Avoid redundant declarations in every simulator module that uses them and allow compiler to validate consistency of declarations and definitions.
1594 lines
57 KiB
C
1594 lines
57 KiB
C
/* vax_fpa.c - VAX f_, d_, g_floating instructions
|
|
|
|
Copyright (c) 1998-2012, Robert M Supnik
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a
|
|
copy of this software and associated documentation files (the "Software"),
|
|
to deal in the Software without restriction, including without limitation
|
|
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
and/or sell copies of the Software, and to permit persons to whom the
|
|
Software is furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
Except as contained in this notice, the name of Robert M Supnik shall not be
|
|
used in advertising or otherwise to promote the sale, use or other dealings
|
|
in this Software without prior written authorization from Robert M Supnik.
|
|
|
|
23-Mar-12 RMS Fixed missing arguments in 32b floating add (Mark Pizzolato)
|
|
15-Sep-11 RMS Fixed integer overflow bug in EMODx
|
|
Fixed POLYx normalizing before add mask bug
|
|
(Camiel Vanderhoeven)
|
|
28-May-08 RMS Inlined physical memory routines
|
|
16-May-06 RMS Fixed bug in 32b floating multiply routine
|
|
Fixed bug in 64b extended modulus routine
|
|
03-May-06 RMS Fixed POLYD, POLYG to clear R4, R5
|
|
Fixed POLYD, POLYG to set R3 correctly
|
|
Fixed POLYD, POLYG to not exit prematurely if arg = 0
|
|
Fixed POLYD, POLYG to do full 64b multiply
|
|
Fixed POLYF, POLYD, POLYG to remove truncation on add
|
|
Fixed POLYF, POLYD, POLYG to mask mul reslt to 31b/63b/63b
|
|
Fixed fp add routine to test for zero via fraction
|
|
to support "denormal" argument from POLYF, POLYD, POLYG
|
|
(Tim Stark)
|
|
27-Sep-05 RMS Fixed bug in 32b structure definitions (Jason Stevens)
|
|
30-Sep-04 RMS Comment and formating changes based on vax_octa.c
|
|
18-Apr-04 RMS Moved format definitions to vax_defs.h
|
|
19-Jun-03 RMS Simplified add algorithm
|
|
16-May-03 RMS Fixed bug in floating to integer convert overflow
|
|
Fixed multiple bugs in EMODx
|
|
Integrated 32b only code
|
|
05-Jul-02 RMS Changed internal routine names for C library conflict
|
|
17-Apr-02 RMS Fixed bug in EDIV zero quotient
|
|
|
|
This module contains the instruction simulators for
|
|
|
|
- 64 bit arithmetic (ASHQ, EMUL, EDIV)
|
|
- single precision floating point
|
|
- double precision floating point, D and G format
|
|
*/
|
|
|
|
#include "vax_defs.h"
|
|
#include <setjmp.h>
|
|
|
|
#if defined (USE_INT64)
|
|
|
|
#define M64 0xFFFFFFFFFFFFFFFF /* 64b */
|
|
#define FD_FRACW (0xFFFF & ~(FD_EXP | FPSIGN))
|
|
#define FD_FRACL (FD_FRACW | 0xFFFF0000) /* f/d fraction */
|
|
#define G_FRACW (0xFFFF & ~(G_EXP | FPSIGN))
|
|
#define G_FRACL (G_FRACW | 0xFFFF0000) /* g fraction */
|
|
#define UNSCRAM(h,l) (((((t_uint64) (h)) << 48) & 0xFFFF000000000000) | \
|
|
((((t_uint64) (h)) << 16) & 0x0000FFFF00000000) | \
|
|
((((t_uint64) (l)) << 16) & 0x00000000FFFF0000) | \
|
|
((((t_uint64) (l)) >> 16) & 0x000000000000FFFF))
|
|
#define CONCAT(h,l) ((((t_uint64) (h)) << 32) | ((uint32) (l)))
|
|
|
|
typedef struct {
|
|
int32 sign;
|
|
int32 exp;
|
|
t_uint64 frac;
|
|
} UFP;
|
|
|
|
#define UF_NM 0x8000000000000000 /* normalized */
|
|
#define UF_FRND 0x0000008000000000 /* F round */
|
|
#define UF_DRND 0x0000000000000080 /* D round */
|
|
#define UF_GRND 0x0000000000000400 /* G round */
|
|
#define UF_V_NM 63
|
|
#define UF_V_FDHI 40
|
|
#define UF_V_FDLO (UF_V_FDHI - 32)
|
|
#define UF_V_GHI 43
|
|
#define UF_V_GLO (UF_V_GHI - 32)
|
|
#define UF_GETFDHI(x) (int32) ((((x) >> (16 + UF_V_FDHI)) & FD_FRACW) | \
|
|
(((x) >> (UF_V_FDHI - 16)) & ~0xFFFF))
|
|
#define UF_GETFDLO(x) (int32) ((((x) >> (16 + UF_V_FDLO)) & 0xFFFF) | \
|
|
(((x) << (16 - UF_V_FDLO)) & ~0xFFFF))
|
|
#define UF_GETGHI(x) (int32) ((((x) >> (16 + UF_V_GHI)) & G_FRACW) | \
|
|
(((x) >> (UF_V_GHI - 16)) & ~0xFFFF))
|
|
#define UF_GETGLO(x) (int32) ((((x) >> (16 + UF_V_GLO)) & 0xFFFF) | \
|
|
(((x) << (16 - UF_V_GLO)) & ~0xFFFF))
|
|
|
|
void unpackf (int32 hi, UFP *a);
|
|
void unpackd (int32 hi, int32 lo, UFP *a);
|
|
void unpackg (int32 hi, int32 lo, UFP *a);
|
|
void norm (UFP *a);
|
|
int32 rpackfd (UFP *a, int32 *rh);
|
|
int32 rpackg (UFP *a, int32 *rh);
|
|
void vax_fadd (UFP *a, UFP *b, uint32 mhi, uint32 mlo);
|
|
void vax_fmul (UFP *a, UFP *b, t_bool qd, int32 bias, uint32 mhi, uint32 mlo);
|
|
void vax_fdiv (UFP *b, UFP *a, int32 prec, int32 bias);
|
|
void vax_fmod (UFP *a, int32 bias, int32 *intgr, int32 *flg);
|
|
|
|
/* Quadword arithmetic shift
|
|
|
|
opnd[0] = shift count (cnt.rb)
|
|
opnd[1:2] = source (src.rq)
|
|
opnd[3:4] = destination (dst.wq)
|
|
*/
|
|
|
|
int32 op_ashq (int32 *opnd, int32 *rh, int32 *flg)
|
|
{
|
|
t_int64 src, r;
|
|
int32 sc = opnd[0];
|
|
|
|
src = CONCAT (opnd[2], opnd[1]); /* build src */
|
|
if (sc & BSIGN) { /* right shift? */
|
|
*flg = 0; /* no ovflo */
|
|
sc = 0x100 - sc; /* |shift| */
|
|
if (sc > 63) /* sc > 63? */
|
|
r = (opnd[2] & LSIGN)? -1: 0;
|
|
else r = src >> sc;
|
|
}
|
|
else {
|
|
if (sc > 63) { /* left shift */
|
|
r = 0; /* sc > 63? */
|
|
*flg = (src != 0); /* ovflo test */
|
|
}
|
|
else {
|
|
r = src << sc; /* do shift */
|
|
*flg = (src != (r >> sc)); /* ovflo test */
|
|
}
|
|
}
|
|
*rh = (int32) ((r >> 32) & LMASK); /* hi result */
|
|
return ((int32) (r & LMASK)); /* lo result */
|
|
}
|
|
|
|
/* Extended multiply subroutine */
|
|
|
|
int32 op_emul (int32 mpy, int32 mpc, int32 *rh)
|
|
{
|
|
t_int64 lmpy = mpy;
|
|
t_int64 lmpc = mpc;
|
|
|
|
lmpy = lmpy * lmpc;
|
|
*rh = (int32) ((lmpy >> 32) & LMASK);
|
|
return ((int32) (lmpy & LMASK));
|
|
}
|
|
|
|
/* Extended divide
|
|
|
|
opnd[0] = divisor (non-zero)
|
|
opnd[1:2] = dividend
|
|
*/
|
|
|
|
int32 op_ediv (int32 *opnd, int32 *rh, int32 *flg)
|
|
{
|
|
t_int64 ldvd, ldvr;
|
|
int32 quo, rem;
|
|
|
|
*flg = CC_V; /* assume error */
|
|
*rh = 0;
|
|
ldvr = ((opnd[0] & LSIGN)? -opnd[0]: opnd[0]) & LMASK; /* |divisor| */
|
|
ldvd = CONCAT (opnd[2], opnd[1]); /* 64b dividend */
|
|
if (opnd[2] & LSIGN) /* |dividend| */
|
|
ldvd = -ldvd;
|
|
if (((ldvd >> 32) & LMASK) >= ldvr) /* divide work? */
|
|
return opnd[1];
|
|
quo = (int32) (ldvd / ldvr); /* do divide */
|
|
rem = (int32) (ldvd % ldvr);
|
|
if ((opnd[0] ^ opnd[2]) & LSIGN) { /* result -? */
|
|
quo = -quo; /* negate */
|
|
if (quo && ((quo & LSIGN) == 0)) /* right sign? */
|
|
return opnd[1];
|
|
}
|
|
else if (quo & LSIGN)
|
|
return opnd[1];
|
|
if (opnd[2] & LSIGN) /* sign of rem */
|
|
rem = -rem;
|
|
*flg = 0; /* no overflow */
|
|
*rh = rem & LMASK; /* set rem */
|
|
return (quo & LMASK); /* return quo */
|
|
}
|
|
|
|
/* Compare floating */
|
|
|
|
int32 op_cmpfd (int32 h1, int32 l1, int32 h2, int32 l2)
|
|
{
|
|
t_uint64 n1, n2;
|
|
|
|
if ((h1 & FD_EXP) == 0) {
|
|
if (h1 & FPSIGN)
|
|
RSVD_OPND_FAULT;
|
|
h1 = l1 = 0;
|
|
}
|
|
if ((h2 & FD_EXP) == 0) {
|
|
if (h2 & FPSIGN)
|
|
RSVD_OPND_FAULT;
|
|
h2 = l2 = 0;
|
|
}
|
|
if ((h1 ^ h2) & FPSIGN)
|
|
return ((h1 & FPSIGN)? CC_N: 0);
|
|
n1 = UNSCRAM (h1, l1);
|
|
n2 = UNSCRAM (h2, l2);
|
|
if (n1 == n2)
|
|
return CC_Z;
|
|
return (((n1 < n2) ^ ((h1 & FPSIGN) != 0))? CC_N: 0);
|
|
}
|
|
|
|
int32 op_cmpg (int32 h1, int32 l1, int32 h2, int32 l2)
|
|
{
|
|
t_uint64 n1, n2;
|
|
|
|
if ((h1 & G_EXP) == 0) {
|
|
if (h1 & FPSIGN)
|
|
RSVD_OPND_FAULT;
|
|
h1 = l1 = 0;
|
|
}
|
|
if ((h2 & G_EXP) == 0) {
|
|
if (h2 & FPSIGN)
|
|
RSVD_OPND_FAULT;
|
|
h2 = l2 = 0;
|
|
}
|
|
if ((h1 ^ h2) & FPSIGN)
|
|
return ((h1 & FPSIGN)? CC_N: 0);
|
|
n1 = UNSCRAM (h1, l1);
|
|
n2 = UNSCRAM (h2, l2);
|
|
if (n1 == n2)
|
|
return CC_Z;
|
|
return (((n1 < n2) ^ ((h1 & FPSIGN) != 0))? CC_N: 0);
|
|
}
|
|
|
|
/* Integer to floating convert */
|
|
|
|
int32 op_cvtifdg (int32 val, int32 *rh, int32 opc)
|
|
{
|
|
UFP a;
|
|
|
|
if (val == 0) {
|
|
if (rh)
|
|
*rh = 0;
|
|
return 0;
|
|
}
|
|
if (val < 0) {
|
|
a.sign = FPSIGN;
|
|
val = - val;
|
|
}
|
|
else a.sign = 0;
|
|
a.exp = 32 + ((opc & 0x100)? G_BIAS: FD_BIAS);
|
|
a.frac = ((t_uint64) val) << (UF_V_NM - 31);
|
|
norm (&a);
|
|
if (opc & 0x100)
|
|
return rpackg (&a, rh);
|
|
return rpackfd (&a, rh);
|
|
}
|
|
|
|
/* Floating to integer convert */
|
|
|
|
int32 op_cvtfdgi (int32 *opnd, int32 *flg, int32 opc)
|
|
{
|
|
UFP a;
|
|
int32 lnt = opc & 03;
|
|
int32 ubexp;
|
|
static t_uint64 maxv[4] = { 0x7F, 0x7FFF, 0x7FFFFFFF, 0x7FFFFFFF };
|
|
|
|
*flg = 0;
|
|
if (opc & 0x100) {
|
|
unpackg (opnd[0], opnd[1], &a);
|
|
ubexp = a.exp - G_BIAS;
|
|
}
|
|
else {
|
|
if (opc & 0x20)
|
|
unpackd (opnd[0], opnd[1], &a);
|
|
else unpackf (opnd[0], &a);
|
|
ubexp = a.exp - FD_BIAS;
|
|
}
|
|
if ((a.exp == 0) || (ubexp < 0))
|
|
return 0;
|
|
if (ubexp <= UF_V_NM) {
|
|
a.frac = a.frac >> (UF_V_NM - ubexp); /* leave rnd bit */
|
|
if ((opc & 03) == 03) /* if CVTR, round */
|
|
a.frac = a.frac + 1;
|
|
a.frac = a.frac >> 1; /* now justified */
|
|
if (a.frac > (maxv[lnt] + (a.sign? 1: 0)))
|
|
*flg = CC_V;
|
|
}
|
|
else {
|
|
*flg = CC_V; /* set overflow */
|
|
if (ubexp > (UF_V_NM + 32))
|
|
return 0;
|
|
a.frac = a.frac << (ubexp - UF_V_NM - 1); /* no rnd bit */
|
|
}
|
|
return ((int32) ((a.sign? (a.frac ^ LMASK) + 1: a.frac) & LMASK));
|
|
}
|
|
|
|
/* Extended modularize
|
|
|
|
One of three floating point instructions dropped from the architecture,
|
|
EMOD presents two sets of complications. First, it requires an extended
|
|
fraction multiply, with precise (and unusual) truncation conditions.
|
|
Second, it has two write operands, a dubious distinction it shares
|
|
with EDIV.
|
|
*/
|
|
|
|
int32 op_emodf (int32 *opnd, int32 *intgr, int32 *flg)
|
|
{
|
|
UFP a, b;
|
|
|
|
unpackf (opnd[0], &a); /* unpack operands */
|
|
unpackf (opnd[2], &b);
|
|
a.frac = a.frac | (((t_uint64) opnd[1]) << 32); /* extend src1 */
|
|
vax_fmul (&a, &b, 0, FD_BIAS, 0, LMASK); /* multiply */
|
|
vax_fmod (&a, FD_BIAS, intgr, flg); /* sep int & frac */
|
|
return rpackfd (&a, NULL); /* return frac */
|
|
}
|
|
|
|
int32 op_emodd (int32 *opnd, int32 *flo, int32 *intgr, int32 *flg)
|
|
{
|
|
UFP a, b;
|
|
|
|
unpackd (opnd[0], opnd[1], &a); /* unpack operands */
|
|
unpackd (opnd[3], opnd[4], &b);
|
|
a.frac = a.frac | opnd[2]; /* extend src1 */
|
|
vax_fmul (&a, &b, 1, FD_BIAS, 0, 0); /* multiply */
|
|
vax_fmod (&a, FD_BIAS, intgr, flg); /* sep int & frac */
|
|
return rpackfd (&a, flo); /* return frac */
|
|
}
|
|
|
|
int32 op_emodg (int32 *opnd, int32 *flo, int32 *intgr, int32 *flg)
|
|
{
|
|
UFP a, b;
|
|
|
|
unpackg (opnd[0], opnd[1], &a); /* unpack operands */
|
|
unpackg (opnd[3], opnd[4], &b);
|
|
a.frac = a.frac | (opnd[2] >> 5); /* extend src1 */
|
|
vax_fmul (&a, &b, 1, G_BIAS, 0, 0); /* multiply */
|
|
vax_fmod (&a, G_BIAS, intgr, flg); /* sep int & frac */
|
|
return rpackg (&a, flo); /* return frac */
|
|
}
|
|
|
|
/* Unpacked floating point routines */
|
|
|
|
void vax_fadd (UFP *a, UFP *b, uint32 mhi, uint32 mlo)
|
|
{
|
|
int32 ediff;
|
|
UFP t;
|
|
t_uint64 mask = (((t_uint64) mhi) << 32) | ((t_uint64) mlo);
|
|
|
|
if (a->frac == 0) { /* s1 = 0? */
|
|
*a = *b;
|
|
return;
|
|
}
|
|
if (b->frac == 0) /* s2 = 0? */
|
|
return;
|
|
if ((a->exp < b->exp) || /* |s1| < |s2|? swap */
|
|
((a->exp == b->exp) && (a->frac < b->frac))) {
|
|
t = *a;
|
|
*a = *b;
|
|
*b = t;
|
|
}
|
|
ediff = a->exp - b->exp; /* exp diff */
|
|
if (a->sign ^ b->sign) { /* eff sub? */
|
|
if (ediff) { /* exp diff? */
|
|
if (ediff > 63) /* retain sticky */
|
|
b->frac = M64;
|
|
else b->frac = ((-((t_int64) b->frac) >> ediff) | /* denormalize */
|
|
(M64 << (64 - ediff))); /* preserve sign */
|
|
a->frac = a->frac + b->frac; /* add frac */
|
|
}
|
|
else a->frac = a->frac - b->frac; /* sub frac */
|
|
a->frac = a->frac & ~mask; /* mask before norm */
|
|
norm (a); /* normalize */
|
|
}
|
|
else {
|
|
if (ediff > 63) /* add */
|
|
b->frac = 0;
|
|
else if (ediff) /* denormalize */
|
|
b->frac = b->frac >> ediff;
|
|
a->frac = a->frac + b->frac; /* add frac */
|
|
if (a->frac < b->frac) { /* chk for carry */
|
|
a->frac = UF_NM | (a->frac >> 1); /* shift in carry */
|
|
a->exp = a->exp + 1; /* skip norm */
|
|
}
|
|
a->frac = a->frac & ~mask; /* mask */
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Floating multiply - 64b * 64b with cross products */
|
|
|
|
void vax_fmul (UFP *a, UFP *b, t_bool qd, int32 bias, uint32 mhi, uint32 mlo)
|
|
{
|
|
t_uint64 ah, bh, al, bl, rhi, rlo, rmid1, rmid2;
|
|
t_uint64 mask = (((t_uint64) mhi) << 32) | ((t_uint64) mlo);
|
|
|
|
if ((a->exp == 0) || (b->exp == 0)) { /* zero argument? */
|
|
a->frac = a->sign = a->exp = 0; /* result is zero */
|
|
return;
|
|
}
|
|
a->sign = a->sign ^ b->sign; /* sign of result */
|
|
a->exp = a->exp + b->exp - bias; /* add exponents */
|
|
ah = (a->frac >> 32) & LMASK; /* split operands */
|
|
bh = (b->frac >> 32) & LMASK; /* into 32b chunks */
|
|
rhi = ah * bh; /* high result */
|
|
if (qd) { /* 64b needed? */
|
|
al = a->frac & LMASK;
|
|
bl = b->frac & LMASK;
|
|
rmid1 = ah * bl;
|
|
rmid2 = al * bh;
|
|
rlo = al * bl;
|
|
rhi = rhi + ((rmid1 >> 32) & LMASK) + ((rmid2 >> 32) & LMASK);
|
|
rmid1 = rlo + (rmid1 << 32); /* add mid1 to lo */
|
|
if (rmid1 < rlo) /* carry? incr hi */
|
|
rhi = rhi + 1;
|
|
rmid2 = rmid1 + (rmid2 << 32); /* add mid2 to lo */
|
|
if (rmid2 < rmid1) /* carry? incr hi */
|
|
rhi = rhi + 1;
|
|
}
|
|
a->frac = rhi & ~mask;
|
|
norm (a); /* normalize */
|
|
return;
|
|
}
|
|
|
|
/* Floating modulus - there are three cases
|
|
|
|
exp <= bias - integer is 0, fraction is input,
|
|
no overflow
|
|
bias < exp <= bias+64 - separate integer and fraction,
|
|
integer overflow may occur
|
|
bias+64 < exp - result is integer, fraction is 0
|
|
integer overflow
|
|
*/
|
|
|
|
void vax_fmod (UFP *a, int32 bias, int32 *intgr, int32 *flg)
|
|
{
|
|
if (a->exp <= bias) /* 0 or <1? int = 0 */
|
|
*intgr = *flg = 0;
|
|
else if (a->exp <= (bias + 64)) { /* in range [1,64]? */
|
|
*intgr = (int32) (a->frac >> (64 - (a->exp - bias)));
|
|
if ((a->exp > (bias + 32)) || /* test ovflo */
|
|
((a->exp == (bias + 32)) &&
|
|
(((uint32) *intgr) > (a->sign? 0x80000000: 0x7FFFFFFF))))
|
|
*flg = CC_V;
|
|
else *flg = 0;
|
|
if (a->sign) /* -? comp int */
|
|
*intgr = -*intgr;
|
|
if (a->exp == (bias + 64)) /* special case 64 */
|
|
a->frac = 0;
|
|
else a->frac = a->frac << (a->exp - bias);
|
|
a->exp = bias;
|
|
}
|
|
else {
|
|
if (a->exp < (bias + 96)) /* need left shift? */
|
|
*intgr = (int32) (a->frac << (a->exp - bias - 64));
|
|
else *intgr = 0; /* out of range */
|
|
if (a->sign)
|
|
*intgr = -*intgr;
|
|
a->frac = a->sign = a->exp = 0; /* result 0 */
|
|
*flg = CC_V; /* overflow */
|
|
}
|
|
norm (a); /* normalize */
|
|
return;
|
|
}
|
|
|
|
/* Floating divide
|
|
Needs to develop at least one rounding bit. Since the first
|
|
divide step can fail, caller should specify 2 more bits than
|
|
the precision of the fraction.
|
|
*/
|
|
|
|
void vax_fdiv (UFP *a, UFP *b, int32 prec, int32 bias)
|
|
{
|
|
int32 i;
|
|
t_uint64 quo = 0;
|
|
|
|
if (a->exp == 0) /* divr = 0? */
|
|
FLT_DZRO_FAULT;
|
|
if (b->exp == 0) /* divd = 0? */
|
|
return;
|
|
b->sign = b->sign ^ a->sign; /* result sign */
|
|
b->exp = b->exp - a->exp + bias + 1; /* unbiased exp */
|
|
a->frac = a->frac >> 1; /* allow 1 bit left */
|
|
b->frac = b->frac >> 1;
|
|
for (i = 0; (i < prec) && b->frac; i++) { /* divide loop */
|
|
quo = quo << 1; /* shift quo */
|
|
if (b->frac >= a->frac) { /* div step ok? */
|
|
b->frac = b->frac - a->frac; /* subtract */
|
|
quo = quo + 1; /* quo bit = 1 */
|
|
}
|
|
b->frac = b->frac << 1; /* shift divd */
|
|
}
|
|
b->frac = quo << (UF_V_NM - i + 1); /* shift quo */
|
|
norm (b); /* normalize */
|
|
return;
|
|
}
|
|
|
|
/* Support routines */
|
|
|
|
void unpackf (int32 hi, UFP *r)
|
|
{
|
|
r->sign = hi & FPSIGN; /* get sign */
|
|
r->exp = FD_GETEXP (hi); /* get exponent */
|
|
if (r->exp == 0) { /* exp = 0? */
|
|
if (r->sign) /* if -, rsvd op */
|
|
RSVD_OPND_FAULT;
|
|
r->frac = 0; /* else 0 */
|
|
return;
|
|
}
|
|
hi = (((hi & FD_FRACW) | FD_HB) << 16) | ((hi >> 16) & 0xFFFF);
|
|
r->frac = ((t_uint64) hi) << (32 + UF_V_FDLO);
|
|
return;
|
|
}
|
|
|
|
void unpackd (int32 hi, int32 lo, UFP *r)
|
|
{
|
|
r->sign = hi & FPSIGN; /* get sign */
|
|
r->exp = FD_GETEXP (hi); /* get exponent */
|
|
if (r->exp == 0) { /* exp = 0? */
|
|
if (r->sign) /* if -, rsvd op */
|
|
RSVD_OPND_FAULT;
|
|
r->frac = 0; /* else 0 */
|
|
return;
|
|
}
|
|
hi = (hi & FD_FRACL) | FD_HB; /* canonical form */
|
|
r->frac = UNSCRAM (hi, lo) << UF_V_FDLO; /* guard bits */
|
|
return;
|
|
}
|
|
|
|
void unpackg (int32 hi, int32 lo, UFP *r)
|
|
{
|
|
r->sign = hi & FPSIGN; /* get sign */
|
|
r->exp = G_GETEXP (hi); /* get exponent */
|
|
if (r->exp == 0) { /* exp = 0? */
|
|
if (r->sign) /* if -, rsvd op */
|
|
RSVD_OPND_FAULT;
|
|
r->frac = 0; /* else 0 */
|
|
return;
|
|
}
|
|
hi = (hi & G_FRACL) | G_HB; /* canonical form */
|
|
r->frac = UNSCRAM (hi, lo) << UF_V_GLO; /* guard bits */
|
|
return;
|
|
}
|
|
|
|
void norm (UFP *r)
|
|
{
|
|
int32 i;
|
|
static t_uint64 normmask[5] = {
|
|
0xc000000000000000, 0xf000000000000000, 0xff00000000000000,
|
|
0xffff000000000000, 0xffffffff00000000
|
|
};
|
|
static int32 normtab[6] = { 1, 2, 4, 8, 16, 32};
|
|
|
|
if (r->frac == 0) { /* if fraction = 0 */
|
|
r->sign = r->exp = 0; /* result is 0 */
|
|
return;
|
|
}
|
|
while ((r->frac & UF_NM) == 0) { /* normalized? */
|
|
for (i = 0; i < 5; i++) { /* find first 1 */
|
|
if (r->frac & normmask[i])
|
|
break;
|
|
}
|
|
r->frac = r->frac << normtab[i]; /* shift frac */
|
|
r->exp = r->exp - normtab[i]; /* decr exp */
|
|
}
|
|
return;
|
|
}
|
|
|
|
int32 rpackfd (UFP *r, int32 *rh)
|
|
{
|
|
if (rh) /* assume 0 */
|
|
*rh = 0;
|
|
if (r->frac == 0) /* result 0? */
|
|
return 0;
|
|
r->frac = r->frac + (rh? UF_DRND: UF_FRND); /* round */
|
|
if ((r->frac & UF_NM) == 0) { /* carry out? */
|
|
r->frac = r->frac >> 1; /* renormalize */
|
|
r->exp = r->exp + 1;
|
|
}
|
|
if (r->exp > (int32) FD_M_EXP) /* ovflo? fault */
|
|
FLT_OVFL_FAULT;
|
|
if (r->exp <= 0) { /* underflow? */
|
|
if (PSL & PSW_FU) /* fault if fu */
|
|
FLT_UNFL_FAULT;
|
|
return 0; /* else 0 */
|
|
}
|
|
if (rh) /* get low */
|
|
*rh = UF_GETFDLO (r->frac);
|
|
return r->sign | (r->exp << FD_V_EXP) | UF_GETFDHI (r->frac);
|
|
}
|
|
|
|
int32 rpackg (UFP *r, int32 *rh)
|
|
{
|
|
*rh = 0; /* assume 0 */
|
|
if (r->frac == 0) /* result 0? */
|
|
return 0;
|
|
r->frac = r->frac + UF_GRND; /* round */
|
|
if ((r->frac & UF_NM) == 0) { /* carry out? */
|
|
r->frac = r->frac >> 1; /* renormalize */
|
|
r->exp = r->exp + 1;
|
|
}
|
|
if (r->exp > (int32) G_M_EXP) /* ovflo? fault */
|
|
FLT_OVFL_FAULT;
|
|
if (r->exp <= 0) { /* underflow? */
|
|
if (PSL & PSW_FU) /* fault if fu */
|
|
FLT_UNFL_FAULT;
|
|
return 0; /* else 0 */
|
|
}
|
|
*rh = UF_GETGLO (r->frac); /* get low */
|
|
return r->sign | (r->exp << G_V_EXP) | UF_GETGHI (r->frac);
|
|
}
|
|
|
|
#else /* 32b code */
|
|
|
|
#define WORDSWAP(x) ((((x) & WMASK) << 16) | (((x) >> 16) & WMASK))
|
|
|
|
typedef struct {
|
|
uint32 lo;
|
|
uint32 hi;
|
|
} UDP;
|
|
|
|
typedef struct {
|
|
int32 sign;
|
|
int32 exp;
|
|
UDP frac;
|
|
} UFP;
|
|
|
|
#define UF_NM_H 0x80000000 /* normalized */
|
|
#define UF_FRND_H 0x00000080 /* F round */
|
|
#define UF_FRND_L 0x00000000
|
|
#define UF_DRND_H 0x00000000 /* D round */
|
|
#define UF_DRND_L 0x00000080
|
|
#define UF_GRND_H 0x00000000 /* G round */
|
|
#define UF_GRND_L 0x00000400
|
|
#define UF_V_NM 63
|
|
|
|
void unpackf (uint32 hi, UFP *a);
|
|
void unpackd (uint32 hi, uint32 lo, UFP *a);
|
|
void unpackg (uint32 hi, uint32 lo, UFP *a);
|
|
void norm (UFP *a);
|
|
int32 rpackfd (UFP *a, int32 *rh);
|
|
int32 rpackg (UFP *a, int32 *rh);
|
|
void vax_fadd (UFP *a, UFP *b, uint32 mhi, uint32 mlo);
|
|
void vax_fmul (UFP *a, UFP *b, t_bool qd, int32 bias, uint32 mhi, uint32 mlo);
|
|
void vax_fmod (UFP *a, int32 bias, int32 *intgr, int32 *flg);
|
|
void vax_fdiv (UFP *b, UFP *a, int32 prec, int32 bias);
|
|
void dp_add (UDP *a, UDP *b);
|
|
void dp_inc (UDP *a);
|
|
void dp_sub (UDP *a, UDP *b);
|
|
void dp_imul (uint32 a, uint32 b, UDP *r);
|
|
void dp_lsh (UDP *a, uint32 sc);
|
|
void dp_rsh (UDP *a, uint32 sc);
|
|
void dp_rsh_s (UDP *a, uint32 sc, uint32 neg);
|
|
void dp_neg (UDP *a);
|
|
int32 dp_cmp (UDP *a, UDP *b);
|
|
|
|
/* Quadword arithmetic shift
|
|
|
|
opnd[0] = shift count (cnt.rb)
|
|
opnd[1:2] = source (src.rq)
|
|
opnd[3:4] = destination (dst.wq)
|
|
*/
|
|
|
|
int32 op_ashq (int32 *opnd, int32 *rh, int32 *flg)
|
|
{
|
|
UDP r, sr;
|
|
uint32 sc = opnd[0];
|
|
|
|
r.lo = opnd[1]; /* get source */
|
|
r.hi = opnd[2];
|
|
*flg = 0; /* assume no ovflo */
|
|
if (sc & BSIGN) /* right shift? */
|
|
dp_rsh_s (&r, 0x100 - sc, r.hi & LSIGN); /* signed right */
|
|
else {
|
|
dp_lsh (&r, sc); /* left shift */
|
|
sr = r; /* copy result */
|
|
dp_rsh_s (&sr, sc, sr.hi & LSIGN); /* signed right */
|
|
if ((sr.hi != ((uint32) opnd[2])) || /* reshift != orig? */
|
|
(sr.lo != ((uint32) opnd[1]))) *flg = 1; /* overflow */
|
|
}
|
|
*rh = r.hi; /* hi result */
|
|
return r.lo; /* lo result */
|
|
}
|
|
|
|
/* Extended multiply subroutine */
|
|
|
|
int32 op_emul (int32 mpy, int32 mpc, int32 *rh)
|
|
{
|
|
UDP r;
|
|
int32 sign = mpy ^ mpc; /* sign of result */
|
|
|
|
if (mpy & LSIGN) /* abs value */
|
|
mpy = -mpy;
|
|
if (mpc & LSIGN)
|
|
mpc = -mpc;
|
|
dp_imul (mpy & LMASK, mpc & LMASK, &r); /* 32b * 32b -> 64b */
|
|
if (sign & LSIGN) /* negative result? */
|
|
dp_neg (&r);
|
|
*rh = r.hi;
|
|
return r.lo;
|
|
}
|
|
|
|
/* Extended divide
|
|
|
|
opnd[0] = divisor (non-zero)
|
|
opnd[1:2] = dividend
|
|
*/
|
|
|
|
int32 op_ediv (int32 *opnd, int32 *rh, int32 *flg)
|
|
{
|
|
UDP dvd;
|
|
uint32 i, dvr, quo;
|
|
|
|
dvr = opnd[0]; /* get divisor */
|
|
dvd.lo = opnd[1]; /* get dividend */
|
|
dvd.hi = opnd[2];
|
|
*flg = CC_V; /* assume error */
|
|
*rh = 0;
|
|
if (dvd.hi & LSIGN) /* |dividend| */
|
|
dp_neg (&dvd);
|
|
if (dvr & LSIGN) /* |divisor| */
|
|
dvr = NEG (dvr);
|
|
if (dvd.hi >= dvr) /* divide work? */
|
|
return opnd[1];
|
|
for (i = quo = 0; i < 32; i++) { /* 32 iterations */
|
|
quo = quo << 1; /* shift quotient */
|
|
dp_lsh (&dvd, 1); /* shift dividend */
|
|
if (dvd.hi >= dvr) { /* step work? */
|
|
dvd.hi = (dvd.hi - dvr) & LMASK; /* subtract dvr */
|
|
quo = quo + 1;
|
|
}
|
|
}
|
|
if ((opnd[0] ^ opnd[2]) & LSIGN) { /* result -? */
|
|
quo = NEG (quo); /* negate */
|
|
if (quo && ((quo & LSIGN) == 0)) /* right sign? */
|
|
return opnd[1];
|
|
}
|
|
else if (quo & LSIGN)
|
|
return opnd[1];
|
|
if (opnd[2] & LSIGN) /* sign of rem */
|
|
*rh = NEG (dvd.hi);
|
|
else *rh = dvd.hi;
|
|
*flg = 0; /* no overflow */
|
|
return quo; /* return quo */
|
|
}
|
|
|
|
/* Compare floating */
|
|
|
|
int32 op_cmpfd (int32 h1, int32 l1, int32 h2, int32 l2)
|
|
{
|
|
UFP a, b;
|
|
int32 r;
|
|
|
|
unpackd (h1, l1, &a);
|
|
unpackd (h2, l2, &b);
|
|
if (a.sign != b.sign)
|
|
return (a.sign? CC_N: 0);
|
|
r = a.exp - b.exp;
|
|
if (r == 0)
|
|
r = dp_cmp (&a.frac, &b.frac);
|
|
if (r < 0)
|
|
return (a.sign? 0: CC_N);
|
|
if (r > 0)
|
|
return (a.sign? CC_N: 0);
|
|
return CC_Z;
|
|
}
|
|
|
|
int32 op_cmpg (int32 h1, int32 l1, int32 h2, int32 l2)
|
|
{
|
|
UFP a, b;
|
|
int32 r;
|
|
|
|
unpackg (h1, l1, &a);
|
|
unpackg (h2, l2, &b);
|
|
if (a.sign != b.sign)
|
|
return (a.sign? CC_N: 0);
|
|
r = a.exp - b.exp;
|
|
if (r == 0)
|
|
r = dp_cmp (&a.frac, &b.frac);
|
|
if (r < 0)
|
|
return (a.sign? 0: CC_N);
|
|
if (r > 0)
|
|
return (a.sign? CC_N: 0);
|
|
return CC_Z;
|
|
}
|
|
|
|
/* Integer to floating convert */
|
|
|
|
int32 op_cvtifdg (int32 val, int32 *rh, int32 opc)
|
|
{
|
|
UFP a;
|
|
|
|
if (val == 0) { /* zero? */
|
|
if (rh) *rh = 0; /* return true 0 */
|
|
return 0;
|
|
}
|
|
if (val < 0) { /* negative? */
|
|
a.sign = FPSIGN; /* sign = - */
|
|
val = -val;
|
|
}
|
|
else a.sign = 0; /* else sign = + */
|
|
a.exp = 32 + ((opc & 0x100)? G_BIAS: FD_BIAS); /* initial exp */
|
|
a.frac.hi = val & LMASK; /* fraction */
|
|
a.frac.lo = 0;
|
|
norm (&a); /* normalize */
|
|
if (opc & 0x100) /* pack and return */
|
|
return rpackg (&a, rh);
|
|
return rpackfd (&a, rh);
|
|
}
|
|
|
|
/* Floating to integer convert */
|
|
|
|
int32 op_cvtfdgi (int32 *opnd, int32 *flg, int32 opc)
|
|
{
|
|
UFP a;
|
|
int32 lnt = opc & 03;
|
|
int32 ubexp;
|
|
static uint32 maxv[4] = { 0x7F, 0x7FFF, 0x7FFFFFFF, 0x7FFFFFFF };
|
|
|
|
*flg = 0;
|
|
if (opc & 0x100) { /* G? */
|
|
unpackg (opnd[0], opnd[1], &a); /* unpack */
|
|
ubexp = a.exp - G_BIAS; /* unbiased exp */
|
|
}
|
|
else {
|
|
if (opc & 0x20) /* F or D */
|
|
unpackd (opnd[0], opnd[1], &a);
|
|
else unpackf (opnd[0], &a); /* unpack */
|
|
ubexp = a.exp - FD_BIAS; /* unbiased exp */
|
|
}
|
|
if ((a.exp == 0) || (ubexp < 0)) /* true zero or frac? */
|
|
return 0;
|
|
if (ubexp <= UF_V_NM) { /* exp in range? */
|
|
dp_rsh (&a.frac, UF_V_NM - ubexp); /* leave rnd bit */
|
|
if (lnt == 03) /* if CVTR, round */
|
|
dp_inc (&a.frac);
|
|
dp_rsh (&a.frac, 1); /* now justified */
|
|
if ((a.frac.hi != 0) ||
|
|
(a.frac.lo > (maxv[lnt] + (a.sign? 1: 0))))
|
|
*flg = CC_V;
|
|
}
|
|
else {
|
|
*flg = CC_V; /* always ovflo */
|
|
if (ubexp > (UF_V_NM + 32)) /* in ext range? */
|
|
return 0;
|
|
dp_lsh (&a.frac, ubexp - UF_V_NM - 1); /* no rnd bit */
|
|
}
|
|
return (a.sign? NEG (a.frac.lo): a.frac.lo); /* return lo frac */
|
|
}
|
|
|
|
/* Extended modularize
|
|
|
|
One of three floating point instructions dropped from the architecture,
|
|
EMOD presents two sets of complications. First, it requires an extended
|
|
fraction multiply, with precise (and unusual) truncation conditions.
|
|
Second, it has two write operands, a dubious distinction it shares
|
|
with EDIV.
|
|
*/
|
|
|
|
int32 op_emodf (int32 *opnd, int32 *intgr, int32 *flg)
|
|
{
|
|
UFP a, b;
|
|
|
|
unpackf (opnd[0], &a); /* unpack operands */
|
|
unpackf (opnd[2], &b);
|
|
a.frac.hi = a.frac.hi | opnd[1]; /* extend src1 */
|
|
vax_fmul (&a, &b, 0, FD_BIAS, 0, LMASK); /* multiply */
|
|
vax_fmod (&a, FD_BIAS, intgr, flg); /* sep int & frac */
|
|
return rpackfd (&a, NULL); /* return frac */
|
|
}
|
|
|
|
int32 op_emodd (int32 *opnd, int32 *flo, int32 *intgr, int32 *flg)
|
|
{
|
|
UFP a, b;
|
|
|
|
unpackd (opnd[0], opnd[1], &a); /* unpack operands */
|
|
unpackd (opnd[3], opnd[4], &b);
|
|
a.frac.lo = a.frac.lo | opnd[2]; /* extend src1 */
|
|
vax_fmul (&a, &b, 1, FD_BIAS, 0, 0); /* multiply */
|
|
vax_fmod (&a, FD_BIAS, intgr, flg); /* sep int & frac */
|
|
return rpackfd (&a, flo); /* return frac */
|
|
}
|
|
|
|
int32 op_emodg (int32 *opnd, int32 *flo, int32 *intgr, int32 *flg)
|
|
{
|
|
UFP a, b;
|
|
|
|
unpackg (opnd[0], opnd[1], &a); /* unpack operands */
|
|
unpackg (opnd[3], opnd[4], &b);
|
|
a.frac.lo = a.frac.lo | (opnd[2] >> 5); /* extend src1 */
|
|
vax_fmul (&a, &b, 1, G_BIAS, 0, 0); /* multiply */
|
|
vax_fmod (&a, G_BIAS, intgr, flg); /* sep int & frac */
|
|
return rpackg (&a, flo); /* return frac */
|
|
}
|
|
|
|
/* Unpacked floating point routines */
|
|
|
|
/* Floating add */
|
|
|
|
void vax_fadd (UFP *a, UFP *b, uint32 mhi, uint32 mlo)
|
|
{
|
|
int32 ediff;
|
|
UFP t;
|
|
|
|
if ((a->frac.hi == 0) && (a->frac.lo == 0)) { /* s1 = 0? */
|
|
*a = *b;
|
|
return;
|
|
}
|
|
if ((b->frac.hi == 0) && (b->frac.lo == 0)) /* s2 = 0? */
|
|
return;
|
|
if ((a->exp < b->exp) || /* |s1| < |s2|? swap */
|
|
((a->exp == b->exp) && (dp_cmp (&a->frac, &b->frac) < 0))) {
|
|
t = *a;
|
|
*a = *b;
|
|
*b = t;
|
|
}
|
|
ediff = a->exp - b->exp; /* exp diff */
|
|
if (a->sign ^ b->sign) { /* eff sub? */
|
|
if (ediff) { /* exp diff? */
|
|
dp_neg (&b->frac); /* negate fraction */
|
|
dp_rsh_s (&b->frac, ediff, 1); /* signed right */
|
|
dp_add (&a->frac, &b->frac); /* "add" frac */
|
|
}
|
|
else dp_sub (&a->frac, &b->frac); /* a >= b */
|
|
a->frac.hi = a->frac.hi & ~mhi; /* mask before norm */
|
|
a->frac.lo = a->frac.lo & ~mlo;
|
|
norm (a); /* normalize */
|
|
}
|
|
else {
|
|
if (ediff) /* add, denormalize */
|
|
dp_rsh (&b->frac, ediff);
|
|
dp_add (&a->frac, &b->frac); /* add frac */
|
|
if (dp_cmp (&a->frac, &b->frac) < 0) { /* chk for carry */
|
|
dp_rsh (&a->frac, 1); /* renormalize */
|
|
a->frac.hi = a->frac.hi | UF_NM_H; /* add norm bit */
|
|
a->exp = a->exp + 1; /* skip norm */
|
|
}
|
|
a->frac.hi = a->frac.hi & ~mhi; /* mask */
|
|
a->frac.lo = a->frac.lo & ~mlo;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Floating multiply - 64b * 64b with cross products */
|
|
|
|
void vax_fmul (UFP *a, UFP *b, t_bool qd, int32 bias, uint32 mhi, uint32 mlo)
|
|
{
|
|
UDP rhi, rlo, rmid1, rmid2;
|
|
|
|
if ((a->exp == 0) || (b->exp == 0)) { /* zero argument? */
|
|
a->frac.hi = a->frac.lo = 0; /* result is zero */
|
|
a->sign = a->exp = 0;
|
|
return;
|
|
}
|
|
a->sign = a->sign ^ b->sign; /* sign of result */
|
|
a->exp = a->exp + b->exp - bias; /* add exponents */
|
|
dp_imul (a->frac.hi, b->frac.hi, &rhi); /* high result */
|
|
if (qd) { /* 64b needed? */
|
|
dp_imul (a->frac.hi, b->frac.lo, &rmid1); /* cross products */
|
|
dp_imul (a->frac.lo, b->frac.hi, &rmid2);
|
|
dp_imul (a->frac.lo, b->frac.lo, &rlo); /* low result */
|
|
rhi.lo = (rhi.lo + rmid1.hi) & LMASK; /* add hi cross */
|
|
if (rhi.lo < rmid1.hi) /* to low high res */
|
|
rhi.hi = (rhi.hi + 1) & LMASK;
|
|
rhi.lo = (rhi.lo + rmid2.hi) & LMASK;
|
|
if (rhi.lo < rmid2.hi)
|
|
rhi.hi = (rhi.hi + 1) & LMASK;
|
|
rlo.hi = (rlo.hi + rmid1.lo) & LMASK; /* add mid1 to low res */
|
|
if (rlo.hi < rmid1.lo) /* carry? incr high res */
|
|
dp_inc (&rhi);
|
|
rlo.hi = (rlo.hi + rmid2.lo) & LMASK; /* add mid2 to low res */
|
|
if (rlo.hi < rmid2.lo) /* carry? incr high res */
|
|
dp_inc (&rhi);
|
|
}
|
|
a->frac.hi = rhi.hi & ~mhi; /* mask fraction */
|
|
a->frac.lo = rhi.lo & ~mlo;
|
|
norm (a); /* normalize */
|
|
return;
|
|
}
|
|
|
|
/* Floating modulus - there are three cases
|
|
|
|
exp <= bias - integer is 0, fraction is input,
|
|
no overflow
|
|
bias < exp <= bias+64 - separate integer and fraction,
|
|
integer overflow may occur
|
|
bias+64 < exp - result is integer, fraction is 0
|
|
integer overflow
|
|
*/
|
|
|
|
void vax_fmod (UFP *a, int32 bias, int32 *intgr, int32 *flg)
|
|
{
|
|
UDP ifr;
|
|
|
|
if (a->exp <= bias) /* 0 or <1? int = 0 */
|
|
*intgr = *flg = 0;
|
|
else if (a->exp <= (bias + 64)) { /* in range [1,64]? */
|
|
ifr = a->frac;
|
|
dp_rsh (&ifr, 64 - (a->exp - bias)); /* separate integer */
|
|
if ((a->exp > (bias + 32)) || /* test ovflo */
|
|
((a->exp == (bias + 32)) &&
|
|
(ifr.lo > (a->sign? 0x80000000: 0x7FFFFFFF))))
|
|
*flg = CC_V;
|
|
else *flg = 0;
|
|
*intgr = ifr.lo;
|
|
if (a->sign) /* -? comp int */
|
|
*intgr = -*intgr;
|
|
dp_lsh (&a->frac, a->exp - bias); /* excise integer */
|
|
a->exp = bias;
|
|
}
|
|
else {
|
|
if (a->exp < (bias + 96)) { /* need left shift? */
|
|
ifr = a->frac;
|
|
dp_lsh (&ifr, a->exp - bias - 64);
|
|
*intgr = ifr.lo;
|
|
}
|
|
else *intgr = 0; /* out of range */
|
|
if (a->sign)
|
|
*intgr = -*intgr;
|
|
a->frac.hi = a->frac.lo = a->sign = a->exp = 0; /* result 0 */
|
|
*flg = CC_V; /* overflow */
|
|
}
|
|
norm (a); /* normalize */
|
|
return;
|
|
}
|
|
|
|
/* Floating divide
|
|
Needs to develop at least one rounding bit. Since the first
|
|
divide step can fail, caller should specify 2 more bits than
|
|
the precision of the fraction.
|
|
*/
|
|
|
|
void vax_fdiv (UFP *a, UFP *b, int32 prec, int32 bias)
|
|
{
|
|
int32 i;
|
|
UDP quo = { 0, 0 };
|
|
|
|
if (a->exp == 0) /* divr = 0? */
|
|
FLT_DZRO_FAULT;
|
|
if (b->exp == 0) /* divd = 0? */
|
|
return;
|
|
b->sign = b->sign ^ a->sign; /* result sign */
|
|
b->exp = b->exp - a->exp + bias + 1; /* unbiased exp */
|
|
dp_rsh (&a->frac, 1); /* allow 1 bit left */
|
|
dp_rsh (&b->frac, 1);
|
|
for (i = 0; i < prec; i++) { /* divide loop */
|
|
dp_lsh (&quo, 1); /* shift quo */
|
|
if (dp_cmp (&b->frac, &a->frac) >= 0) { /* div step ok? */
|
|
dp_sub (&b->frac, &a->frac); /* subtract */
|
|
quo.lo = quo.lo + 1; /* quo bit = 1 */
|
|
}
|
|
dp_lsh (&b->frac, 1); /* shift divd */
|
|
}
|
|
dp_lsh (&quo, UF_V_NM - prec + 1); /* put in position */
|
|
b->frac = quo;
|
|
norm (b); /* normalize */
|
|
return;
|
|
}
|
|
|
|
/* Double precision integer routines */
|
|
|
|
int32 dp_cmp (UDP *a, UDP *b)
|
|
{
|
|
if (a->hi < b->hi) /* compare hi */
|
|
return -1;
|
|
if (a->hi > b->hi)
|
|
return +1;
|
|
if (a->lo < b->lo) /* hi =, compare lo */
|
|
return -1;
|
|
if (a->lo > b->lo)
|
|
return +1;
|
|
return 0; /* hi, lo equal */
|
|
}
|
|
|
|
void dp_add (UDP *a, UDP *b)
|
|
{
|
|
a->lo = (a->lo + b->lo) & LMASK; /* add lo */
|
|
if (a->lo < b->lo) /* carry? */
|
|
a->hi = a->hi + 1;
|
|
a->hi = (a->hi + b->hi) & LMASK; /* add hi */
|
|
return;
|
|
}
|
|
|
|
void dp_inc (UDP *a)
|
|
{
|
|
a->lo = (a->lo + 1) & LMASK; /* inc lo */
|
|
if (a->lo == 0) /* carry? inc hi */
|
|
a->hi = (a->hi + 1) & LMASK;
|
|
return;
|
|
}
|
|
|
|
void dp_sub (UDP *a, UDP *b)
|
|
{
|
|
if (a->lo < b->lo) /* borrow? decr hi */
|
|
a->hi = a->hi - 1;
|
|
a->lo = (a->lo - b->lo) & LMASK; /* sub lo */
|
|
a->hi = (a->hi - b->hi) & LMASK; /* sub hi */
|
|
return;
|
|
}
|
|
|
|
void dp_lsh (UDP *r, uint32 sc)
|
|
{
|
|
if (sc > 63) /* > 63? result 0 */
|
|
r->hi = r->lo = 0;
|
|
else if (sc > 31) { /* [32,63]? */
|
|
r->hi = (r->lo << (sc - 32)) & LMASK;
|
|
r->lo = 0;
|
|
}
|
|
else if (sc != 0) {
|
|
r->hi = ((r->hi << sc) | (r->lo >> (32 - sc))) & LMASK;
|
|
r->lo = (r->lo << sc) & LMASK;
|
|
}
|
|
return;
|
|
}
|
|
|
|
void dp_rsh (UDP *r, uint32 sc)
|
|
{
|
|
if (sc > 63) /* > 63? result 0 */
|
|
r->hi = r->lo = 0;
|
|
else if (sc > 31) { /* [32,63]? */
|
|
r->lo = (r->hi >> (sc - 32)) & LMASK;
|
|
r->hi = 0;
|
|
}
|
|
else if (sc != 0) {
|
|
r->lo = ((r->lo >> sc) | (r->hi << (32 - sc))) & LMASK;
|
|
r->hi = (r->hi >> sc) & LMASK;
|
|
}
|
|
return;
|
|
}
|
|
|
|
void dp_rsh_s (UDP *r, uint32 sc, uint32 neg)
|
|
{
|
|
dp_rsh (r, sc); /* do unsigned right */
|
|
if (neg && sc) { /* negative? */
|
|
if (sc > 63) /* > 63? result -1 */
|
|
r->hi = r->lo = LMASK;
|
|
else {
|
|
UDP ones = { LMASK, LMASK };
|
|
dp_lsh (&ones, 64 - sc); /* shift ones */
|
|
r->hi = r->hi | ones.hi; /* or into result */
|
|
r->lo = r->lo | ones.lo;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void dp_imul (uint32 a, uint32 b, UDP *r)
|
|
{
|
|
uint32 ah, bh, al, bl, rhi, rlo, rmid1, rmid2;
|
|
|
|
if ((a == 0) || (b == 0)) { /* zero argument? */
|
|
r->hi = r->lo = 0; /* result is zero */
|
|
return;
|
|
}
|
|
ah = (a >> 16) & WMASK; /* split operands */
|
|
bh = (b >> 16) & WMASK; /* into 16b chunks */
|
|
al = a & WMASK;
|
|
bl = b & WMASK;
|
|
rhi = ah * bh; /* high result */
|
|
rmid1 = ah * bl;
|
|
rmid2 = al * bh;
|
|
rlo = al * bl;
|
|
rhi = rhi + ((rmid1 >> 16) & WMASK) + ((rmid2 >> 16) & WMASK);
|
|
rmid1 = (rlo + (rmid1 << 16)) & LMASK; /* add mid1 to lo */
|
|
if (rmid1 < rlo) /* carry? incr hi */
|
|
rhi = rhi + 1;
|
|
rmid2 = (rmid1 + (rmid2 << 16)) & LMASK; /* add mid2 to to */
|
|
if (rmid2 < rmid1) /* carry? incr hi */
|
|
rhi = rhi + 1;
|
|
r->hi = rhi & LMASK; /* mask result */
|
|
r->lo = rmid2;
|
|
return;
|
|
}
|
|
|
|
void dp_neg (UDP *r)
|
|
{
|
|
r->lo = NEG (r->lo);
|
|
r->hi = (~r->hi + (r->lo == 0)) & LMASK;
|
|
return;
|
|
}
|
|
|
|
/* Support routines */
|
|
|
|
void unpackf (uint32 hi, UFP *r)
|
|
{
|
|
r->sign = hi & FPSIGN; /* get sign */
|
|
r->exp = FD_GETEXP (hi); /* get exponent */
|
|
if (r->exp == 0) { /* exp = 0? */
|
|
if (r->sign) /* if -, rsvd op */
|
|
RSVD_OPND_FAULT;
|
|
r->frac.hi = r->frac.lo = 0; /* else 0 */
|
|
return;
|
|
}
|
|
r->frac.hi = WORDSWAP ((hi & ~(FPSIGN | FD_EXP)) | FD_HB);
|
|
r->frac.lo = 0;
|
|
dp_lsh (&r->frac, FD_GUARD);
|
|
return;
|
|
}
|
|
|
|
void unpackd (uint32 hi, uint32 lo, UFP *r)
|
|
{
|
|
r->sign = hi & FPSIGN; /* get sign */
|
|
r->exp = FD_GETEXP (hi); /* get exponent */
|
|
if (r->exp == 0) { /* exp = 0? */
|
|
if (r->sign) /* if -, rsvd op */
|
|
RSVD_OPND_FAULT;
|
|
r->frac.hi = r->frac.lo = 0; /* else 0 */
|
|
return;
|
|
}
|
|
r->frac.hi = WORDSWAP ((hi & ~(FPSIGN | FD_EXP)) | FD_HB);
|
|
r->frac.lo = WORDSWAP (lo);
|
|
dp_lsh (&r->frac, FD_GUARD);
|
|
return;
|
|
}
|
|
|
|
void unpackg (uint32 hi, uint32 lo, UFP *r)
|
|
{
|
|
r->sign = hi & FPSIGN; /* get sign */
|
|
r->exp = G_GETEXP (hi); /* get exponent */
|
|
if (r->exp == 0) { /* exp = 0? */
|
|
if (r->sign) /* if -, rsvd op */
|
|
RSVD_OPND_FAULT;
|
|
r->frac.hi = r->frac.lo = 0; /* else 0 */
|
|
return;
|
|
}
|
|
r->frac.hi = WORDSWAP ((hi & ~(FPSIGN | G_EXP)) | G_HB);
|
|
r->frac.lo = WORDSWAP (lo);
|
|
dp_lsh (&r->frac, G_GUARD);
|
|
return;
|
|
}
|
|
|
|
void norm (UFP *r)
|
|
{
|
|
int32 i;
|
|
static uint32 normmask[5] = {
|
|
0xc0000000, 0xf0000000, 0xff000000, 0xffff0000, 0xffffffff
|
|
};
|
|
static int32 normtab[6] = { 1, 2, 4, 8, 16, 32};
|
|
|
|
if ((r->frac.hi == 0) && (r->frac.lo == 0)) { /* if fraction = 0 */
|
|
r->sign = r->exp = 0; /* result is 0 */
|
|
return;
|
|
}
|
|
while ((r->frac.hi & UF_NM_H) == 0) { /* normalized? */
|
|
for (i = 0; i < 5; i++) { /* find first 1 */
|
|
if (r->frac.hi & normmask[i])
|
|
break;
|
|
}
|
|
dp_lsh (&r->frac, normtab[i]); /* shift frac */
|
|
r->exp = r->exp - normtab[i]; /* decr exp */
|
|
}
|
|
return;
|
|
}
|
|
|
|
int32 rpackfd (UFP *r, int32 *rh)
|
|
{
|
|
static UDP f_round = { UF_FRND_L, UF_FRND_H };
|
|
static UDP d_round = { UF_DRND_L, UF_DRND_H };
|
|
|
|
if (rh) /* assume 0 */
|
|
*rh = 0;
|
|
if ((r->frac.hi == 0) && (r->frac.lo == 0)) /* result 0? */
|
|
return 0;
|
|
if (rh) /* round */
|
|
dp_add (&r->frac, &d_round);
|
|
else dp_add (&r->frac, &f_round);
|
|
if ((r->frac.hi & UF_NM_H) == 0) { /* carry out? */
|
|
dp_rsh (&r->frac, 1); /* renormalize */
|
|
r->exp = r->exp + 1;
|
|
}
|
|
if (r->exp > (int32) FD_M_EXP) /* ovflo? fault */
|
|
FLT_OVFL_FAULT;
|
|
if (r->exp <= 0) { /* underflow? */
|
|
if (PSL & PSW_FU) /* fault if fu */
|
|
FLT_UNFL_FAULT;
|
|
return 0; /* else 0 */
|
|
}
|
|
dp_rsh (&r->frac, FD_GUARD); /* remove guard */
|
|
if (rh) /* get low */
|
|
*rh = WORDSWAP (r->frac.lo);
|
|
return r->sign | (r->exp << FD_V_EXP) |
|
|
(WORDSWAP (r->frac.hi) & ~(FD_HB | FPSIGN | FD_EXP));
|
|
}
|
|
|
|
int32 rpackg (UFP *r, int32 *rh)
|
|
{
|
|
static UDP g_round = { UF_GRND_L, UF_GRND_H };
|
|
|
|
*rh = 0; /* assume 0 */
|
|
if ((r->frac.hi == 0) && (r->frac.lo == 0)) /* result 0? */
|
|
return 0;
|
|
dp_add (&r->frac, &g_round); /* round */
|
|
if ((r->frac.hi & UF_NM_H) == 0) { /* carry out? */
|
|
dp_rsh (&r->frac, 1); /* renormalize */
|
|
r->exp = r->exp + 1;
|
|
}
|
|
if (r->exp > (int32) G_M_EXP) /* ovflo? fault */
|
|
FLT_OVFL_FAULT;
|
|
if (r->exp <= 0) { /* underflow? */
|
|
if (PSL & PSW_FU) /* fault if fu */
|
|
FLT_UNFL_FAULT;
|
|
return 0; /* else 0 */
|
|
}
|
|
dp_rsh (&r->frac, G_GUARD); /* remove guard */
|
|
*rh = WORDSWAP (r->frac.lo); /* get low */
|
|
return r->sign | (r->exp << G_V_EXP) |
|
|
(WORDSWAP (r->frac.hi) & ~(G_HB | FPSIGN | G_EXP));
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Floating point instructions */
|
|
|
|
/* Move/test/move negated floating
|
|
|
|
Note that only the high 32b is processed.
|
|
If the high 32b is not zero, it is unchanged.
|
|
*/
|
|
|
|
int32 op_movfd (int32 val)
|
|
{
|
|
if (val & FD_EXP)
|
|
return val;
|
|
if (val & FPSIGN)
|
|
RSVD_OPND_FAULT;
|
|
return 0;
|
|
}
|
|
|
|
int32 op_mnegfd (int32 val)
|
|
{
|
|
if (val & FD_EXP)
|
|
return (val ^ FPSIGN);
|
|
if (val & FPSIGN)
|
|
RSVD_OPND_FAULT;
|
|
return 0;
|
|
}
|
|
|
|
int32 op_movg (int32 val)
|
|
{
|
|
if (val & G_EXP)
|
|
return val;
|
|
if (val & FPSIGN)
|
|
RSVD_OPND_FAULT;
|
|
return 0;
|
|
}
|
|
|
|
int32 op_mnegg (int32 val)
|
|
{
|
|
if (val & G_EXP)
|
|
return (val ^ FPSIGN);
|
|
if (val & FPSIGN)
|
|
RSVD_OPND_FAULT;
|
|
return 0;
|
|
}
|
|
|
|
/* Floating to floating convert - F to D is essentially done with MOVFD */
|
|
|
|
int32 op_cvtdf (int32 *opnd)
|
|
{
|
|
UFP a;
|
|
|
|
unpackd (opnd[0], opnd[1], &a);
|
|
return rpackfd (&a, NULL);
|
|
}
|
|
|
|
int32 op_cvtfg (int32 *opnd, int32 *rh)
|
|
{
|
|
UFP a;
|
|
|
|
unpackf (opnd[0], &a);
|
|
a.exp = a.exp - FD_BIAS + G_BIAS;
|
|
return rpackg (&a, rh);
|
|
}
|
|
|
|
int32 op_cvtgf (int32 *opnd)
|
|
{
|
|
UFP a;
|
|
|
|
unpackg (opnd[0], opnd[1], &a);
|
|
a.exp = a.exp - G_BIAS + FD_BIAS;
|
|
return rpackfd (&a, NULL);
|
|
}
|
|
|
|
/* Floating add and subtract */
|
|
|
|
int32 op_addf (int32 *opnd, t_bool sub)
|
|
{
|
|
UFP a, b;
|
|
|
|
unpackf (opnd[0], &a); /* F format */
|
|
unpackf (opnd[1], &b);
|
|
if (sub) /* sub? -s1 */
|
|
a.sign = a.sign ^ FPSIGN;
|
|
vax_fadd (&a, &b, 0, 0); /* add fractions */
|
|
return rpackfd (&a, NULL);
|
|
}
|
|
|
|
int32 op_addd (int32 *opnd, int32 *rh, t_bool sub)
|
|
{
|
|
UFP a, b;
|
|
|
|
unpackd (opnd[0], opnd[1], &a);
|
|
unpackd (opnd[2], opnd[3], &b);
|
|
if (sub) /* sub? -s1 */
|
|
a.sign = a.sign ^ FPSIGN;
|
|
vax_fadd (&a, &b, 0, 0); /* add fractions */
|
|
return rpackfd (&a, rh);
|
|
}
|
|
|
|
int32 op_addg (int32 *opnd, int32 *rh, t_bool sub)
|
|
{
|
|
UFP a, b;
|
|
|
|
unpackg (opnd[0], opnd[1], &a);
|
|
unpackg (opnd[2], opnd[3], &b);
|
|
if (sub) /* sub? -s1 */
|
|
a.sign = a.sign ^ FPSIGN;
|
|
vax_fadd (&a, &b, 0, 0); /* add fractions */
|
|
return rpackg (&a, rh); /* round and pack */
|
|
}
|
|
|
|
/* Floating multiply */
|
|
|
|
int32 op_mulf (int32 *opnd)
|
|
{
|
|
UFP a, b;
|
|
|
|
unpackf (opnd[0], &a); /* F format */
|
|
unpackf (opnd[1], &b);
|
|
vax_fmul (&a, &b, 0, FD_BIAS, 0, 0); /* do multiply */
|
|
return rpackfd (&a, NULL); /* round and pack */
|
|
}
|
|
|
|
int32 op_muld (int32 *opnd, int32 *rh)
|
|
{
|
|
UFP a, b;
|
|
|
|
unpackd (opnd[0], opnd[1], &a); /* D format */
|
|
unpackd (opnd[2], opnd[3], &b);
|
|
vax_fmul (&a, &b, 1, FD_BIAS, 0, 0); /* do multiply */
|
|
return rpackfd (&a, rh); /* round and pack */
|
|
}
|
|
|
|
int32 op_mulg (int32 *opnd, int32 *rh)
|
|
{
|
|
UFP a, b;
|
|
|
|
unpackg (opnd[0], opnd[1], &a); /* G format */
|
|
unpackg (opnd[2], opnd[3], &b);
|
|
vax_fmul (&a, &b, 1, G_BIAS, 0, 0); /* do multiply */
|
|
return rpackg (&a, rh); /* round and pack */
|
|
}
|
|
|
|
/* Floating divide */
|
|
|
|
int32 op_divf (int32 *opnd)
|
|
{
|
|
UFP a, b;
|
|
|
|
unpackf (opnd[0], &a); /* F format */
|
|
unpackf (opnd[1], &b);
|
|
vax_fdiv (&a, &b, 26, FD_BIAS); /* do divide */
|
|
return rpackfd (&b, NULL); /* round and pack */
|
|
}
|
|
|
|
int32 op_divd (int32 *opnd, int32 *rh)
|
|
{
|
|
UFP a, b;
|
|
|
|
unpackd (opnd[0], opnd[1], &a); /* D format */
|
|
unpackd (opnd[2], opnd[3], &b);
|
|
vax_fdiv (&a, &b, 58, FD_BIAS); /* do divide */
|
|
return rpackfd (&b, rh); /* round and pack */
|
|
}
|
|
|
|
int32 op_divg (int32 *opnd, int32 *rh)
|
|
{
|
|
UFP a, b;
|
|
|
|
unpackg (opnd[0], opnd[1], &a); /* G format */
|
|
unpackg (opnd[2], opnd[3], &b);
|
|
vax_fdiv (&a, &b, 55, G_BIAS); /* do divide */
|
|
return rpackg (&b, rh); /* round and pack */
|
|
}
|
|
|
|
/* Polynomial evaluation
|
|
The most mis-implemented instruction in the VAX (probably here too).
|
|
POLY requires a precise combination of masking versus normalizing
|
|
to achieve the desired answer. In particular, the multiply step
|
|
is masked prior to normalization. In addition, negative small
|
|
fractions must not be treated as 0 during denorm.
|
|
*/
|
|
|
|
void op_polyf (int32 *opnd, int32 acc)
|
|
{
|
|
UFP r, a, c;
|
|
int32 deg = opnd[1];
|
|
int32 ptr = opnd[2];
|
|
int32 i, wd, res;
|
|
|
|
if (deg > 31) /* degree > 31? fault */
|
|
RSVD_OPND_FAULT;
|
|
unpackf (opnd[0], &a); /* unpack arg */
|
|
wd = Read (ptr, L_LONG, RD); /* get C0 */
|
|
ptr = ptr + 4;
|
|
unpackf (wd, &r); /* unpack C0 */
|
|
res = rpackfd (&r, NULL); /* first result */
|
|
for (i = 0; i < deg; i++) { /* loop */
|
|
unpackf (res, &r); /* unpack result */
|
|
vax_fmul (&r, &a, 0, FD_BIAS, 1, LMASK); /* r = r * arg, mask */
|
|
wd = Read (ptr, L_LONG, RD); /* get Cnext */
|
|
ptr = ptr + 4;
|
|
unpackf (wd, &c); /* unpack Cnext */
|
|
vax_fadd (&r, &c, 1, LMASK); /* r = r + Cnext */
|
|
res = rpackfd (&r, NULL); /* round and pack */
|
|
}
|
|
R[0] = res;
|
|
R[1] = R[2] = 0;
|
|
R[3] = ptr;
|
|
return;
|
|
}
|
|
|
|
void op_polyd (int32 *opnd, int32 acc)
|
|
{
|
|
UFP r, a, c;
|
|
int32 deg = opnd[2];
|
|
int32 ptr = opnd[3];
|
|
int32 i, wd, wd1, res, resh;
|
|
|
|
if (deg > 31) /* degree > 31? fault */
|
|
RSVD_OPND_FAULT;
|
|
unpackd (opnd[0], opnd[1], &a); /* unpack arg */
|
|
wd = Read (ptr, L_LONG, RD); /* get C0 */
|
|
wd1 = Read (ptr + 4, L_LONG, RD);
|
|
ptr = ptr + 8;
|
|
unpackd (wd, wd1, &r); /* unpack C0 */
|
|
res = rpackfd (&r, &resh); /* first result */
|
|
for (i = 0; i < deg; i++) { /* loop */
|
|
unpackd (res, resh, &r); /* unpack result */
|
|
vax_fmul (&r, &a, 1, FD_BIAS, 0, 1); /* r = r * arg, mask */
|
|
wd = Read (ptr, L_LONG, RD); /* get Cnext */
|
|
wd1 = Read (ptr + 4, L_LONG, RD);
|
|
ptr = ptr + 8;
|
|
unpackd (wd, wd1, &c); /* unpack Cnext */
|
|
vax_fadd (&r, &c, 0, 1); /* r = r + Cnext */
|
|
res = rpackfd (&r, &resh); /* round and pack */
|
|
}
|
|
R[0] = res;
|
|
R[1] = resh;
|
|
R[2] = 0;
|
|
R[3] = ptr;
|
|
R[4] = 0;
|
|
R[5] = 0;
|
|
return;
|
|
}
|
|
|
|
void op_polyg (int32 *opnd, int32 acc)
|
|
{
|
|
UFP r, a, c;
|
|
int32 deg = opnd[2];
|
|
int32 ptr = opnd[3];
|
|
int32 i, wd, wd1, res, resh;
|
|
|
|
if (deg > 31) /* degree > 31? fault */
|
|
RSVD_OPND_FAULT;
|
|
unpackg (opnd[0], opnd[1], &a); /* unpack arg */
|
|
wd = Read (ptr, L_LONG, RD); /* get C0 */
|
|
wd1 = Read (ptr + 4, L_LONG, RD);
|
|
ptr = ptr + 8;
|
|
unpackg (wd, wd1, &r); /* unpack C0 */
|
|
res = rpackg (&r, &resh); /* first result */
|
|
for (i = 0; i < deg; i++) { /* loop */
|
|
unpackg (res, resh, &r); /* unpack result */
|
|
vax_fmul (&r, &a, 1, G_BIAS, 0, 1); /* r = r * arg */
|
|
wd = Read (ptr, L_LONG, RD); /* get Cnext */
|
|
wd1 = Read (ptr + 4, L_LONG, RD);
|
|
ptr = ptr + 8;
|
|
unpackg (wd, wd1, &c); /* unpack Cnext */
|
|
vax_fadd (&r, &c, 0, 1); /* r = r + Cnext */
|
|
res = rpackg (&r, &resh); /* round and pack */
|
|
}
|
|
R[0] = res;
|
|
R[1] = resh;
|
|
R[2] = 0;
|
|
R[3] = ptr;
|
|
R[4] = 0;
|
|
R[5] = 0;
|
|
return;
|
|
}
|