cptr != 0))
|
|
return sim_messagef (SCPE_ARG, "Unexpected NOTHROTTLE argument: %s\n", cptr);
|
|
sim_throt_type = SIM_THROT_NONE;
|
|
sim_throt_cancel ();
|
|
}
|
|
else if (sim_idle_rate_ms == 0) {
|
|
return sim_messagef (SCPE_NOFNC, "Throttling is not available, Minimum OS sleep time is %dms\n", sim_os_sleep_min_ms);
|
|
}
|
|
else {
|
|
if (*cptr == '\0')
|
|
return sim_messagef (SCPE_ARG, "Missing throttle mode specification\n");
|
|
val = strtotv (cptr, &tptr, 10);
|
|
if (cptr == tptr)
|
|
return sim_messagef (SCPE_ARG, "Invalid throttle specification: %s\n", cptr);
|
|
sim_throt_sleep_time = sim_idle_rate_ms;
|
|
c = (char)toupper (*tptr++);
|
|
if (c == '/') {
|
|
val2 = strtotv (tptr, &tptr, 10);
|
|
if ((*tptr != '\0') || (val == 0))
|
|
return sim_messagef (SCPE_ARG, "Invalid throttle delay specifier: %s\n", cptr);
|
|
}
|
|
if (c == 'M')
|
|
sim_throt_type = SIM_THROT_MCYC;
|
|
else if (c == 'K')
|
|
sim_throt_type = SIM_THROT_KCYC;
|
|
else if ((c == '%') && (val > 0) && (val < 100))
|
|
sim_throt_type = SIM_THROT_PCT;
|
|
else if ((c == '/') && (val2 != 0))
|
|
sim_throt_type = SIM_THROT_SPC;
|
|
else return sim_messagef (SCPE_ARG, "Invalid throttle specification: %s\n", cptr);
|
|
if (sim_idle_enab) {
|
|
sim_printf ("Idling disabled\n");
|
|
sim_clr_idle (NULL, 0, NULL, NULL);
|
|
}
|
|
sim_throt_val = (uint32) val;
|
|
if (sim_throt_type == SIM_THROT_SPC) {
|
|
if (val2 >= sim_idle_rate_ms)
|
|
sim_throt_sleep_time = (uint32) val2;
|
|
else {
|
|
if ((sim_idle_rate_ms % val2) == 0) {
|
|
sim_throt_sleep_time = sim_idle_rate_ms;
|
|
sim_throt_val = (uint32) (val * (sim_idle_rate_ms / val2));
|
|
}
|
|
else {
|
|
sim_throt_sleep_time = sim_idle_rate_ms;
|
|
sim_throt_val = (uint32) (val * (1 + (sim_idle_rate_ms / val2)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return SCPE_OK;
|
|
}
|
|
|
|
t_stat sim_show_throt (FILE *st, DEVICE *dnotused, UNIT *unotused, int32 flag, CONST char *cptr)
|
|
{
|
|
if (sim_idle_rate_ms == 0)
|
|
fprintf (st, "Throttling: Not Available\n");
|
|
else {
|
|
switch (sim_throt_type) {
|
|
|
|
case SIM_THROT_MCYC:
|
|
fprintf (st, "Throttle: %d megacycles\n", sim_throt_val);
|
|
if (sim_throt_wait)
|
|
fprintf (st, "Throttling by sleeping for: %d ms every %d cycles\n", sim_throt_sleep_time, sim_throt_wait);
|
|
break;
|
|
|
|
case SIM_THROT_KCYC:
|
|
fprintf (st, "Throttle: %d kilocycles\n", sim_throt_val);
|
|
if (sim_throt_wait)
|
|
fprintf (st, "Throttling by sleeping for: %d ms every %d cycles\n", sim_throt_sleep_time, sim_throt_wait);
|
|
break;
|
|
|
|
case SIM_THROT_PCT:
|
|
fprintf (st, "Throttle: %d%%\n", sim_throt_val);
|
|
if (sim_throt_wait)
|
|
fprintf (st, "Throttling by sleeping for: %d ms every %d cycles\n", sim_throt_sleep_time, sim_throt_wait);
|
|
break;
|
|
|
|
case SIM_THROT_SPC:
|
|
fprintf (st, "Throttle: sleep %d ms every %d cycles\n", sim_throt_sleep_time, sim_throt_val);
|
|
break;
|
|
|
|
default:
|
|
fprintf (st, "Throttling: Disabled\n");
|
|
break;
|
|
}
|
|
}
|
|
return SCPE_OK;
|
|
}
|
|
|
|
void sim_throt_sched (void)
|
|
{
|
|
sim_throt_state = 0;
|
|
if (sim_throt_type)
|
|
sim_activate (&sim_throttle_unit, SIM_THROT_WINIT);
|
|
}
|
|
|
|
void sim_throt_cancel (void)
|
|
{
|
|
sim_cancel (&sim_throttle_unit);
|
|
}
|
|
|
|
/* Throttle service
|
|
|
|
Throttle service has three distinct states used while dynamically
|
|
determining a throttling interval:
|
|
|
|
0 take initial measurement
|
|
1 take final measurement, calculate wait values
|
|
2 periodic waits to slow down the CPU
|
|
*/
|
|
t_stat sim_throt_svc (UNIT *uptr)
|
|
{
|
|
uint32 delta_ms;
|
|
double a_cps, d_cps;
|
|
|
|
if (sim_throt_type == SIM_THROT_SPC) { /* Non dynamic? */
|
|
sim_throt_state = 2; /* force state */
|
|
sim_throt_wait = sim_throt_val;
|
|
}
|
|
switch (sim_throt_state) {
|
|
|
|
case 0: /* take initial reading */
|
|
sim_throt_ms_start = sim_os_msec ();
|
|
sim_throt_inst_start = sim_gtime();
|
|
sim_throt_wait = SIM_THROT_WST;
|
|
sim_throt_state = 1; /* next state */
|
|
break; /* reschedule */
|
|
|
|
case 1: /* take final reading */
|
|
sim_throt_ms_stop = sim_os_msec ();
|
|
delta_ms = sim_throt_ms_stop - sim_throt_ms_start;
|
|
if (delta_ms < SIM_THROT_MSMIN) { /* not enough time? */
|
|
if (sim_throt_wait >= 100000000) { /* too many inst? */
|
|
sim_throt_state = 0; /* fails in 32b! */
|
|
return SCPE_OK;
|
|
}
|
|
sim_throt_wait = sim_throt_wait * SIM_THROT_WMUL;
|
|
sim_throt_ms_start = sim_throt_ms_stop;
|
|
sim_throt_inst_start = sim_gtime();
|
|
}
|
|
else { /* long enough */
|
|
a_cps = ((double) sim_throt_wait) * 1000.0 / (double) delta_ms;
|
|
if (sim_throt_type == SIM_THROT_MCYC) /* calc desired cps */
|
|
d_cps = (double) sim_throt_val * 1000000.0;
|
|
else if (sim_throt_type == SIM_THROT_KCYC)
|
|
d_cps = (double) sim_throt_val * 1000.0;
|
|
else d_cps = (a_cps * ((double) sim_throt_val)) / 100.0;
|
|
if (d_cps >= a_cps) {
|
|
sim_throt_sched (); /* start over */
|
|
return SCPE_OK;
|
|
}
|
|
sim_throt_wait = (int32) /* time between waits */
|
|
((a_cps * d_cps * ((double) sim_idle_rate_ms)) /
|
|
(1000.0 * (a_cps - d_cps)));
|
|
if (sim_throt_wait < SIM_THROT_WMIN) { /* not long enough? */
|
|
sim_throt_sched (); /* start over */
|
|
return SCPE_OK;
|
|
}
|
|
sim_throt_ms_start = sim_throt_ms_stop;
|
|
sim_throt_inst_start = sim_gtime();
|
|
sim_throt_state = 2;
|
|
sim_debug (DBG_THR, &sim_timer_dev, "sim_throt_svc() Throttle values a_cps = %f, d_cps = %f, wait = %d\n",
|
|
a_cps, d_cps, sim_throt_wait);
|
|
sim_throt_cps = (int32)d_cps; /* save the desired rate */
|
|
}
|
|
break;
|
|
|
|
case 2: /* throttling */
|
|
sim_idle_ms_sleep (sim_throt_sleep_time);
|
|
delta_ms = sim_os_msec () - sim_throt_ms_start;
|
|
if (sim_throt_type != SIM_THROT_SPC) { /* when not dynamic throttling */
|
|
if (delta_ms >= 10000) { /* recompute every 10 sec */
|
|
double delta_insts = sim_gtime() - sim_throt_inst_start;
|
|
a_cps = (delta_insts * 1000.0) / (double) delta_ms;
|
|
if (sim_throt_type == SIM_THROT_MCYC) /* calc desired cps */
|
|
d_cps = (double) sim_throt_val * 1000000.0;
|
|
else if (sim_throt_type == SIM_THROT_KCYC)
|
|
d_cps = (double) sim_throt_val * 1000.0;
|
|
else d_cps = (a_cps * ((double) sim_throt_val)) / 100.0;
|
|
if (fabs(100.0 * (d_cps - a_cps) / a_cps) > (double)SIM_THROT_DRIFT_PCT) {
|
|
sim_throt_wait = sim_throt_val;
|
|
sim_throt_state = 1; /* next state to recalibrate */
|
|
sim_debug (DBG_THR, &sim_timer_dev, "sim_throt_svc() Recalibrating throttle based on values a_cps = %f, d_cps = %f\n",
|
|
a_cps, d_cps);
|
|
}
|
|
sim_throt_ms_start = sim_os_msec ();
|
|
sim_throt_inst_start = sim_gtime();
|
|
}
|
|
}
|
|
else /* record instruction rate */
|
|
sim_throt_cps = (int32)((1000.0 * sim_throt_val) / (double)delta_ms);
|
|
break;
|
|
}
|
|
|
|
sim_activate (uptr, sim_throt_wait); /* reschedule */
|
|
return SCPE_OK;
|
|
}
|
|
|
|
/* Clock assist activites */
|
|
t_stat sim_timer_tick_svc (UNIT *uptr)
|
|
{
|
|
int tmr = (int)(uptr-sim_timer_units);
|
|
t_stat stat;
|
|
|
|
rtc_clock_ticks[tmr] += 1;
|
|
rtc_calib_tick_time[tmr] += rtc_clock_tick_size[tmr];
|
|
/*
|
|
* Some devices may depend on executing during the same instruction or
|
|
* immediately after the clock tick event. To satisfy this, we directly
|
|
* run the clock event here and if it completes successfully, schedule any
|
|
* currently coschedule units to run now. Ticks should never return a
|
|
* non-success status, while co-schedule activities might, so they are
|
|
* queued to run from sim_process_event
|
|
*/
|
|
sim_debug (DBG_QUE, &sim_timer_dev, "sim_timer_tick_svc - scheduling %s - cosched interval: %d\n", sim_uname (sim_clock_unit[tmr]), sim_cosched_interval[tmr]);
|
|
if (sim_clock_unit[tmr]->action == NULL)
|
|
return SCPE_IERR;
|
|
stat = sim_clock_unit[tmr]->action (sim_clock_unit[tmr]);
|
|
--sim_cosched_interval[tmr]; /* Countdown ticks */
|
|
if (stat == SCPE_OK) {
|
|
if (rtc_clock_catchup_eligible[tmr]) { /* calibration started? */
|
|
struct timespec now;
|
|
double skew;
|
|
|
|
clock_gettime(CLOCK_REALTIME, &now);
|
|
skew = (_timespec_to_double(&now) - (rtc_calib_tick_time[tmr]+rtc_clock_catchup_base_time[tmr]));
|
|
|
|
if (fabs(skew) > fabs(rtc_clock_skew_max[tmr]))
|
|
rtc_clock_skew_max[tmr] = skew;
|
|
}
|
|
while ((sim_clock_cosched_queue[tmr] != QUEUE_LIST_END) &&
|
|
(sim_cosched_interval[tmr] <= 0)) {
|
|
UNIT *cptr = sim_clock_cosched_queue[tmr];
|
|
sim_clock_cosched_queue[tmr] = cptr->next;
|
|
cptr->next = NULL;
|
|
cptr->cancel = NULL;
|
|
cptr->time = 0;
|
|
if (sim_clock_cosched_queue[tmr] != QUEUE_LIST_END)
|
|
sim_cosched_interval[tmr] = sim_clock_cosched_queue[tmr]->time;
|
|
else
|
|
sim_cosched_interval[tmr] = 0;
|
|
sim_debug (DBG_QUE, &sim_timer_dev, "sim_timer_tick_svc(tmr=%d) - coactivating %s - cosched interval: %d\n", tmr, sim_uname (cptr), sim_cosched_interval[tmr]);
|
|
_sim_activate (cptr, 0);
|
|
}
|
|
}
|
|
sim_timer_activate_after (uptr, 1000000/rtc_hz[tmr]);
|
|
return stat;
|
|
}
|
|
|
|
void sim_rtcn_get_time (struct timespec *now, int tmr)
|
|
{
|
|
sim_debug (DBG_CAL, &sim_timer_dev, "sim_rtcn_get_time(tmr=%d)\n", tmr);
|
|
clock_gettime (CLOCK_REALTIME, now);
|
|
}
|
|
|
|
/*
|
|
* If the host system has a relatively large clock tick (as compared to
|
|
* the desired simulated hz) ticks will naturally be scheduled late and
|
|
* these delays will accumulate. The net result will be unreasonably
|
|
* slow ticks being delivered to the simulated system.
|
|
* Additionally, when a simulator is idling and/or throttling, it will
|
|
* deliberately call sim_os_ms_sleep and those sleep operations will be
|
|
* variable and subject to the host system's minimum sleep resolution
|
|
* which can exceed the desired sleep interval and add to the concept
|
|
* of slow tick delivery to the simulated system.
|
|
* We accomodate these problems and make up for lost ticks by injecting
|
|
* catch-up ticks to the simulator.
|
|
*
|
|
* When necessary, catch-up ticks are scheduled to run under one
|
|
* of two conditions:
|
|
* 1) after indicated number of instructions in a call by the simulator
|
|
* to sim_rtcn_tick_ack. sim_rtcn_tick_ack exists to provide a
|
|
* mechanism to inform the simh timer facilities when the simulated
|
|
* system has accepted the most recent clock tick interrupt.
|
|
* 2) immediately when the simulator calls sim_idle
|
|
*
|
|
* catchup ticks are only scheduled (eligible to happen) under these
|
|
* conditions after at least one tick has been acknowledged.
|
|
*/
|
|
|
|
/* _rtcn_tick_catchup_check - idle simulator until next event or for specified interval
|
|
|
|
Inputs:
|
|
tmr = calibrated timer to check/schedule
|
|
time = instruction delay for next tick
|
|
|
|
Returns TRUE if a catchup tick has been scheduled
|
|
*/
|
|
|
|
static t_bool _rtcn_tick_catchup_check (int32 tmr, int32 time)
|
|
{
|
|
double tnow;
|
|
|
|
if ((!sim_catchup_ticks) ||
|
|
((tmr < 0) || (tmr >= SIM_NTIMERS)))
|
|
return FALSE;
|
|
tnow = sim_timenow_double();
|
|
if ((rtc_hz[tmr] > sim_os_tick_hz) && /* faster than host tick */
|
|
(!rtc_clock_catchup_eligible[tmr]) && /* not eligible yet? */
|
|
(time != -1)) { /* called from ack? */
|
|
rtc_clock_catchup_base_time[tmr] = tnow;
|
|
rtc_clock_ticks_tot[tmr] += rtc_clock_ticks[tmr];
|
|
rtc_clock_ticks[tmr] = 0;
|
|
rtc_calib_tick_time_tot[tmr] += rtc_calib_tick_time[tmr];
|
|
rtc_calib_tick_time[tmr] = 0.0;
|
|
rtc_clock_catchup_ticks_tot[tmr] += rtc_clock_catchup_ticks[tmr];
|
|
rtc_clock_catchup_ticks[tmr] = 0;
|
|
rtc_calib_ticks_acked_tot[tmr] += rtc_calib_ticks_acked[tmr];
|
|
rtc_calib_ticks_acked[tmr] = 0;
|
|
rtc_clock_catchup_eligible[tmr] = TRUE;
|
|
sim_debug (DBG_QUE, &sim_timer_dev, "_rtcn_tick_catchup_check() - Enabling catchup ticks for %s\n", sim_uname (sim_clock_unit[tmr]));
|
|
return TRUE;
|
|
}
|
|
if (rtc_clock_catchup_eligible[tmr] &&
|
|
(tnow > (rtc_clock_catchup_base_time[tmr] + (rtc_calib_tick_time[tmr] + rtc_clock_tick_size[tmr])))) {
|
|
sim_debug (DBG_QUE, &sim_timer_dev, "_rtcn_tick_catchup_check(%d) - scheduling catchup tick for %s which is behind %s\n", time, sim_uname (sim_clock_unit[tmr]), sim_fmt_secs (tnow > (rtc_clock_catchup_base_time[tmr] + (rtc_calib_tick_time[tmr] + rtc_clock_tick_size[tmr]))));
|
|
rtc_clock_catchup_pending[tmr] = TRUE;
|
|
sim_activate_abs (&sim_timer_units[tmr], (time < 0) ? 0 : time);
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
t_stat sim_rtcn_tick_ack (uint32 time, int32 tmr)
|
|
{
|
|
if ((tmr < 0) || (tmr >= SIM_NTIMERS))
|
|
return SCPE_TIMER;
|
|
sim_debug (DBG_ACK, &sim_timer_dev, "sim_rtcn_tick_ack - for %s\n", sim_uname (sim_clock_unit[tmr]));
|
|
_rtcn_tick_catchup_check (tmr, (int32)time);
|
|
++rtc_calib_ticks_acked[tmr];
|
|
return SCPE_OK;
|
|
}
|
|
|
|
|
|
static double _timespec_to_double (struct timespec *time)
|
|
{
|
|
return ((double)time->tv_sec)+(double)(time->tv_nsec)/1000000000.0;
|
|
}
|
|
|
|
static void _double_to_timespec (struct timespec *time, double dtime)
|
|
{
|
|
time->tv_sec = (time_t)floor(dtime);
|
|
time->tv_nsec = (long)((dtime-floor(dtime))*1000000000.0);
|
|
}
|
|
|
|
double sim_timenow_double (void)
|
|
{
|
|
struct timespec now;
|
|
|
|
clock_gettime (CLOCK_REALTIME, &now);
|
|
return _timespec_to_double (&now);
|
|
}
|
|
|
|
#if defined(SIM_ASYNCH_CLOCKS)
|
|
|
|
pthread_t sim_timer_thread; /* Wall Clock Timing Thread Id */
|
|
pthread_cond_t sim_timer_startup_cond;
|
|
t_bool sim_timer_thread_running = FALSE;
|
|
|
|
static void *
|
|
_timer_thread(void *arg)
|
|
{
|
|
int sched_policy;
|
|
struct sched_param sched_priority;
|
|
|
|
/* Boost Priority for this I/O thread vs the CPU instruction execution
|
|
thread which, in general, won't be readily yielding the processor when
|
|
this thread needs to run */
|
|
pthread_getschedparam (pthread_self(), &sched_policy, &sched_priority);
|
|
++sched_priority.sched_priority;
|
|
pthread_setschedparam (pthread_self(), sched_policy, &sched_priority);
|
|
|
|
sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - starting\n");
|
|
|
|
pthread_mutex_lock (&sim_timer_lock);
|
|
pthread_cond_signal (&sim_timer_startup_cond); /* Signal we're ready to go */
|
|
while (sim_asynch_timer && sim_is_running) {
|
|
struct timespec start_time, stop_time;
|
|
struct timespec due_time;
|
|
double wait_usec;
|
|
int32 inst_delay;
|
|
double inst_per_sec;
|
|
UNIT *uptr, *cptr, *prvptr;
|
|
|
|
if (sim_wallclock_entry) { /* something to insert in queue? */
|
|
|
|
sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - timing %s for %s\n",
|
|
sim_uname(sim_wallclock_entry), sim_fmt_secs (sim_wallclock_entry->time/1000000.0));
|
|
|
|
uptr = sim_wallclock_entry;
|
|
sim_wallclock_entry = NULL;
|
|
|
|
prvptr = NULL;
|
|
for (cptr = sim_wallclock_queue; cptr != QUEUE_LIST_END; cptr = cptr->a_next) {
|
|
if (uptr->a_due_time < cptr->a_due_time)
|
|
break;
|
|
prvptr = cptr;
|
|
}
|
|
if (prvptr == NULL) { /* insert at head */
|
|
cptr = uptr->a_next = sim_wallclock_queue;
|
|
sim_wallclock_queue = uptr;
|
|
}
|
|
else {
|
|
cptr = uptr->a_next = prvptr->a_next; /* insert at prvptr */
|
|
prvptr->a_next = uptr;
|
|
}
|
|
}
|
|
|
|
/* determine wait time */
|
|
if (sim_wallclock_queue != QUEUE_LIST_END) {
|
|
/* due time adjusted by 1/2 a minimal sleep interval */
|
|
/* the goal being to let the last fractional part of the due time */
|
|
/* be done by counting instructions */
|
|
_double_to_timespec (&due_time, sim_wallclock_queue->a_due_time-(((double)sim_idle_rate_ms)*0.0005));
|
|
}
|
|
else {
|
|
due_time.tv_sec = 0x7FFFFFFF; /* Sometime when 32 bit time_t wraps */
|
|
due_time.tv_nsec = 0;
|
|
}
|
|
clock_gettime(CLOCK_REALTIME, &start_time);
|
|
wait_usec = floor(1000000.0*(_timespec_to_double (&due_time) - _timespec_to_double (&start_time)));
|
|
if (sim_wallclock_queue == QUEUE_LIST_END)
|
|
sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - waiting forever\n");
|
|
else
|
|
sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - waiting for %.0f usecs until %.6f for %s\n", wait_usec, sim_wallclock_queue->a_due_time, sim_uname(sim_wallclock_queue));
|
|
if ((wait_usec <= 0.0) ||
|
|
(0 != pthread_cond_timedwait (&sim_timer_wake, &sim_timer_lock, &due_time))) {
|
|
|
|
if (sim_wallclock_queue == QUEUE_LIST_END) /* queue empty? */
|
|
continue; /* wait again */
|
|
inst_per_sec = sim_timer_inst_per_sec ();
|
|
|
|
uptr = sim_wallclock_queue;
|
|
sim_wallclock_queue = uptr->a_next;
|
|
uptr->a_next = NULL; /* hygiene */
|
|
|
|
clock_gettime(CLOCK_REALTIME, &stop_time);
|
|
if (1 != sim_timespec_compare (&due_time, &stop_time))
|
|
inst_delay = 0;
|
|
else
|
|
inst_delay = (int32)(inst_per_sec*(_timespec_to_double(&due_time)-_timespec_to_double(&stop_time)));
|
|
sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - slept %.0fms - activating(%s,%d)\n",
|
|
1000.0*(_timespec_to_double (&stop_time)-_timespec_to_double (&start_time)), sim_uname(uptr), inst_delay);
|
|
sim_activate (uptr, inst_delay);
|
|
}
|
|
else {/* Something wants to adjust the queue since the wait condition was signaled */
|
|
}
|
|
}
|
|
pthread_mutex_unlock (&sim_timer_lock);
|
|
|
|
sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - exiting\n");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#endif /* defined(SIM_ASYNCH_CLOCKS) */
|
|
|
|
/*
|
|
In the event that there are no active clock devices, no instruction
|
|
rate calibration will be performed. This is more likely on simpler
|
|
simulators which don't have a full spectrum of standard devices or
|
|
possibly when a clock device exists but its use is optional.
|
|
|
|
Additonally, when a host system has a natural clock tick (or minimal
|
|
sleep time) which is greater than the tick size that a simulator
|
|
wants to run a clock at, we run this clock at the rate implied by
|
|
the host system's minimal sleep time or 50Hz.
|
|
|
|
To solve this we merely run an internal clock at 10Hz.
|
|
*/
|
|
|
|
#define CLK_TPS 10
|
|
#define CLK_INIT (SIM_INITIAL_IPS/CLK_TPS)
|
|
static int32 sim_int_clk_tps;
|
|
|
|
static t_stat sim_timer_clock_tick_svc (UNIT *uptr)
|
|
{
|
|
sim_rtcn_calb (sim_int_clk_tps, SIM_INTERNAL_CLK);
|
|
sim_activate_after (uptr, 1000000/sim_int_clk_tps); /* reactivate unit */
|
|
return SCPE_OK;
|
|
}
|
|
|
|
/*
|
|
This routine exists to assure that there is a single reliably calibrated
|
|
clock properly counting instruction execution relative to time. The best
|
|
way to assure reliable calibration is to use a clock which ticks no
|
|
faster than the host system's clock. This is optimal so that accurate
|
|
time measurements are taken. If the simulated system doesn't have a
|
|
clock with an appropriate tick rate, an internal clock is run that meets
|
|
this requirement,
|
|
*/
|
|
static void _rtcn_configure_calibrated_clock (int32 newtmr)
|
|
{
|
|
int32 tmr;
|
|
|
|
/* Look for a timer running slower than the host system clock */
|
|
sim_int_clk_tps = MIN(CLK_TPS, sim_os_tick_hz);
|
|
for (tmr=0; tmr<SIM_NTIMERS; tmr++) {
|
|
if ((rtc_hz[tmr]) &&
|
|
(rtc_hz[tmr] <= (uint32)sim_os_tick_hz))
|
|
break;
|
|
}
|
|
if (tmr == SIM_NTIMERS) { /* None found? */
|
|
if ((tmr != newtmr) && (!sim_is_active (&SIM_INTERNAL_UNIT))) {
|
|
/* Start the internal timer */
|
|
sim_calb_tmr = SIM_NTIMERS;
|
|
sim_debug (DBG_CAL, &sim_timer_dev, "_rtcn_configure_calibrated_clock() - Starting Internal Calibrated Timer at %dHz\n", sim_int_clk_tps);
|
|
SIM_INTERNAL_UNIT.action = &sim_timer_clock_tick_svc;
|
|
SIM_INTERNAL_UNIT.flags = UNIT_DIS | UNIT_IDLE;
|
|
sim_activate_abs (&SIM_INTERNAL_UNIT, 0);
|
|
sim_rtcn_init_unit (&SIM_INTERNAL_UNIT, (CLK_INIT*CLK_TPS)/sim_int_clk_tps, SIM_INTERNAL_CLK);
|
|
}
|
|
return;
|
|
}
|
|
if ((tmr == newtmr) &&
|
|
(sim_calb_tmr == newtmr)) /* already set? */
|
|
return;
|
|
if (sim_calb_tmr == SIM_NTIMERS) { /* was old the internal timer? */
|
|
sim_debug (DBG_CAL, &sim_timer_dev, "_rtcn_configure_calibrated_clock() - Stopping Internal Calibrated Timer, New Timer = %d (%dHz)\n", tmr, rtc_hz[tmr]);
|
|
rtc_initd[SIM_NTIMERS] = 0;
|
|
rtc_hz[SIM_NTIMERS] = 0;
|
|
sim_cancel (&SIM_INTERNAL_UNIT);
|
|
sim_cancel (&sim_timer_units[SIM_NTIMERS]);
|
|
sim_register_clock_unit_tmr (NULL, SIM_INTERNAL_CLK);
|
|
}
|
|
else {
|
|
sim_debug (DBG_CAL, &sim_timer_dev, "_rtcn_configure_calibrated_clock() - Changing Calibrated Timer from %d (%dHz) to %d (%dHz)\n", sim_calb_tmr, rtc_hz[sim_calb_tmr], tmr, rtc_hz[tmr]);
|
|
sim_calb_tmr = tmr;
|
|
}
|
|
sim_calb_tmr = tmr;
|
|
}
|
|
|
|
static t_stat sim_timer_clock_reset (DEVICE *dptr)
|
|
{
|
|
sim_debug (DBG_TRC, &sim_timer_dev, "sim_timer_clock_reset()\n");
|
|
_rtcn_configure_calibrated_clock (sim_calb_tmr);
|
|
if (sim_switches & SWMASK ('P')) {
|
|
sim_cancel (&SIM_INTERNAL_UNIT);
|
|
sim_calb_tmr = -1;
|
|
}
|
|
return SCPE_OK;
|
|
}
|
|
|
|
void sim_start_timer_services (void)
|
|
{
|
|
sim_debug (DBG_TRC, &sim_timer_dev, "sim_start_timer_services()\n");
|
|
_rtcn_configure_calibrated_clock (sim_calb_tmr);
|
|
#if defined(SIM_ASYNCH_CLOCKS)
|
|
pthread_mutex_lock (&sim_timer_lock);
|
|
if (sim_asynch_timer) {
|
|
pthread_attr_t attr;
|
|
|
|
sim_debug (DBG_TRC, &sim_timer_dev, "sim_start_timer_services() - starting\n");
|
|
pthread_cond_init (&sim_timer_startup_cond, NULL);
|
|
pthread_attr_init (&attr);
|
|
pthread_attr_setscope (&attr, PTHREAD_SCOPE_SYSTEM);
|
|
pthread_create (&sim_timer_thread, &attr, _timer_thread, NULL);
|
|
pthread_attr_destroy( &attr);
|
|
pthread_cond_wait (&sim_timer_startup_cond, &sim_timer_lock); /* Wait for thread to stabilize */
|
|
pthread_cond_destroy (&sim_timer_startup_cond);
|
|
sim_timer_thread_running = TRUE;
|
|
}
|
|
pthread_mutex_unlock (&sim_timer_lock);
|
|
#endif
|
|
}
|
|
|
|
void sim_stop_timer_services (void)
|
|
{
|
|
int tmr;
|
|
|
|
sim_debug (DBG_TRC, &sim_timer_dev, "sim_stop_timer_services()\n");
|
|
|
|
for (tmr=0; tmr<=SIM_NTIMERS; tmr++) {
|
|
int32 accum;
|
|
|
|
if (sim_clock_unit[tmr]) {
|
|
/* Stop clock assist unit and make sure the clock unit has a tick queued */
|
|
sim_cancel (&sim_timer_units[tmr]);
|
|
if (rtc_hz[tmr])
|
|
_sim_activate (sim_clock_unit[tmr], rtc_currd[tmr]);
|
|
/* Move coscheduled units to the standard event queue */
|
|
accum = 1;
|
|
while (sim_clock_cosched_queue[tmr] != QUEUE_LIST_END) {
|
|
UNIT *cptr = sim_clock_cosched_queue[tmr];
|
|
|
|
sim_clock_cosched_queue[tmr] = cptr->next;
|
|
cptr->next = NULL;
|
|
cptr->cancel = NULL;
|
|
|
|
accum += cptr->time;
|
|
_sim_activate (cptr, accum*rtc_currd[tmr]);
|
|
}
|
|
}
|
|
}
|
|
sim_cancel (&SIM_INTERNAL_UNIT); /* Make sure Internal Timer is stopped */
|
|
sim_cancel (&sim_timer_units[SIM_NTIMERS]);
|
|
sim_calb_tmr_last = sim_calb_tmr; /* Save calibrated timer value for display */
|
|
sim_inst_per_sec_last = sim_timer_inst_per_sec (); /* Save execution rate for display */
|
|
sim_calb_tmr = -1;
|
|
#if defined(SIM_ASYNCH_CLOCKS)
|
|
pthread_mutex_lock (&sim_timer_lock);
|
|
if (sim_timer_thread_running) {
|
|
sim_debug (DBG_TRC, &sim_timer_dev, "sim_stop_timer_services() - stopping\n");
|
|
pthread_cond_signal (&sim_timer_wake);
|
|
pthread_mutex_unlock (&sim_timer_lock);
|
|
pthread_join (sim_timer_thread, NULL);
|
|
sim_timer_thread_running = FALSE;
|
|
/* Any wallclock queued events are now migrated to the normal event queue */
|
|
while (sim_wallclock_queue != QUEUE_LIST_END) {
|
|
UNIT *uptr = sim_wallclock_queue;
|
|
double inst_delay_d = uptr->a_due_gtime - sim_gtime ();
|
|
int32 inst_delay;
|
|
|
|
uptr->cancel (uptr);
|
|
if (inst_delay_d < 0.0)
|
|
inst_delay_d = 0.0;
|
|
/* Bound delay to avoid overflow. */
|
|
/* Long delays are usually canceled before they expire */
|
|
if (inst_delay_d > (double)0x7FFFFFFF)
|
|
inst_delay_d = (double)0x7FFFFFFF;
|
|
inst_delay = (int32)inst_delay_d;
|
|
if ((inst_delay == 0) && (inst_delay_d != 0.0))
|
|
inst_delay = 1; /* Minimum non-zero delay is 1 instruction */
|
|
_sim_activate (uptr, inst_delay); /* queue it now */
|
|
}
|
|
}
|
|
else
|
|
pthread_mutex_unlock (&sim_timer_lock);
|
|
#endif
|
|
}
|
|
|
|
t_stat sim_timer_change_asynch (void)
|
|
{
|
|
#if defined(SIM_ASYNCH_CLOCKS)
|
|
if (sim_asynch_enabled && sim_asynch_timer)
|
|
sim_start_timer_services ();
|
|
else
|
|
sim_stop_timer_services ();
|
|
#endif
|
|
return SCPE_OK;
|
|
}
|
|
|
|
/* Instruction Execution rate. */
|
|
/* returns a double since it is mostly used in double expressions and
|
|
to avoid overflow if/when strange timing delays might produce unexpected results */
|
|
|
|
double sim_timer_inst_per_sec (void)
|
|
{
|
|
double inst_per_sec = SIM_INITIAL_IPS;
|
|
|
|
if (sim_calb_tmr == -1)
|
|
return inst_per_sec;
|
|
inst_per_sec = ((double)rtc_currd[sim_calb_tmr])*rtc_hz[sim_calb_tmr];
|
|
if (0 == inst_per_sec)
|
|
inst_per_sec = ((double)rtc_currd[sim_calb_tmr])*sim_int_clk_tps;
|
|
return inst_per_sec;
|
|
}
|
|
|
|
t_stat sim_timer_activate (UNIT *uptr, int32 interval)
|
|
{
|
|
AIO_VALIDATE;
|
|
return sim_timer_activate_after (uptr, (uint32)((interval * 1000000.0) / sim_timer_inst_per_sec ()));
|
|
}
|
|
|
|
t_stat sim_timer_activate_after (UNIT *uptr, uint32 usec_delay)
|
|
{
|
|
int inst_delay, tmr;
|
|
double inst_delay_d, inst_per_sec;
|
|
|
|
AIO_VALIDATE;
|
|
/* If this is a clock unit, we need to schedule the related timer unit instead */
|
|
for (tmr=0; tmr<=SIM_NTIMERS; tmr++)
|
|
if (sim_clock_unit[tmr] == uptr) {
|
|
uptr = &sim_timer_units[tmr];
|
|
break;
|
|
}
|
|
if (sim_is_active (uptr)) /* already active? */
|
|
return SCPE_OK;
|
|
inst_per_sec = sim_timer_inst_per_sec ();
|
|
inst_delay_d = ((inst_per_sec*usec_delay)/1000000.0);
|
|
/* Bound delay to avoid overflow. */
|
|
/* Long delays are usually canceled before they expire */
|
|
if (inst_delay_d > (double)0x7fffffff)
|
|
inst_delay_d = (double)0x7fffffff;
|
|
inst_delay = (int32)inst_delay_d;
|
|
if ((inst_delay == 0) && (usec_delay != 0))
|
|
inst_delay = 1; /* Minimum non-zero delay is 1 instruction */
|
|
if ((sim_calb_tmr != -1) && /* calibrated timer available? */
|
|
(inst_delay > 2*rtc_currd[sim_calb_tmr]) && /* delay > 2 * calibrated timer's ticks */
|
|
(uptr->flags & UNIT_IDLE)) { /* idleable unit? */
|
|
sim_debug (DBG_TIM, &sim_timer_dev, "sim_timer_activate_after() - coscheduling %s with calibrated timer after %d instructions (%d usecs)\n",
|
|
sim_uname(uptr), inst_delay, usec_delay);
|
|
return sim_clock_coschedule (uptr, inst_delay); /* coschedule with the calibrated timer */
|
|
}
|
|
#if defined(SIM_ASYNCH_CLOCKS)
|
|
if ((sim_calb_tmr == -1) || /* if No timer initialized */
|
|
(inst_delay < rtc_currd[sim_calb_tmr]) || /* or sooner than next clock tick? */
|
|
(rtc_calibrations[sim_calb_tmr] == 0) || /* or haven't calibrated yet */
|
|
(!sim_asynch_timer)) { /* or asynch disabled */
|
|
sim_debug (DBG_TIM, &sim_timer_dev, "sim_timer_activate_after() - activating %s after %d instructions\n",
|
|
sim_uname(uptr), inst_delay);
|
|
return _sim_activate (uptr, inst_delay); /* queue it now */
|
|
}
|
|
if (1) {
|
|
double d_now = sim_timenow_double ();
|
|
|
|
uptr->a_usec_delay = usec_delay;
|
|
uptr->a_due_time = d_now + (double)(usec_delay)/1000000.0;
|
|
uptr->a_due_gtime = sim_gtime () + (sim_timer_inst_per_sec () * (double)(usec_delay)/1000000.0);
|
|
uptr->time = usec_delay;
|
|
uptr->cancel = &_sim_wallclock_cancel; /* bind cleanup method */
|
|
uptr->a_is_active = &_sim_wallclock_is_active;
|
|
if (tmr < SIM_NTIMERS) { /* Timer Unit? */
|
|
sim_clock_unit[tmr]->cancel = &_sim_wallclock_cancel;
|
|
sim_clock_unit[tmr]->a_is_active = &_sim_wallclock_is_active;
|
|
}
|
|
|
|
sim_debug (DBG_TIM, &sim_timer_dev, "sim_timer_activate_after() - queue wallclock addition %s at %.6f\n",
|
|
sim_uname(uptr), uptr->a_due_time);
|
|
}
|
|
pthread_mutex_lock (&sim_timer_lock);
|
|
uptr->a_next = QUEUE_LIST_END; /* Temporarily mark as active */
|
|
while (sim_wallclock_entry) { /* wait for any prior entry has been digested */
|
|
sim_debug (DBG_TIM, &sim_timer_dev, "sim_timer_activate_after() - queue insert entry %s busy waiting for 1ms\n",
|
|
sim_uname(sim_wallclock_entry));
|
|
pthread_mutex_unlock (&sim_timer_lock);
|
|
sim_os_ms_sleep (1);
|
|
pthread_mutex_lock (&sim_timer_lock);
|
|
}
|
|
sim_wallclock_entry = uptr;
|
|
pthread_mutex_unlock (&sim_timer_lock);
|
|
pthread_cond_signal (&sim_timer_wake); /* wake the timer thread to deal with it */
|
|
return SCPE_OK;
|
|
#else
|
|
sim_debug (DBG_TIM, &sim_timer_dev, "sim_timer_activate_after() - queue addition %s at %d (%d usecs)\n",
|
|
sim_uname(uptr), inst_delay, usec_delay);
|
|
return _sim_activate (uptr, inst_delay); /* queue it now */
|
|
#endif
|
|
}
|
|
|
|
/* Clock coscheduling routines */
|
|
|
|
t_stat sim_register_clock_unit_tmr (UNIT *uptr, int32 tmr)
|
|
{
|
|
if (tmr == SIM_INTERNAL_CLK)
|
|
tmr = SIM_NTIMERS;
|
|
else {
|
|
if ((tmr < 0) || (tmr >= SIM_NTIMERS))
|
|
return SCPE_IERR;
|
|
}
|
|
if (NULL == uptr) { /* deregistering? */
|
|
/* Migrate any coscheduled devices to the standard queue and they will requeue themselves */
|
|
while (sim_clock_cosched_queue[tmr] != QUEUE_LIST_END) {
|
|
UNIT *uptr = sim_clock_cosched_queue[tmr];
|
|
|
|
_sim_coschedule_cancel (uptr);
|
|
_sim_activate (uptr, 1);
|
|
}
|
|
sim_clock_unit[tmr] = NULL;
|
|
return SCPE_OK;
|
|
}
|
|
if (NULL == sim_clock_unit[tmr])
|
|
sim_clock_cosched_queue[tmr] = QUEUE_LIST_END;
|
|
sim_clock_unit[tmr] = uptr;
|
|
uptr->dynflags |= UNIT_TMR_UNIT;
|
|
sim_timer_units[tmr].flags = UNIT_DIS | (sim_clock_unit[tmr] ? UNIT_IDLE : 0);
|
|
return SCPE_OK;
|
|
}
|
|
|
|
/* Default timer is 0, otherwise use a calibrated one if it exists */
|
|
static int32 _default_tmr ()
|
|
{
|
|
return (rtc_currd[0] ? 0 : ((sim_calb_tmr != -1) ? sim_calb_tmr : 0));
|
|
}
|
|
|
|
static int32 _tick_size ()
|
|
{
|
|
return (rtc_currd[_default_tmr ()] ? rtc_currd[_default_tmr ()] : 10000);
|
|
}
|
|
|
|
int32 sim_rtcn_tick_size (int32 tmr)
|
|
{
|
|
return (rtc_currd[tmr]) ? rtc_currd[tmr] : 10000;
|
|
}
|
|
|
|
t_stat sim_register_clock_unit (UNIT *uptr)
|
|
{
|
|
return sim_register_clock_unit_tmr (uptr, 0);
|
|
}
|
|
|
|
t_stat sim_clock_coschedule (UNIT *uptr, int32 interval)
|
|
{
|
|
int32 ticks = (interval + (_tick_size ()/2))/_tick_size ();/* Convert to ticks */
|
|
|
|
sim_debug (DBG_QUE, &sim_timer_dev, "sim_clock_coschedule(%s, interval=%d, ticks=%d)\n", sim_uname(uptr), interval, ticks);
|
|
return sim_clock_coschedule_tmr (uptr, _default_tmr (), ticks);
|
|
}
|
|
|
|
t_stat sim_clock_coschedule_abs (UNIT *uptr, int32 interval)
|
|
{
|
|
int32 ticks = (interval + (_tick_size ()/2))/_tick_size ();/* Convert to ticks */
|
|
|
|
sim_debug (DBG_QUE, &sim_timer_dev, "sim_clock_coschedule_abs(%s, interval=%d, ticks=%d)\n", sim_uname(uptr), interval, ticks);
|
|
sim_cancel (uptr);
|
|
return sim_clock_coschedule_tmr (uptr, _default_tmr (), ticks);
|
|
}
|
|
|
|
t_stat sim_clock_coschedule_tmr (UNIT *uptr, int32 tmr, int32 ticks)
|
|
{
|
|
if (ticks < 0)
|
|
return SCPE_ARG;
|
|
if (sim_is_active (uptr)) {
|
|
sim_debug (DBG_TIM, &sim_timer_dev, "sim_clock_coschedule_tmr(tmr=%d) - %s is already active\n", tmr, sim_uname (uptr));
|
|
return SCPE_OK;
|
|
}
|
|
if (tmr == SIM_INTERNAL_CLK)
|
|
tmr = SIM_NTIMERS;
|
|
else {
|
|
if ((tmr < 0) || (tmr >= SIM_NTIMERS))
|
|
return sim_activate (uptr, MAX(1, ticks) * 10000);
|
|
}
|
|
if (NULL == sim_clock_unit[tmr])
|
|
return sim_activate (uptr, ticks * (rtc_currd[tmr] ? rtc_currd[tmr] : _tick_size ()));
|
|
else {
|
|
UNIT *cptr, *prvptr;
|
|
int32 accum;
|
|
|
|
sim_debug (DBG_QUE, &sim_timer_dev, "sim_clock_coschedule_tmr(tmr=%d) - queueing %s for clock co-schedule (ticks=%d)\n", tmr, sim_uname (uptr), ticks);
|
|
prvptr = NULL;
|
|
accum = 0;
|
|
for (cptr = sim_clock_cosched_queue[tmr]; cptr != QUEUE_LIST_END; cptr = cptr->next) {
|
|
if (ticks < (accum + cptr->time))
|
|
break;
|
|
accum = accum + cptr->time;
|
|
prvptr = cptr;
|
|
}
|
|
if (prvptr == NULL) {
|
|
cptr = uptr->next = sim_clock_cosched_queue[tmr];
|
|
sim_clock_cosched_queue[tmr] = uptr;
|
|
}
|
|
else {
|
|
cptr = uptr->next = prvptr->next;
|
|
prvptr->next = uptr;
|
|
}
|
|
uptr->time = ticks - accum;
|
|
if (cptr != QUEUE_LIST_END)
|
|
cptr->time = cptr->time - uptr->time;
|
|
uptr->cancel = &_sim_coschedule_cancel; /* bind cleanup method */
|
|
sim_cosched_interval[tmr] = sim_clock_cosched_queue[tmr]->time;
|
|
}
|
|
return SCPE_OK;
|
|
}
|
|
|
|
t_stat sim_clock_coschedule_tmr_abs (UNIT *uptr, int32 tmr, int32 ticks)
|
|
{
|
|
sim_cancel (uptr);
|
|
return sim_clock_coschedule_tmr (uptr, tmr, ticks);
|
|
}
|
|
|
|
/* Cancel a unit on the coschedule queue */
|
|
static void _sim_coschedule_cancel (UNIT *uptr)
|
|
{
|
|
AIO_UPDATE_QUEUE;
|
|
if (uptr->next) { /* On a queue? */
|
|
int tmr;
|
|
|
|
for (tmr=0; tmr<SIM_NTIMERS; tmr++) {
|
|
if (uptr == sim_clock_cosched_queue[tmr]) {
|
|
sim_clock_cosched_queue[tmr] = uptr->next;
|
|
uptr->next = NULL;
|
|
}
|
|
else {
|
|
UNIT *cptr;
|
|
|
|
for (cptr = sim_clock_cosched_queue[tmr];
|
|
(cptr != QUEUE_LIST_END);
|
|
cptr = cptr->next)
|
|
if (cptr->next == (uptr)) {
|
|
cptr->next = (uptr)->next;
|
|
uptr->next = NULL;
|
|
break;
|
|
}
|
|
}
|
|
if (uptr->next == NULL) { /* found? */
|
|
uptr->cancel = NULL;
|
|
sim_debug (SIM_DBG_EVENT, &sim_timer_dev, "Canceled Clock Coscheduled Event for %s\n", sim_uname(uptr));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(SIM_ASYNCH_CLOCKS)
|
|
static void _sim_wallclock_cancel (UNIT *uptr)
|
|
{
|
|
int32 tmr;
|
|
|
|
AIO_UPDATE_QUEUE;
|
|
pthread_mutex_lock (&sim_timer_lock);
|
|
/* If this is a clock unit, we need to cancel both this and the related timer unit */
|
|
for (tmr=0; tmr<SIM_NTIMERS; tmr++)
|
|
if (sim_clock_unit[tmr] == uptr) {
|
|
uptr = &sim_timer_units[tmr];
|
|
break;
|
|
}
|
|
if (uptr->a_next) {
|
|
UNIT *cptr;
|
|
|
|
if (uptr == sim_wallclock_entry) { /* Pending on the queue? */
|
|
sim_wallclock_entry = NULL;
|
|
uptr->a_next = NULL;
|
|
}
|
|
else {
|
|
if (uptr == sim_wallclock_queue) {
|
|
sim_wallclock_queue = uptr->a_next;
|
|
uptr->a_next = NULL;
|
|
sim_debug (SIM_DBG_EVENT, &sim_timer_dev, "Canceling Timer Event for %s\n", sim_uname(uptr));
|
|
pthread_cond_signal (&sim_timer_wake);
|
|
}
|
|
else {
|
|
for (cptr = sim_wallclock_queue;
|
|
(cptr != QUEUE_LIST_END);
|
|
cptr = cptr->a_next) {
|
|
if (cptr->a_next == (uptr)) {
|
|
cptr->a_next = (uptr)->a_next;
|
|
uptr->a_next = NULL;
|
|
sim_debug (SIM_DBG_EVENT, &sim_timer_dev, "Canceled Timer Event for %s\n", sim_uname(uptr));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (uptr->a_next == NULL) {
|
|
uptr->a_due_time = uptr->a_due_gtime = uptr->a_usec_delay = 0;
|
|
uptr->cancel = NULL;
|
|
uptr->a_is_active = NULL;
|
|
if (tmr < SIM_NTIMERS) { /* Timer Unit? */
|
|
sim_clock_unit[tmr]->cancel = NULL;
|
|
sim_clock_unit[tmr]->a_is_active = NULL;
|
|
}
|
|
}
|
|
}
|
|
pthread_mutex_unlock (&sim_timer_lock);
|
|
}
|
|
|
|
int32 sim_timer_activate_time (UNIT *uptr)
|
|
{
|
|
UNIT *cptr;
|
|
double d_result;
|
|
int32 tmr;
|
|
|
|
if (uptr->a_is_active == &_sim_wallclock_is_active) {
|
|
pthread_mutex_lock (&sim_timer_lock);
|
|
if (uptr == sim_wallclock_entry) {
|
|
d_result = uptr->a_due_gtime - sim_gtime ();
|
|
if (d_result < 0.0)
|
|
d_result = 0.0;
|
|
if (d_result > (double)0x7FFFFFFE)
|
|
d_result = (double)0x7FFFFFFE;
|
|
pthread_mutex_unlock (&sim_timer_lock);
|
|
return ((int32)d_result) + 1;
|
|
}
|
|
for (cptr = sim_wallclock_queue;
|
|
cptr != QUEUE_LIST_END;
|
|
cptr = cptr->a_next)
|
|
if (uptr == cptr) {
|
|
d_result = uptr->a_due_gtime - sim_gtime ();
|
|
if (d_result < 0.0)
|
|
d_result = 0.0;
|
|
if (d_result > (double)0x7FFFFFFE)
|
|
d_result = (double)0x7FFFFFFE;
|
|
pthread_mutex_unlock (&sim_timer_lock);
|
|
return ((int32)d_result) + 1;
|
|
}
|
|
pthread_mutex_unlock (&sim_timer_lock);
|
|
}
|
|
if (uptr->a_next)
|
|
return uptr->a_event_time + 1;
|
|
for (tmr=0; tmr<SIM_NTIMERS; tmr++)
|
|
if (sim_clock_unit[tmr] == uptr)
|
|
return sim_activate_time (&sim_timer_units[tmr]);
|
|
return -1; /* Not found. */
|
|
}
|
|
|
|
static t_bool _sim_wallclock_is_active (UNIT *uptr)
|
|
{
|
|
int32 tmr;
|
|
|
|
if (uptr->a_next)
|
|
return TRUE;
|
|
/* If this is a clock unit, we need to examine the related timer unit instead */
|
|
for (tmr=0; tmr<SIM_NTIMERS; tmr++)
|
|
if (sim_clock_unit[tmr] == uptr)
|
|
return (sim_timer_units[tmr].a_next != NULL);
|
|
return FALSE;
|
|
}
|
|
|
|
#endif /* defined(SIM_ASYNCH_CLOCKS) */
|