1. New Features in 3.3-1 1.1 H316 TTY - implemented paper-tape reader and punch - added ASCII file support PTR,PTP - added ASCII file support 1.2 HP2100 CPU - added SET CPU 21MX-M, 21MX-E (from Dave Brian) - disabled TIMER/EXECUTE/DIAG instructions for 21MX-M (from Dave Bryan) - added post-processor to maintain T/M consistency (from Dave Bryan) DS - released 13037 disk controller 1.3 Interdata MT - added read-only file support 1.4 SDS MT - added read-only file support 1.5 PDP-11 TM,TS - added read-only file support 2. Bugs Fixed in 3.3 2.1 H316 CPU - fixed bug in divide LPT - fixed bug in DMA/DMC support MT - fixed bug in DMA/DMC support DP - fixed bug in skip on not seeking TTY - fixed bugs in SKS '104, '504 2.2 HP2100 CPU - fixed DMA reset to clear alternate CTL flop (from Dave Bryan) - fixed bug in JPY (from Dave Bryan) - fixed bugs in CBS, SBS, TBS - separate A/B from M[0/1] for DMA (found by Dave Bryan) LPS - added restart when set online, etc. (from Dave Bryan) - fixed col count for non-printing chars (from Dave Bryan) LPT - added restart when set online, etc. (from Dave Bryan) 2.3 PDP-11 CPU - fixed WAIT to work in all modes (from John Dundas)
851 lines
26 KiB
C
851 lines
26 KiB
C
/* vax780_stddev.c: VAX 11/780 standard I/O devices
|
||
|
||
Copyright (c) 1998-2004, Robert M Supnik
|
||
|
||
Permission is hereby granted, free of charge, to any person obtaining a
|
||
copy of this software and associated documentation files (the "Software"),
|
||
to deal in the Software without restriction, including without limitation
|
||
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
and/or sell copies of the Software, and to permit persons to whom the
|
||
Software is furnished to do so, subject to the following conditions:
|
||
|
||
The above copyright notice and this permission notice shall be included in
|
||
all copies or substantial portions of the Software.
|
||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
||
Except as contained in this notice, the name of Robert M Supnik shall not
|
||
be used in advertising or otherwise to promote the sale, use or other dealings
|
||
in this Software without prior written authorization from Robert M Supnik.
|
||
|
||
tti console input
|
||
tto console output
|
||
rx console floppy
|
||
todr TODR clock
|
||
tmr interval timer
|
||
|
||
08-Sep-04 RMS Cloned from vax_stddev.c, vax_sysdev.c, and pdp11_rx.c
|
||
|
||
The console floppy protocol is based on the description in the 1982 VAX
|
||
Architecture Reference Manual:
|
||
|
||
TXDB<11:8> = 0 -> normal console output
|
||
TXDB<11:8> = 1 -> data output to floppy
|
||
TXDB<11:8> = 9 -> command output to floppy
|
||
TXDB<11:8> = F -> flag output (e.g., reboot)
|
||
|
||
RXDB<11:8> = 0 -> normal terminal input
|
||
RXDB<11:8> = 1 -> data input from floppy
|
||
RXDB<11:8> = 2 -> status input from floppy
|
||
RXDB<11:8> = 9 -> "command" input from floppy (protocol error)
|
||
*/
|
||
|
||
#include "vax_defs.h"
|
||
#include <time.h>
|
||
|
||
/* Terminal definitions */
|
||
|
||
#define RXCS_RD (CSR_DONE + CSR_IE) /* terminal input */
|
||
#define RXCS_WR (CSR_IE)
|
||
#define RXDB_ERR 0x8000 /* error */
|
||
#define RXDB_OVR 0x4000 /* overrun */
|
||
#define RXDB_FRM 0x2000 /* framing error */
|
||
#define RXDB_RBR 0x0400 /* receive break */
|
||
#define TXCS_RD (CSR_DONE + CSR_IE) /* terminal output */
|
||
#define TXCS_WR (CSR_IE)
|
||
#define TXDB_V_SEL 8 /* unit select */
|
||
#define TXDB_M_SEL 0xF
|
||
#define TXDB_FDAT 0x1 /* floppy data */
|
||
#define TXDB_FCMD 0x9 /* floppy cmd */
|
||
#define TXDB_MISC 0xF /* console misc */
|
||
#define TXDB_SEL (TXDB_M_SEL << TXDB_V_SEL) /* non-terminal */
|
||
#define TXDB_GETSEL(x) (((x) >> TXDB_V_SEL) & TXDB_M_SEL)
|
||
#define UNIT_V_8B (UNIT_V_UF + 0) /* 8B mode */
|
||
#define UNIT_8B (1 << UNIT_V_8B)
|
||
|
||
/* Clock definitions */
|
||
|
||
#define TMR_CSR_ERR 0x80000000 /* error W1C */
|
||
#define TMR_CSR_DON 0x00000080 /* done W1C */
|
||
#define TMR_CSR_IE 0x00000040 /* int enb RW */
|
||
#define TMR_CSR_SGL 0x00000020 /* single WO */
|
||
#define TMR_CSR_XFR 0x00000010 /* xfer WO */
|
||
#define TMR_CSR_RUN 0x00000001 /* run RW */
|
||
#define TMR_CSR_RD (TMR_CSR_W1C | TMR_CSR_WR)
|
||
#define TMR_CSR_W1C (TMR_CSR_ERR | TMR_CSR_DON)
|
||
#define TMR_CSR_WR (TMR_CSR_IE | TMR_CSR_RUN)
|
||
#define TMR_INC 10000 /* usec/interval */
|
||
#define CLK_DELAY 5000 /* 100 Hz */
|
||
#define TMXR_MULT 2 /* 50 Hz */
|
||
|
||
/* Floppy definitions */
|
||
|
||
#define FL_NUMTR 77 /* tracks/disk */
|
||
#define FL_M_TRACK 0377
|
||
#define FL_NUMSC 26 /* sectors/track */
|
||
#define FL_M_SECTOR 0177
|
||
#define FL_NUMBY 128 /* bytes/sector */
|
||
#define FL_SIZE (FL_NUMTR * FL_NUMSC * FL_NUMBY) /* bytes/disk */
|
||
#define UNIT_V_WLK (UNIT_V_UF) /* write locked */
|
||
#define UNIT_WLK (1u << UNIT_V_UF)
|
||
#define UNIT_WPRT (UNIT_WLK | UNIT_RO) /* write protect */
|
||
|
||
#define FL_IDLE 0 /* idle state */
|
||
#define FL_RWDS 1 /* rw, sect next */
|
||
#define FL_RWDT 2 /* rw, track next */
|
||
#define FL_READ 3 /* read */
|
||
#define FL_READ1 4
|
||
#define FL_WRITE 5 /* write */
|
||
#define FL_WRITE1 6
|
||
#define FL_FILL 7 /* fill buffer */
|
||
#define FL_EMPTY 8 /* empty buffer */
|
||
#define FL_READSTA 9 /* read status */
|
||
#define FL_DONE 10 /* cmd done */
|
||
|
||
#define FL_V_FNC 0 /* floppy function */
|
||
#define FL_M_FNC 0xFF
|
||
#define FL_FNCRD 0x0 /* read */
|
||
#define FL_FNCWR 0x1 /* write */
|
||
#define FL_FNCRS 0x2 /* read status */
|
||
#define FL_FNCWD 0x3 /* write del data */
|
||
#define FL_FNCCA 0x4 /* cancel */
|
||
#define FL_CDATA 0x100 /* returned data */
|
||
#define FL_CDONE 0x200 /* completion code */
|
||
#define FL_STACRC 0x001 /* status bits */
|
||
#define FL_STAPAR 0x002
|
||
#define FL_STAINC 0x004
|
||
#define FL_STADDA 0x040
|
||
#define FL_STAERR 0x080
|
||
#define FL_CPROT 0x905 /* protocol error */
|
||
#define FL_MISC 0xF00 /* misc communications */
|
||
#define FL_SWDN 0x1 /* software done */
|
||
#define FL_BOOT 0x2 /* reboot */
|
||
#define FL_CLWS 0x3 /* clear warm start */
|
||
#define FL_CLCS 0x4 /* clear cold start */
|
||
#define FL_GETFNC(x) (((x) >> FL_V_FNC) & FL_M_FNC)
|
||
|
||
#define TRACK u3 /* current track */
|
||
#define CALC_DA(t,s) (((t) * FL_NUMSC) + ((s) - 1)) * FL_NUMBY
|
||
|
||
int32 tti_csr = 0; /* control/status */
|
||
int32 tti_buf = 0; /* buffer */
|
||
int32 tti_int = 0; /* interrupt */
|
||
int32 tto_csr = 0; /* control/status */
|
||
int32 tto_buf = 0; /* buffer */
|
||
int32 tto_int = 0; /* interrupt */
|
||
|
||
int32 tmr_iccs = 0; /* interval timer csr */
|
||
uint32 tmr_icr = 0; /* curr interval */
|
||
uint32 tmr_nicr = 0; /* next interval */
|
||
uint32 tmr_inc = 0; /* timer increment */
|
||
int32 tmr_sav = 0; /* timer save */
|
||
int32 tmr_int = 0; /* interrupt */
|
||
int32 clk_tps = 100; /* ticks/second */
|
||
int32 tmxr_poll = CLK_DELAY * TMXR_MULT; /* term mux poll */
|
||
int32 tmr_poll = CLK_DELAY; /* pgm timer poll */
|
||
int32 todr_reg = 0; /* TODR register */
|
||
|
||
int32 fl_fnc = 0; /* function */
|
||
int32 fl_esr = 0; /* error status */
|
||
int32 fl_ecode = 0; /* error code */
|
||
int32 fl_track = 0; /* desired track */
|
||
int32 fl_sector = 0; /* desired sector */
|
||
int32 fl_state = FL_IDLE; /* controller state */
|
||
int32 fl_stopioe = 1; /* stop on error */
|
||
int32 fl_swait = 100; /* seek, per track */
|
||
int32 fl_cwait = 50; /* command time */
|
||
int32 fl_xwait = 20; /* tr set time */
|
||
uint8 fl_buf[FL_NUMBY] = { 0 }; /* sector buffer */
|
||
int32 fl_bptr = 0; /* buffer pointer */
|
||
|
||
extern int32 sim_switches;
|
||
|
||
t_stat tti_svc (UNIT *uptr);
|
||
t_stat tto_svc (UNIT *uptr);
|
||
t_stat clk_svc (UNIT *uptr);
|
||
t_stat tmr_svc (UNIT *uptr);
|
||
t_stat tti_reset (DEVICE *dptr);
|
||
t_stat tto_reset (DEVICE *dptr);
|
||
t_stat clk_reset (DEVICE *dptr);
|
||
t_stat tmr_reset (DEVICE *dptr);
|
||
t_stat fl_svc (UNIT *uptr);
|
||
t_stat fl_reset (DEVICE *dptr);
|
||
int32 icr_rd (t_bool interp);
|
||
void tmr_incr (uint32 inc);
|
||
void tmr_sched (void);
|
||
t_stat todr_powerup (void);
|
||
t_stat fl_wr_txdb (int32 data);
|
||
t_bool fl_test_xfr (UNIT *uptr, t_bool wr);
|
||
void fl_protocol_error (void);
|
||
|
||
/* TTI data structures
|
||
|
||
tti_dev TTI device descriptor
|
||
tti_unit TTI unit descriptor
|
||
tti_reg TTI register list
|
||
*/
|
||
|
||
UNIT tti_unit = { UDATA (&tti_svc, UNIT_8B, 0), KBD_POLL_WAIT };
|
||
|
||
REG tti_reg[] = {
|
||
{ HRDATA (RXDB, tti_buf, 16) },
|
||
{ HRDATA (RXCS, tti_csr, 16) },
|
||
{ FLDATA (INT, tti_int, 0) },
|
||
{ FLDATA (DONE, tti_csr, CSR_V_DONE) },
|
||
{ FLDATA (IE, tti_csr, CSR_V_IE) },
|
||
{ DRDATA (POS, tti_unit.pos, T_ADDR_W), PV_LEFT },
|
||
{ DRDATA (TIME, tti_unit.wait, 24), REG_NZ + PV_LEFT },
|
||
{ NULL } };
|
||
|
||
MTAB tti_mod[] = {
|
||
{ UNIT_8B, UNIT_8B, "8b", "8B", NULL },
|
||
{ UNIT_8B, 0 , "7b", "7B", NULL },
|
||
{ 0 } };
|
||
|
||
DEVICE tti_dev = {
|
||
"TTI", &tti_unit, tti_reg, tti_mod,
|
||
1, 10, 31, 1, 16, 8,
|
||
NULL, NULL, &tti_reset,
|
||
NULL, NULL, NULL,
|
||
NULL, 0 };
|
||
|
||
/* TTO data structures
|
||
|
||
tto_dev TTO device descriptor
|
||
tto_unit TTO unit descriptor
|
||
tto_reg TTO register list
|
||
*/
|
||
|
||
UNIT tto_unit = { UDATA (&tto_svc, UNIT_8B, 0), SERIAL_OUT_WAIT };
|
||
|
||
REG tto_reg[] = {
|
||
{ HRDATA (TXDB, tto_buf, 16) },
|
||
{ HRDATA (TXCS, tto_csr, 16) },
|
||
{ FLDATA (INT, tto_int, 0) },
|
||
{ FLDATA (DONE, tto_csr, CSR_V_DONE) },
|
||
{ FLDATA (IE, tto_csr, CSR_V_IE) },
|
||
{ DRDATA (POS, tto_unit.pos, T_ADDR_W), PV_LEFT },
|
||
{ DRDATA (TIME, tto_unit.wait, 24), PV_LEFT },
|
||
{ NULL } };
|
||
|
||
MTAB tto_mod[] = {
|
||
{ UNIT_8B, UNIT_8B, "8b", "8B", NULL },
|
||
{ UNIT_8B, 0 , "7b", "7B", NULL },
|
||
{ 0 } };
|
||
|
||
DEVICE tto_dev = {
|
||
"TTO", &tto_unit, tto_reg, tto_mod,
|
||
1, 10, 31, 1, 16, 8,
|
||
NULL, NULL, &tto_reset,
|
||
NULL, NULL, NULL,
|
||
NULL, 0 };
|
||
|
||
/* TODR and TMR data structures */
|
||
|
||
UNIT clk_unit = { UDATA (&clk_svc, 0, 0), CLK_DELAY }; /* 100Hz */
|
||
|
||
REG clk_reg[] = {
|
||
{ DRDATA (TODR, todr_reg, 32), PV_LEFT },
|
||
{ DRDATA (TIME, clk_unit.wait, 24), REG_NZ + PV_LEFT },
|
||
{ DRDATA (TPS, clk_tps, 8), REG_HIDDEN + REG_NZ + PV_LEFT },
|
||
{ NULL } };
|
||
|
||
DEVICE clk_dev = {
|
||
"TODR", &clk_unit, clk_reg, NULL,
|
||
1, 0, 0, 0, 0, 0,
|
||
NULL, NULL, &clk_reset,
|
||
NULL, NULL, NULL,
|
||
NULL, 0 };
|
||
|
||
UNIT tmr_unit = { UDATA (&tmr_svc, 0, 0) }; /* timer */
|
||
|
||
REG tmr_reg[] = {
|
||
{ HRDATA (ICCS, tmr_iccs, 32) },
|
||
{ HRDATA (ICR, tmr_icr, 32) },
|
||
{ HRDATA (NICR, tmr_nicr, 32) },
|
||
{ HRDATA (INCR, tmr_inc, 32), REG_HIDDEN },
|
||
{ HRDATA (SAVE, tmr_sav, 32), REG_HIDDEN },
|
||
{ FLDATA (INT, tmr_int, 0) },
|
||
{ NULL } };
|
||
|
||
DEVICE tmr_dev = {
|
||
"TMR", &tmr_unit, tmr_reg, NULL,
|
||
1, 0, 0, 0, 0, 0,
|
||
NULL, NULL, &tmr_reset,
|
||
NULL, NULL, NULL,
|
||
NULL, 0 };
|
||
|
||
/* RX01 data structures
|
||
|
||
fl_dev RX device descriptor
|
||
fl_unit RX unit list
|
||
fl_reg RX register list
|
||
fl_mod RX modifier list
|
||
*/
|
||
|
||
UNIT fl_unit = { UDATA (&fl_svc,
|
||
UNIT_FIX+UNIT_ATTABLE+UNIT_BUFABLE+UNIT_MUSTBUF, FL_SIZE) };
|
||
|
||
REG fl_reg[] = {
|
||
{ HRDATA (FNC, fl_fnc, 8) },
|
||
{ HRDATA (ES, fl_esr, 8) },
|
||
{ HRDATA (ECODE, fl_ecode, 8) },
|
||
{ HRDATA (TA, fl_track, 8) },
|
||
{ HRDATA (SA, fl_sector, 8) },
|
||
{ DRDATA (STATE, fl_state, 4), REG_RO },
|
||
{ DRDATA (BPTR, fl_bptr, 7) },
|
||
{ DRDATA (CTIME, fl_cwait, 24), PV_LEFT },
|
||
{ DRDATA (STIME, fl_swait, 24), PV_LEFT },
|
||
{ DRDATA (XTIME, fl_xwait, 24), PV_LEFT },
|
||
{ FLDATA (STOP_IOE, fl_stopioe, 0) },
|
||
{ BRDATA (DBUF, fl_buf, 16, 8, FL_NUMBY) },
|
||
{ NULL } };
|
||
|
||
MTAB fl_mod[] = {
|
||
{ UNIT_WLK, 0, "write enabled", "WRITEENABLED", NULL },
|
||
{ UNIT_WLK, UNIT_WLK, "write locked", "LOCKED", NULL },
|
||
{ 0 } };
|
||
|
||
DEVICE fl_dev = {
|
||
"RX", &fl_unit, fl_reg, fl_mod,
|
||
1, DEV_RDX, 20, 1, DEV_RDX, 8,
|
||
NULL, NULL, &fl_reset,
|
||
NULL, NULL, NULL,
|
||
NULL, 0 };
|
||
|
||
/* Terminal MxPR routines
|
||
|
||
rxcs_rd/wr input control/status
|
||
rxdb_rd input buffer
|
||
txcs_rd/wr output control/status
|
||
txdb_wr output buffer
|
||
*/
|
||
|
||
int32 rxcs_rd (void)
|
||
{
|
||
return (tti_csr & RXCS_RD);
|
||
}
|
||
|
||
void rxcs_wr (int32 data)
|
||
{
|
||
if ((data & CSR_IE) == 0) tto_int = 0;
|
||
else if ((tti_csr & (CSR_DONE + CSR_IE)) == CSR_DONE)
|
||
tti_int = 1;
|
||
tti_csr = (tti_csr & ~RXCS_WR) | (data & RXCS_WR);
|
||
return;
|
||
}
|
||
|
||
int32 rxdb_rd (void)
|
||
{
|
||
int32 t = tti_buf; /* char + error */
|
||
|
||
tti_csr = tti_csr & ~CSR_DONE; /* clr done */
|
||
tti_buf = tti_buf & BMASK; /* clr errors */
|
||
tti_int = 0;
|
||
return t;
|
||
}
|
||
|
||
int32 txcs_rd (void)
|
||
{
|
||
return (tto_csr & TXCS_RD);
|
||
}
|
||
|
||
void txcs_wr (int32 data)
|
||
{
|
||
if ((data & CSR_IE) == 0) tto_int = 0;
|
||
else if ((tto_csr & (CSR_DONE + CSR_IE)) == CSR_DONE)
|
||
tto_int = 1;
|
||
tto_csr = (tto_csr & ~TXCS_WR) | (data & TXCS_WR);
|
||
return;
|
||
}
|
||
|
||
void txdb_wr (int32 data)
|
||
{
|
||
tto_buf = data & WMASK; /* save data */
|
||
tto_csr = tto_csr & ~CSR_DONE; /* clear flag */
|
||
tto_int = 0; /* clear int */
|
||
if (tto_buf & TXDB_SEL) fl_wr_txdb (tto_buf); /* floppy? */
|
||
else sim_activate (&tto_unit, tto_unit.wait); /* no, console */
|
||
return;
|
||
}
|
||
|
||
/* Terminal input service (poll for character */
|
||
|
||
t_stat tti_svc (UNIT *uptr)
|
||
{
|
||
int32 c;
|
||
|
||
sim_activate (&tti_unit, tti_unit.wait); /* continue poll */
|
||
if ((c = sim_poll_kbd ()) < SCPE_KFLAG) return c; /* no char or error? */
|
||
if (c & SCPE_BREAK) /* break? */
|
||
tti_buf = RXDB_ERR | RXDB_FRM | RXDB_RBR;
|
||
else tti_buf = c & ((tti_unit.flags & UNIT_8B)? 0377: 0177);
|
||
tti_unit.pos = tti_unit.pos + 1;
|
||
tti_csr = tti_csr | CSR_DONE;
|
||
if (tti_csr & CSR_IE) tti_int = 1;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Terminal input reset */
|
||
|
||
t_stat tti_reset (DEVICE *dptr)
|
||
{
|
||
tti_buf = 0;
|
||
tti_csr = 0;
|
||
tti_int = 0;
|
||
sim_activate (&tti_unit, tti_unit.wait); /* activate unit */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Terminal output service (output character) */
|
||
|
||
t_stat tto_svc (UNIT *uptr)
|
||
{
|
||
int32 c;
|
||
t_stat r;
|
||
|
||
if ((tto_buf & TXDB_SEL) == 0) { /* for console? */
|
||
c = tto_buf & ((tto_unit.flags & UNIT_8B)? 0377: 0177);
|
||
if ((r = sim_putchar_s (c)) != SCPE_OK) { /* output; error? */
|
||
sim_activate (uptr, uptr->wait); /* retry */
|
||
return ((r == SCPE_STALL)? SCPE_OK: r); } /* !stall? report */
|
||
tto_unit.pos = tto_unit.pos + 1; }
|
||
tto_csr = tto_csr | CSR_DONE;
|
||
if (tto_csr & CSR_IE) tto_int = 1;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Terminal output reset */
|
||
|
||
t_stat tto_reset (DEVICE *dptr)
|
||
{
|
||
tto_buf = 0;
|
||
tto_csr = CSR_DONE;
|
||
tto_int = 0;
|
||
sim_cancel (&tto_unit); /* deactivate unit */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Programmable timer
|
||
|
||
The architected VAX timer, which increments at 1Mhz, cannot be
|
||
accurately simulated due to the overhead that would be required
|
||
for 1M clock events per second. Instead, a hidden calibrated
|
||
100Hz timer is run (because that's what VMS expects), and a
|
||
gross hack is used for the interval timer.
|
||
|
||
When the timer is started, the timer interval is inspected.
|
||
|
||
if (int < 0 and small) then testing timer, count instructions.
|
||
Small is determined by when the requested interval is less
|
||
than the size of a 100Hz system clock tick.
|
||
if (int >= 0 or large) then counting a real interval, schedule
|
||
clock events at 100Hz using calibrated clock delay. When
|
||
the remaining time value gets small enough, behave like
|
||
the small case above.
|
||
|
||
If the interval register is read, then its value between events
|
||
is interpolated using the current instruction count versus the
|
||
count when the most recent event started, the result is scaled
|
||
to the calibrated system clock, unless the interval being timed
|
||
is less than a calibrated system clock tick (or the calibrated
|
||
clock is running very slowly) at which time the result will be
|
||
the elapsed instruction count.
|
||
*/
|
||
|
||
int32 iccs_rd (void)
|
||
{
|
||
return tmr_iccs & TMR_CSR_RD;
|
||
}
|
||
|
||
void iccs_wr (int32 val)
|
||
{
|
||
if ((val & TMR_CSR_RUN) == 0) { /* clearing run? */
|
||
sim_cancel (&tmr_unit); /* cancel timer */
|
||
if (tmr_iccs & TMR_CSR_RUN) /* run 1 -> 0? */
|
||
tmr_icr = icr_rd (TRUE); } /* update itr */
|
||
tmr_iccs = tmr_iccs & ~(val & TMR_CSR_W1C); /* W1C csr */
|
||
tmr_iccs = (tmr_iccs & ~TMR_CSR_WR) | /* new r/w */
|
||
(val & TMR_CSR_WR);
|
||
if (val & TMR_CSR_XFR) tmr_icr = tmr_nicr; /* xfr set? */
|
||
if (val & TMR_CSR_RUN) { /* run? */
|
||
if (val & TMR_CSR_XFR) /* new tir? */
|
||
sim_cancel (&tmr_unit); /* stop prev */
|
||
if (!sim_is_active (&tmr_unit)) /* not running? */
|
||
tmr_sched (); } /* activate */
|
||
else if (val & TMR_CSR_SGL) { /* single step? */
|
||
tmr_incr (1); /* incr tmr */
|
||
if (tmr_icr == 0) /* if ovflo, */
|
||
tmr_icr = tmr_nicr; } /* reload tir */
|
||
if ((tmr_iccs & (TMR_CSR_DON | TMR_CSR_IE)) != /* update int */
|
||
(TMR_CSR_DON | TMR_CSR_IE)) tmr_int = 0;
|
||
return;
|
||
}
|
||
|
||
int32 icr_rd (t_bool interp)
|
||
{
|
||
uint32 delta;
|
||
|
||
if (interp || (tmr_iccs & TMR_CSR_RUN)) { /* interp, running? */
|
||
delta = sim_grtime () - tmr_sav; /* delta inst */
|
||
if ((tmr_inc == TMR_INC) && /* scale large int */
|
||
(tmr_poll > TMR_INC))
|
||
delta = (uint32) ((((double) delta) * TMR_INC) / tmr_poll);
|
||
if (delta >= tmr_inc) delta = tmr_inc - 1;
|
||
return tmr_icr + delta; }
|
||
return tmr_icr;
|
||
}
|
||
|
||
int32 nicr_rd ()
|
||
{
|
||
return tmr_nicr;
|
||
}
|
||
|
||
void nicr_wr (int32 val)
|
||
{
|
||
tmr_nicr = val;
|
||
}
|
||
|
||
/* 100Hz base clock unit service */
|
||
|
||
t_stat clk_svc (UNIT *uptr)
|
||
{
|
||
int32 t;
|
||
|
||
t = sim_rtcn_calb (clk_tps, TMR_CLK); /* calibrate clock */
|
||
sim_activate (&clk_unit, t); /* reactivate unit */
|
||
tmr_poll = t; /* set tmr poll */
|
||
tmxr_poll = t * TMXR_MULT; /* set mux poll */
|
||
todr_reg = todr_reg + 1; /* incr TODR */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Interval timer unit service */
|
||
|
||
t_stat tmr_svc (UNIT *uptr)
|
||
{
|
||
tmr_incr (tmr_inc); /* incr timer */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Timer increment */
|
||
|
||
void tmr_incr (uint32 inc)
|
||
{
|
||
uint32 new_icr = (tmr_icr + inc) & LMASK; /* add incr */
|
||
|
||
if (new_icr < tmr_icr) { /* ovflo? */
|
||
tmr_icr = 0; /* now 0 */
|
||
if (tmr_iccs & TMR_CSR_DON) /* done? set err */
|
||
tmr_iccs = tmr_iccs | TMR_CSR_ERR;
|
||
else tmr_iccs = tmr_iccs | TMR_CSR_DON; /* set done */
|
||
if (tmr_iccs & TMR_CSR_RUN) { /* run? */
|
||
tmr_icr = tmr_nicr; /* reload */
|
||
tmr_sched (); } /* reactivate */
|
||
if (tmr_iccs & TMR_CSR_IE) tmr_int = 1; /* ie? set int req */
|
||
else tmr_int = 0; }
|
||
else { tmr_icr = new_icr; /* no, update icr */
|
||
if (tmr_iccs & TMR_CSR_RUN) /* still running? */
|
||
tmr_sched (); } /* reactivate */
|
||
return;
|
||
}
|
||
|
||
/* Timer scheduling */
|
||
|
||
void tmr_sched (void)
|
||
{
|
||
int32 clk_time = sim_is_active (&clk_unit) - 1;
|
||
int32 tmr_time;
|
||
|
||
tmr_sav = sim_grtime (); /* save intvl base */
|
||
if (tmr_icr > (0xFFFFFFFFu - TMR_INC)) { /* short interval? */
|
||
tmr_inc = (~tmr_icr + 1); /* inc = interval */
|
||
tmr_time = tmr_inc; }
|
||
else { tmr_inc = TMR_INC; /* usec/interval */
|
||
tmr_time = tmr_poll; }
|
||
if (tmr_time == 0) tmr_time = 1;
|
||
if ((tmr_inc = TMR_INC) && (tmr_time > clk_time)) {
|
||
|
||
/* Align scheduled event to be identical to the event for the next clock
|
||
tick. This lets us always see a consistent calibrated value, both for
|
||
this scheduling, AND for any query of the current timer register that
|
||
may happen in tmr_icr_rd (). This presumes that sim_activate will
|
||
queue the interval timer behind the event for the 100Hz clock tick. */
|
||
|
||
tmr_inc = (uint32) (((double) clk_time * TMR_INC) / tmr_poll);
|
||
tmr_time = clk_time; }
|
||
sim_activate (&tmr_unit, tmr_time);
|
||
return;
|
||
}
|
||
|
||
/* 100Hz clock reset */
|
||
|
||
t_stat clk_reset (DEVICE *dptr)
|
||
{
|
||
int32 t;
|
||
|
||
t = sim_rtcn_init (clk_unit.wait, TMR_CLK); /* init 100Hz timer */
|
||
sim_activate (&clk_unit, t); /* activate 100Hz unit */
|
||
tmr_poll = t; /* set tmr poll */
|
||
tmxr_poll = t * TMXR_MULT; /* set mux poll */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Interval timer reset */
|
||
|
||
t_stat tmr_reset (DEVICE *dptr)
|
||
{
|
||
tmr_iccs = 0;
|
||
tmr_icr = 0;
|
||
tmr_nicr = 0;
|
||
tmr_int = 0;
|
||
sim_cancel (&tmr_unit); /* cancel timer */
|
||
if (sim_switches & SWMASK ('P')) todr_powerup (); /* powerup? set TODR */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* TODR routines */
|
||
|
||
int32 todr_rd (void)
|
||
{
|
||
return todr_reg;
|
||
}
|
||
|
||
void todr_wr (int32 data)
|
||
{
|
||
todr_reg = data;
|
||
return;
|
||
}
|
||
|
||
t_stat todr_powerup (void)
|
||
{
|
||
uint32 base;
|
||
time_t curr;
|
||
struct tm *ctm;
|
||
|
||
curr = time (NULL); /* get curr time */
|
||
if (curr == (time_t) -1) return SCPE_NOFNC; /* error? */
|
||
ctm = localtime (&curr); /* decompose */
|
||
if (ctm == NULL) return SCPE_NOFNC; /* error? */
|
||
base = (((((ctm->tm_yday * 24) + /* sec since 1-Jan */
|
||
ctm->tm_hour) * 60) +
|
||
ctm->tm_min) * 60) +
|
||
ctm->tm_sec;
|
||
todr_reg = (base * 100) + 0x10000000; /* cvt to VAX form */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Console write, txdb<11:8> != 0 (console unit) */
|
||
|
||
t_stat fl_wr_txdb (int32 data)
|
||
{
|
||
int32 sel = TXDB_GETSEL (data); /* get selection */
|
||
|
||
if (sel == TXDB_FCMD) { /* floppy command? */
|
||
fl_fnc = FL_GETFNC (data); /* get function */
|
||
if (fl_state != FL_IDLE) switch (fl_fnc) { /* cmd in prog? */
|
||
case FL_FNCCA: /* cancel? */
|
||
sim_cancel (&fl_unit); /* stop op */
|
||
fl_state = FL_DONE;
|
||
break;
|
||
default: /* all others */
|
||
fl_protocol_error ();
|
||
return SCPE_OK;
|
||
}
|
||
else switch (fl_fnc) { /* idle, case */
|
||
case FL_FNCRS: /* read status */
|
||
fl_state = FL_READSTA;
|
||
break;
|
||
case FL_FNCCA: /* cancel, nop */
|
||
fl_state = FL_DONE;
|
||
break;
|
||
case FL_FNCRD: case FL_FNCWR: /* data xfer */
|
||
case FL_FNCWD:
|
||
fl_esr = 0; /* clear errors */
|
||
fl_ecode = 0;
|
||
fl_bptr = 0; /* init buffer */
|
||
fl_state = FL_RWDS; /* sector next */
|
||
break;
|
||
default: /* all others */
|
||
fl_protocol_error ();
|
||
return SCPE_OK;
|
||
}
|
||
sim_activate (&fl_unit, fl_cwait); /* sched command */
|
||
} /* end command */
|
||
else if (sel == TXDB_FDAT) { /* floppy data? */
|
||
switch (fl_state) { /* data */
|
||
case FL_RWDS: /* expecting sector */
|
||
fl_sector = data & FL_M_SECTOR;
|
||
fl_state = FL_RWDT;
|
||
break;
|
||
case FL_RWDT: /* expecting track */
|
||
fl_track = data & FL_M_TRACK;
|
||
if (fl_fnc == FL_FNCRD) fl_state = FL_READ;
|
||
else fl_state = FL_FILL;
|
||
break;
|
||
case FL_FILL: /* expecting wr data */
|
||
fl_buf[fl_bptr++] = data & BMASK;
|
||
if (fl_bptr >= FL_NUMBY) fl_state = FL_WRITE;
|
||
break;
|
||
default:
|
||
fl_protocol_error ();
|
||
return SCPE_OK;
|
||
}
|
||
sim_activate (&fl_unit, fl_xwait); /* schedule xfer */
|
||
} /* end else data */
|
||
else sim_activate (&tto_unit, tto_unit.wait); /* discard for now */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Unit service; the action to be taken depends on the transfer state:
|
||
|
||
FL_IDLE Should never get here
|
||
FL_RWDS Set TXCS<done> (driver sends sector, sets FL_RWDT)
|
||
FL_RWDT Set TXCS<done> (driver sends track, sets FL_READ/FL_FILL)
|
||
FL_READ Set TXCS<done>, schedule FL_READ1
|
||
FL_READ1 Read sector, schedule FL_EMPTY
|
||
FL_EMPTY Copy data to RXDB, set RXCS<done>
|
||
if fl_bptr >= max, schedule completion, else continue
|
||
FL_FILL Set TXCS<done> (driver sends next byte, sets FL_WRITE)
|
||
FL_WRITE Set TXCS<done>, schedule FL_WRITE1
|
||
FL_WRITE1 Write sector, schedule FL_DONE
|
||
FL_DONE Copy requested data to TXDB, set FL_IDLE
|
||
*/
|
||
|
||
t_stat fl_svc (UNIT *uptr)
|
||
{
|
||
int32 i, t;
|
||
uint32 da;
|
||
int8 *fbuf = uptr->filebuf;
|
||
|
||
switch (fl_state) { /* case on state */
|
||
|
||
case FL_IDLE: /* idle */
|
||
return SCPE_IERR; /* done */
|
||
|
||
case FL_READ: case FL_WRITE: /* read, write */
|
||
fl_state = fl_state + 1; /* set next state */
|
||
t = abs (fl_track - uptr->TRACK); /* # tracks to seek */
|
||
if (t == 0) t = 1; /* minimum 1 */
|
||
sim_activate (uptr, fl_swait * t); /* schedule seek */
|
||
/* fall thru, set flag */
|
||
case FL_RWDS: case FL_RWDT: case FL_FILL: /* rwds, rwdt, fill */
|
||
tto_csr = tto_csr | CSR_DONE; /* set output done */
|
||
if (tto_csr & CSR_IE) tto_int = 1;
|
||
break;
|
||
|
||
case FL_READ1: /* read, seek done */
|
||
if (fl_test_xfr (uptr, FALSE)) { /* transfer ok? */
|
||
da = CALC_DA (fl_track, fl_sector); /* get disk address */
|
||
for (i = 0; i < FL_NUMBY; i++) /* copy sector to buf */
|
||
fl_buf[i] = fbuf[da + i];
|
||
tti_buf = fl_esr | FL_CDONE; /* completion code */
|
||
tti_csr = tti_csr | CSR_DONE; /* set input flag */
|
||
if (tti_csr & CSR_IE) tti_int = 1;
|
||
fl_state = FL_EMPTY; } /* go empty */
|
||
else fl_state = FL_DONE; /* error? cmd done */
|
||
sim_activate (uptr, fl_xwait); /* schedule next */
|
||
break;
|
||
|
||
case FL_EMPTY: /* empty buffer */
|
||
if ((tti_csr & CSR_DONE) == 0) { /* prev data taken? */
|
||
tti_buf = FL_CDATA | fl_buf[fl_bptr++]; /* get next byte */
|
||
tti_csr = tti_csr | CSR_DONE; /* set input flag */
|
||
if (tti_csr & CSR_IE) tti_int = 1;
|
||
if (fl_bptr >= FL_NUMBY) { /* buffer empty? */
|
||
fl_state = FL_IDLE; /* cmd done */
|
||
break;
|
||
}
|
||
}
|
||
sim_activate (uptr, fl_xwait); /* schedule next */
|
||
break;
|
||
|
||
case FL_WRITE1: /* write, seek done */
|
||
if (fl_test_xfr (uptr, TRUE)) { /* transfer ok? */
|
||
da = CALC_DA (fl_track, fl_sector); /* get disk address */
|
||
for (i = 0; i < FL_NUMBY; i++) /* copy buf to sector */
|
||
fbuf[da + i] = fl_buf[i];
|
||
da = da + FL_NUMBY;
|
||
if (da > uptr->hwmark) uptr->hwmark = da; /* update hwmark */
|
||
}
|
||
if (fl_fnc == FL_FNCWD) fl_esr |= FL_STADDA; /* wrdel? set status*/
|
||
fl_state = FL_DONE; /* command done */
|
||
sim_activate (uptr, fl_xwait); /* schedule */
|
||
break;
|
||
|
||
case FL_DONE: /* command done */
|
||
if (tti_csr & CSR_DONE) /* input buf empty? */
|
||
sim_activate (uptr, fl_xwait); /* no, wait */
|
||
else { /* yes */
|
||
tti_buf = fl_esr | FL_CDONE; /* completion code */
|
||
tti_csr = tti_csr | CSR_DONE; /* set input flag */
|
||
if (tti_csr & CSR_IE) tti_int = 1;
|
||
fl_state = FL_IDLE; /* floppy idle */
|
||
}
|
||
break;
|
||
|
||
case FL_READSTA: /* read status */
|
||
if ((tti_csr & CSR_DONE) == 0) { /* input buf empty? */
|
||
tti_buf = fl_ecode; /* return err code */
|
||
tti_csr = tti_csr | CSR_DONE; /* set input flag */
|
||
if (tti_csr & CSR_IE) tti_int = 1;
|
||
fl_state = FL_DONE; /* command done */
|
||
}
|
||
sim_activate (uptr, fl_xwait);
|
||
break;
|
||
}
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Test for data transfer okay */
|
||
|
||
t_bool fl_test_xfr (UNIT *uptr, t_bool wr)
|
||
{
|
||
if ((uptr->flags & UNIT_BUF) == 0) /* not buffered? */
|
||
fl_ecode = 0110;
|
||
else if (fl_track >= FL_NUMTR) /* bad track? */
|
||
fl_ecode = 0040; /* done, error */
|
||
else if ((fl_sector == 0) || (fl_sector > FL_NUMSC)) /* bad sect? */
|
||
fl_ecode = 0070; /* done, error */
|
||
else if (wr && (uptr->flags & UNIT_WPRT)) /* write and locked? */
|
||
fl_ecode = 0100; /* done, error */
|
||
else { uptr->TRACK = fl_track; /* now on track */
|
||
return TRUE; }
|
||
fl_esr = fl_esr | FL_STAERR; /* set error */
|
||
return FALSE;
|
||
}
|
||
|
||
/* Set protocol error */
|
||
|
||
void fl_protocol_error (void)
|
||
{
|
||
if ((tto_csr & CSR_DONE) == 0) { /* output busy? */
|
||
tto_csr = tto_csr | CSR_DONE; /* set done */
|
||
if (tto_csr & CSR_IE) tto_int = 1; }
|
||
if ((tti_csr & CSR_DONE) == 0) { /* input idle? */
|
||
tti_csr = tti_csr | CSR_DONE; /* set done */
|
||
if (tti_csr & CSR_IE) tti_int = 1; }
|
||
tti_buf = FL_CPROT; /* status */
|
||
fl_state = FL_IDLE; /* floppy idle */
|
||
return;
|
||
}
|
||
|
||
/* Reset */
|
||
|
||
t_stat fl_reset (DEVICE *dptr)
|
||
{
|
||
fl_esr = FL_STAINC;
|
||
fl_ecode = 0; /* clear error */
|
||
fl_sector = 0; /* clear addr */
|
||
fl_track = 0;
|
||
fl_state = FL_IDLE; /* ctrl idle */
|
||
fl_bptr = 0;
|
||
sim_cancel (&fl_unit); /* cancel drive */
|
||
fl_unit.TRACK = 0;
|
||
return SCPE_OK;
|
||
}
|