simh-testsetgenerator/PDP11/pdp11_cpumod.c
Bob Supnik b6393b36b4 Notes For V3.3
RESTRICTION: The HP DS disk is not debugged.  DO NOT enable this
feature for normal operations.
WARNING: Massive changes in the PDP-11 make all previous SAVEd
file obsolete.  Do not attempt to use a PDP-11 SAVE file from a
prior release with V3.3!

1. New Features in 3.3

1.1 SCP

- Added -p (powerup) qualifier to RESET
- Changed SET <unit> ONLINE/OFFLINE to SET <unit> ENABLED/DISABLED
- Moved SET DEBUG under SET CONSOLE hierarchy
- Added optional parameter value to SHOW command
- Added output file option to SHOW command

1.2 PDP-11

- Separated RH Massbus adapter from RP controller
- Added TU tape support
- Added model emulation framework
- Added model details

1.3 VAX

- Separated out CVAX-specific features from core instruction simulator
- Implemented capability for CIS, octaword, compatibility mode instructions
- Added instruction display and parse for compatibility mode
- Changed SET CPU VIRTUAL=n to SHOW CPU VIRTUAL=n
- Added =n optional parameter to SHOW CPU HISTORY

1.4 Unibus/Qbus simulators (PDP-11, VAX, PDP-10)

- Simplified DMA API's
- Modified DMA peripherals to use simplified API's

1.5 HP2100 (all changes from Dave Bryan)

CPU	- moved MP into its own device; added MP option jumpers
	- modified DMA to allow disabling
	- modified SET CPU 2100/2116 to truncate memory > 32K
	- added -F switch to SET CPU to force memory truncation
	- modified WRU to be REG_HRO
	- added BRK and DEL to save console settings

DR	- provided protected tracks and "Writing Enabled" status bit
	- added "parity error" status return on writes for 12606
	- added track origin test for 12606
	- added SCP test for 12606
	- added "Sector Flag" status bit
	- added "Read Inhibit" status bit for 12606
	- added TRACKPROT modifier

LPS	- added SET OFFLINE/ONLINE, POWEROFF/POWERON
	- added fast/realistic timing
	- added debug printouts

LPT	- added SET OFFLINE/ONLINE, POWEROFF/POWERON

PTR	- added paper tape loop mode, DIAG/READER modifiers to PTR
	- added PV_LEFT to PTR TRLLIM register

CLK	- modified CLK to permit disable

1.6 IBM 1401, IBM 1620, Interdata 16b, SDS 940, PDP-10

- Added instruction history

1.7 H316, PDP-15, PDP-8

- Added =n optional value to SHOW CPU HISTORY

2. Bugs Fixed in 3.3

2.1 SCP

- Fixed comma-separated SET options (from Dave Bryan)
- Fixed duplicate HELP displays with user-specified commands

2.2 PDP-10

- Replicated RP register state per drive
- Fixed TU to set FCE on short record
- Fixed TU to return bit<15> in drive type
- Fixed TU format specification, 1:0 are don't cares
- Fixed TU handling of TMK status
- Fixed TU handling of DONE, ATA at end of operation
- Implemented TU write check

2.3 PDP-11

- Replicated RP register state per drive
- Fixed RQ, TQ to report correct controller type and stage 1 configuration
  flags on a Unibus system
- Fixed HK CS2<output_ready> flag

2.4 VAX

- Fixed parsing of indirect displacement modes in instruction input

2.5 HP2100 (all fixes from Dave Bryan)

CPU	- fixed S-register behavior on 2116
	- fixed LIx/MIx behavior for DMA on 2116 and 2100
	- fixed LIx/MIx behavior for empty I/O card slots

DP	- fixed enable/disable from either device
	- fixed ANY ERROR status for 12557A interface
	- fixed unattached drive status for 12557A interface
	- status cmd without prior STC DC now completes (12557A)
	- OTA/OTB CC on 13210A interface also does CLC CC
	- fixed RAR model
	- fixed seek check on 13210 if sector out of range

DQ	- fixed enable/disable from either device
	- shortened xtime from 5 to 3 (drive avg 156KW/second)
	- fixed not ready/any error status
	- fixed RAR model

DR	- fixed enable/disable from either device
	- fixed sector return in status word
	- fixed DMA last word write, incomplete sector fill value
	- fixed 12610 SFC operation
	- fixed current-sector determination

IPL	- fixed enable/disable from either device

LPS	- fixed status returns for error conditions
	- fixed handling of non-printing characters
	- fixed handling of characters after column 80
	- improved timing model accuracy for RTE

LPT	- fixed status returns for error conditions
	- fixed TOF handling so form remains on line 0

SYS	- fixed display of CCA/CCB/CCE instructions

2.5 PDP-15

FPP	- fixed URFST to mask low 9b of fraction
	- fixed exception PC setting
2011-04-15 08:34:40 -07:00

977 lines
28 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* pdp11_cpumod.c: PDP-11 CPU model-specific features
Copyright (c) 2004, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
system PDP-11 model-specific registers
This module includes CPU- and system-specific registers, such as the Unibus
map and control registers on 22b Unibus systems, the board registers for the
F11- and J11-based systems, and the system registers for the PDP-11/44,
PDP-11/45, PDP-11/60, and PDP-11/70. Most registers are implemented at
a minimum level: just enough to satisfy the machine identification code
in the various operating systems.
*/
#include "pdp11_defs.h"
#include "pdp11_cpumod.h"
#include <time.h>
/* Byte write macros for system registers */
#define ODD_IGN(cur) \
if ((access == WRITEB) && (pa & 1)) return SCPE_OK
#define ODD_WO(cur) \
if ((access == WRITEB) && (pa & 1)) cur = cur << 8
#define ODD_MRG(prv,cur) \
if (access == WRITEB) cur = \
((pa & 1)? (((prv) & 0377) | ((cur) & 0177400)) : \
(((prv) & 0177400) | ((cur) & 0377)))
int32 SR = 0; /* switch register */
int32 DR = 0; /* display register */
int32 MBRK = 0; /* 11/70 microbreak */
int32 CPUERR = 0; /* CPU error reg */
int32 MEMERR = 0; /* memory error reg */
int32 CCR = 0; /* cache control reg */
int32 HITMISS = 0; /* hit/miss reg */
int32 MAINT = 0; /* maint reg */
int32 JCSR = 0; /* J11 control */
int32 JPCR = 0; /* J11 page ctrl */
int32 JASR = 0; /* J11 addtl status */
int32 UDCR = 0; /* UBA diag ctrl */
int32 UDDR = 0; /* UBA diag data */
int32 UCSR = 0; /* UBA control */
int32 uba_last = 0; /* UBA last mapped */
int32 ub_map[UBM_LNT_LW] = { 0 }; /* UBA map array */
int32 toy_state = 0;
uint8 toy_data[TOY_LNT] = { 0 };
static int32 clk_tps_map[4] = { 60, 60, 50, 800 };
extern uint16 *M;
extern int32 R[8];
extern DEVICE cpu_dev, *sim_devices[];
extern UNIT cpu_unit;
extern FILE *sim_log;
extern int32 STKLIM, PIRQ;
extern int32 cpu_model, cpu_type, cpu_opt;
extern int32 clk_fie, clk_fnxm, clk_tps, clk_default;
t_stat CPU24_rd (int32 *data, int32 addr, int32 access);
t_stat CPU24_wr (int32 data, int32 addr, int32 access);
t_stat CPU44_rd (int32 *data, int32 addr, int32 access);
t_stat CPU44_wr (int32 data, int32 addr, int32 access);
t_stat CPU45_rd (int32 *data, int32 addr, int32 access);
t_stat CPU45_wr (int32 data, int32 addr, int32 access);
t_stat CPU60_rd (int32 *data, int32 addr, int32 access);
t_stat CPU60_wr (int32 data, int32 addr, int32 access);
t_stat CPU70_rd (int32 *data, int32 addr, int32 access);
t_stat CPU70_wr (int32 data, int32 addr, int32 access);
t_stat CPUJ_rd (int32 *data, int32 addr, int32 access);
t_stat CPUJ_wr (int32 data, int32 addr, int32 access);
t_stat REG_rd (int32 *data, int32 addr, int32 access);
t_stat REG_wr (int32 data, int32 addr, int32 access);
t_stat SR_rd (int32 *data, int32 addr, int32 access);
t_stat DR_wr (int32 data, int32 addr, int32 access);
t_stat CTLFB_rd (int32 *data, int32 addr, int32 access);
t_stat CTLFB_wr (int32 data, int32 addr, int32 access);
t_stat CTLJB_rd (int32 *data, int32 addr, int32 access);
t_stat CTLJB_wr (int32 data, int32 addr, int32 access);
t_stat CTLJD_rd (int32 *data, int32 addr, int32 access);
t_stat CTLJD_wr (int32 data, int32 addr, int32 access);
t_stat CTLJE_rd (int32 *data, int32 addr, int32 access);
t_stat CTLJE_wr (int32 data, int32 addr, int32 access);
t_stat UBA24_rd (int32 *data, int32 addr, int32 access);
t_stat UBA24_wr (int32 data, int32 addr, int32 access);
t_stat UBAJ_rd (int32 *data, int32 addr, int32 access);
t_stat UBAJ_wr (int32 data, int32 addr, int32 access);
t_stat sys_reset (DEVICE *dptr);
int32 toy_read (void);
void toy_write (int32 bit);
uint8 toy_set (int32 val);
extern t_stat PSW_rd (int32 *data, int32 addr, int32 access);
extern t_stat PSW_wr (int32 data, int32 addr, int32 access);
extern t_stat APR_rd (int32 *data, int32 addr, int32 access);
extern t_stat APR_wr (int32 data, int32 addr, int32 access);
extern t_stat MMR012_rd (int32 *data, int32 addr, int32 access);
extern t_stat MMR012_wr (int32 data, int32 addr, int32 access);
extern t_stat MMR3_rd (int32 *data, int32 addr, int32 access);
extern t_stat MMR3_wr (int32 data, int32 addr, int32 access);
extern t_stat ubm_rd (int32 *data, int32 addr, int32 access);
extern t_stat ubm_wr (int32 data, int32 addr, int32 access);
extern void put_PIRQ (int32 val);
/* Fixed I/O address table entries */
DIB psw_dib = { IOBA_PSW, IOLN_PSW, &PSW_rd, &PSW_wr, 0 };
DIB cpuj_dib = { IOBA_CPU, IOLN_CPU, &CPUJ_rd, &CPUJ_wr, 0 };
DIB cpu24_dib = { IOBA_CPU, IOLN_CPU, &CPU24_rd, &CPU24_wr, 0 };
DIB cpu44_dib = { IOBA_CPU, IOLN_CPU, &CPU44_rd, &CPU44_wr, 0 };
DIB cpu45_dib = { IOBA_CPU, IOLN_CPU, &CPU45_rd, &CPU45_wr, 0 };
DIB cpu60_dib = { IOBA_CPU, IOLN_CPU, &CPU60_rd, &CPU60_wr, 0 };
DIB cpu70_dib = { IOBA_CPU, IOLN_CPU, &CPU70_rd, &CPU70_wr, 0 };
DIB reg_dib = { IOBA_GPR, IOLN_GPR, &REG_rd, &REG_wr, 0 };
DIB ctlfb_dib = { IOBA_CTL, IOLN_CTL, &CTLFB_rd, &CTLFB_wr };
DIB ctljb_dib = { IOBA_CTL, IOLN_CTL, &CTLJB_rd, &CTLJB_wr };
DIB ctljd_dib = { IOBA_CTL, IOLN_CTL, &CTLJD_rd, &CTLJD_wr };
DIB ctlje_dib = { IOBA_CTL, IOLN_CTL, &CTLJE_rd, &CTLJE_wr };
DIB uba24_dib = { IOBA_UCTL, IOLN_UCTL, &UBA24_rd, &UBA24_wr };
DIB ubaj_dib = {IOBA_UCTL, IOLN_UCTL, &UBAJ_rd, &UBAJ_wr };
DIB supv_dib = { IOBA_SUP, IOLN_SUP, &APR_rd, &APR_wr, 0 };
DIB kipdr_dib = { IOBA_KIPDR, IOLN_KIPDR, &APR_rd, &APR_wr, 0 };
DIB kdpdr_dib = { IOBA_KDPDR, IOLN_KDPDR, &APR_rd, &APR_wr, 0 };
DIB kipar_dib = { IOBA_KIPAR, IOLN_KIPAR, &APR_rd, &APR_wr, 0 };
DIB kdpar_dib = { IOBA_KDPAR, IOLN_KDPAR, &APR_rd, &APR_wr, 0 };
DIB uipdr_dib = { IOBA_UIPDR, IOLN_UIPDR, &APR_rd, &APR_wr, 0 };
DIB udpdr_dib = { IOBA_UDPDR, IOLN_UDPDR, &APR_rd, &APR_wr, 0 };
DIB uipar_dib = { IOBA_UIPAR, IOLN_UIPAR, &APR_rd, &APR_wr, 0 };
DIB udpar_dib = { IOBA_UDPAR, IOLN_UDPAR, &APR_rd, &APR_wr, 0 };
DIB sr_dib = { IOBA_SR, IOLN_SR, &SR_rd, NULL, 0 };
DIB dr_dib = { IOBA_SR, IOLN_SR, NULL, &DR_wr, 0 };
DIB mmr012_dib = { IOBA_MMR012, IOLN_MMR012, &MMR012_rd, &MMR012_wr, 0 };
DIB mmr3_dib = { IOBA_MMR3, IOLN_MMR3, &MMR3_rd, &MMR3_wr, 0 };
DIB ubm_dib = { IOBA_UBM, IOLN_UBM, &ubm_rd, &ubm_wr, 0 };
CPUTAB cpu_tab[MOD_MAX] = {
{ "11/03", SOP_1103, OPT_1103, MEMSIZE64K, PSW_1103,
0, 0, 0, 0, 0 },
{ "11/04", SOP_1104, OPT_1104, MEMSIZE64K, PSW_1104,
0, 0, 0, 0, 0 },
{ "11/05", SOP_1105, OPT_1105, MEMSIZE64K, PSW_1105,
0, 0, 0, 0, 0 },
{ "11/20", SOP_1120, OPT_1120, MEMSIZE64K, PSW_1120,
0, 0, 0, 0, 0 },
{ "11/23", SOP_1123, OPT_1123, MAXMEMSIZE, PSW_F,
MFPT_F, PAR_F, PDR_F, MM0_F, MM3_F },
{ "11/23+", SOP_1123P, OPT_1123P, MAXMEMSIZE, PSW_F,
MFPT_F, PAR_F, PDR_F, MM0_F, MM3_F },
{ "11/24", SOP_1124, OPT_1124, MAXMEMSIZE, PSW_F,
MFPT_F, PAR_F, PDR_F, MM0_F, MM3_F },
{ "11/34", SOP_1134, OPT_1134, UNIMEMSIZE, PSW_1134,
0, PAR_1134, PDR_1134, MM0_1134, 0 },
{ "11/40", SOP_1140, OPT_1140, UNIMEMSIZE, PSW_1140,
0, PAR_1140, PDR_1140, MM0_1140, 0 },
{ "11/44", SOP_1144, OPT_1144, MAXMEMSIZE, PSW_1144,
MFPT_44, PAR_1144, PDR_1144, MM0_1144, MM3_1144 },
{ "11/45", SOP_1145, OPT_1145, UNIMEMSIZE, PSW_1145,
0, PAR_1145, PDR_1145, MM0_1145, MM3_1145 },
{ "11/60", SOP_1160, OPT_1160, UNIMEMSIZE, PSW_1160,
0, PAR_1160, PDR_1160, MM0_1160, 0 },
{ "11/70", SOP_1170, OPT_1170, MAXMEMSIZE, PSW_1170,
0, PAR_1170, PDR_1170, MM0_1170, MM3_1170 },
{ "11/73", SOP_1173, OPT_1173, MAXMEMSIZE, PSW_J,
MFPT_J, PAR_J, PDR_J, MM0_J, MM3_J },
{ "11/53", SOP_1153, OPT_1153, MAXMEMSIZE, PSW_J,
MFPT_J, PAR_J, PDR_J, MM0_J, MM3_J },
{ "11/73B", SOP_1173B, OPT_1173B, MAXMEMSIZE, PSW_J,
MFPT_J, PAR_J, PDR_J, MM0_J, MM3_J },
{ "11/83", SOP_1183, OPT_1183, MAXMEMSIZE, PSW_J,
MFPT_J, PAR_J, PDR_J, MM0_J, MM3_J },
{ "11/84", SOP_1184, OPT_1184, MAXMEMSIZE, PSW_J,
MFPT_J, PAR_J, PDR_J, MM0_J, MM3_J },
{ "11/93", SOP_1193, OPT_1193, MAXMEMSIZE, PSW_J,
MFPT_J, PAR_J, PDR_J, MM0_J, MM3_J },
{ "11/94", SOP_1194, OPT_1194, MAXMEMSIZE, PSW_J,
MFPT_J, PAR_J, PDR_J, MM0_J, MM3_J } };
CNFTAB cnf_tab[] = {
{ HAS_PSW, 0, &psw_dib }, /* PSW */
{ CPUT_J, 0, &cpuj_dib }, /* CPU control */
{ CPUT_24, 0, &cpu24_dib },
{ CPUT_44, 0, &cpu44_dib },
{ CPUT_45, 0, &cpu45_dib },
{ CPUT_60, 0, &cpu60_dib },
{ CPUT_70, 0, &cpu70_dib },
{ HAS_IOSR, 0, &reg_dib },
{ CPUT_23P, 0, &ctlfb_dib }, /* board ctls */
{ CPUT_JB, 0, &ctljb_dib },
{ CPUT_53, 0, &ctljd_dib },
{ CPUT_JE, 0, &ctlje_dib },
{ CPUT_24, 0, &uba24_dib }, /* UBA */
{ CPUT_JU, 0, &ubaj_dib },
{ 0, OPT_MMU, &kipdr_dib }, /* MMU */
{ 0, OPT_MMU, &kipar_dib },
{ 0, OPT_MMU, &uipdr_dib },
{ 0, OPT_MMU, &uipar_dib },
{ 0, OPT_MMU, &mmr012_dib }, /* MMR0-2 */
{ HAS_MMR3, 0, &mmr3_dib }, /* MMR3 */
{ 0, OPT_UBM, &ubm_dib }, /* Unibus map */
{ HAS_SID, 0, &kdpdr_dib }, /* supv, I/D */
{ HAS_SID, 0, &kdpar_dib },
{ HAS_SID, 0, &supv_dib },
{ HAS_SID, 0, &udpdr_dib },
{ HAS_SID, 0, &udpar_dib },
{ HAS_SR, 0, &sr_dib }, /* SR */
{ HAS_DR, 0, &dr_dib }, /* DR */
{ 0, 0, NULL } };
static const char *opt_name[] = {
"Unibus", "Qbus", "EIS", "NOEIS", "FIS", "NOFIS",
"FPP", "NOFPP", "CIS", "NOCIS", "MMU", "NOMMU",
"RH11", "RH70", "PARITY", "NOPARITY", "Unibus map", "No map", NULL };
/* SYSTEM data structures
sys_dev SYSTEM device descriptor
sys_unit SYSTEM unit descriptor
sys_reg SYSTEM register list
*/
UNIT sys_unit = { UDATA (NULL, 0, 0) };
REG sys_reg[] = {
{ ORDATA (SR, SR, 16) },
{ ORDATA (DR, DR, 16) },
{ ORDATA (MEMERR, MEMERR, 16) },
{ ORDATA (CCR, CCR, 16) },
{ ORDATA (MAINT, MAINT, 16) },
{ ORDATA (HITMISS, HITMISS, 16) },
{ ORDATA (CPUERR, CPUERR, 16) },
{ ORDATA (MBRK, MBRK, 16) },
{ ORDATA (JCSR, JCSR, 16) },
{ ORDATA (JPCR, JPCR, 16) },
{ ORDATA (JASR, JASR, 16) },
{ ORDATA (UDCR, UDCR, 16) },
{ ORDATA (UDDR, UDDR, 16) },
{ ORDATA (UCSR, UCSR, 16) },
{ ORDATA (ULAST, uba_last, 23) },
{ BRDATA (UBMAP, ub_map, 8, 22, UBM_LNT_LW) },
{ DRDATA (TOY_STATE, toy_state, 6), REG_HRO },
{ BRDATA (TOY_DATA, toy_data, 8, 8, TOY_LNT), REG_HRO },
{ NULL} };
DEVICE sys_dev = {
"SYSTEM", &sys_unit, sys_reg, NULL,
1, 0, 0, 0, 0, 0,
NULL, NULL, &sys_reset,
NULL, NULL, NULL,
NULL, 0, 0,
NULL, NULL, NULL };
/* Switch and display registers - many */
t_stat SR_rd (int32 *data, int32 pa, int32 access)
{
*data = SR;
return SCPE_OK;
}
t_stat DR_wr (int32 data, int32 pa, int32 access)
{
DR = data;
return SCPE_OK;
}
/* GPR's - 11/04, 11/05 */
t_stat REG_rd (int32 *data, int32 pa, int32 access)
{
*data = R[pa & 07];
return SCPE_OK;
}
t_stat REG_wr (int32 data, int32 pa, int32 access)
{
int32 reg = pa & 07;
if (access == WRITE) R[reg] = data;
else if (pa & 1) R[reg] = (R[reg] & 0377) | (data << 8);
else R[reg] = (R[reg] & ~0377) | data;
return SCPE_OK;
}
/* CPU control registers - 11/24 */
t_stat CPU24_rd (int32 *data, int32 pa, int32 access)
{
switch ((pa >> 1) & 017) { /* decode pa<4:1> */
case 013: /* CPUERR */
*data = 0;
return SCPE_OK; } /* end switch PA */
*data = 0;
return SCPE_NXM; /* unimplemented */
}
t_stat CPU24_wr (int32 data, int32 pa, int32 access)
{
switch ((pa >> 1) & 017) { /* decode pa<4:1> */
case 013: /* CPUERR */
return SCPE_OK; } /* end switch pa */
return SCPE_NXM; /* unimplemented */
}
/* CPU control registers - 11/44 */
t_stat CPU44_rd (int32 *data, int32 pa, int32 access)
{
switch ((pa >> 1) & 017) { /* decode pa<4:1> */
case 2: /* MEMERR */
*data = MEMERR;
return SCPE_OK;
case 3: /* CCR */
*data = CCR & CCR44_RD;
return SCPE_OK;
case 4: /* MAINT */
*data = MAINT & CMR44_RD;
return SCPE_OK;
case 5: /* Hit/miss */
*data = HITMISS;
return SCPE_OK;
case 6: /* CDR */
*data = 0;
return SCPE_OK;
case 013: /* CPUERR */
if (CPUERR & CPUE_YEL) /* 11/44 stack err */
CPUERR = (CPUERR & ~CPUE_YEL) | CPUE_RED; /* in <2> not <3> */
if (CPUERR & (CPUE_ODD|CPUE_NXM|CPUE_TMO)) /* additional flag */
CPUERR = CPUERR | CPUE44_BUSE;
*data = CPUERR & CPUE_IMP;
return SCPE_OK;
case 015: /* PIRQ */
*data = PIRQ;
return SCPE_OK; } /* end switch PA */
*data = 0;
return SCPE_NXM; /* unimplemented */
}
t_stat CPU44_wr (int32 data, int32 pa, int32 access)
{
switch ((pa >> 1) & 017) { /* decode pa<4:1> */
case 2: /* MEMERR */
MEMERR = 0;
return SCPE_OK;
case 3: /* CCR */
ODD_MRG (CCR, data);
CCR = data & CCR44_WR;
return SCPE_OK;
case 4: /* MAINT */
ODD_MRG (MAINT, data);
MAINT = data & CMR44_WR;
return SCPE_OK;
case 5: /* Hit/miss */
return SCPE_OK;
case 013: /* CPUERR */
CPUERR = 0;
return SCPE_OK;
case 015: /* PIRQ */
ODD_WO (data);
put_PIRQ (data);
return SCPE_OK; }
return SCPE_NXM; /* unimplemented */
}
/* CPU control registers - 11/45 */
t_stat CPU45_rd (int32 *data, int32 pa, int32 access)
{
switch ((pa >> 1) & 017) { /* decode pa<4:1> */
case 014: /* MBRK */
*data = MBRK;
return SCPE_OK;
case 015: /* PIRQ */
*data = PIRQ;
return SCPE_OK;
case 016: /* STKLIM */
*data = STKLIM & STKLIM_RW;
return SCPE_OK; } /* end switch PA */
*data = 0;
return SCPE_NXM; /* unimplemented */
}
t_stat CPU45_wr (int32 data, int32 pa, int32 access)
{
switch ((pa >> 1) & 017) { /* decode pa<4:1> */
case 015: /* PIRQ */
ODD_WO (data);
put_PIRQ (data);
return SCPE_OK;
case 016: /* STKLIM */
ODD_WO (data);
STKLIM = data & STKLIM_RW;
return SCPE_OK; } /* end switch pa */
return SCPE_NXM; /* unimplemented */
}
/* CPU control registers - 11/60 */
t_stat CPU60_rd (int32 *data, int32 pa, int32 access)
{
switch ((pa >> 1) & 017) { /* decode pa<4:1> */
case 2: /* MEMERR */
*data = MEMERR;
return SCPE_OK;
case 3: /* CCR */
*data = CCR;
return SCPE_OK;
case 5: /* Hit/miss */
*data = HITMISS;
return SCPE_OK;
case 016: /* STKLIM */
*data = STKLIM & STKLIM_RW;
return SCPE_OK; } /* end switch PA */
*data = 0;
return SCPE_NXM; /* unimplemented */
}
t_stat CPU60_wr (int32 data, int32 pa, int32 access)
{
switch ((pa >> 1) & 017) { /* decode pa<4:1> */
case 2: /* MEMERR */
MEMERR = 0;
return SCPE_OK;
case 3: /* CCR */
ODD_MRG (CCR, data);
CCR = data;
return SCPE_OK;
case 5: /* Hit/miss */
return SCPE_OK;
case 016: /* STKLIM */
ODD_WO (data);
STKLIM = data & STKLIM_RW;
return SCPE_OK; } /* end switch pa */
return SCPE_NXM; /* unimplemented */
}
/* CPU control registers - 11/70 */
t_stat CPU70_rd (int32 *data, int32 pa, int32 access)
{
switch ((pa >> 1) & 017) { /* decode pa<4:1> */
case 0: case 1: case 011: /* LO,HI ERR, HI SIZE */
*data = 0;
return SCPE_OK;
case 2: /* MEMERR */
*data = MEMERR;
return SCPE_OK;
case 3: /* CCR */
*data = CCR;
return SCPE_OK;
case 4: /* MAINT */
*data = 0;
return SCPE_OK;
case 5: /* Hit/miss */
*data = HITMISS;
return SCPE_OK;
case 010: /* lower size */
*data = (MEMSIZE >> 6) - 1;
return SCPE_OK;
case 012: /* system ID */
*data = 0x1234;
return SCPE_OK;
case 013: /* CPUERR */
*data = CPUERR & CPUE_IMP;
return SCPE_OK;
case 014: /* MBRK */
*data = MBRK;
return SCPE_OK;
case 015: /* PIRQ */
*data = PIRQ;
return SCPE_OK;
case 016: /* STKLIM */
*data = STKLIM & STKLIM_RW;
return SCPE_OK; } /* end switch PA */
*data = 0;
return SCPE_NXM; /* unimplemented */
}
t_stat CPU70_wr (int32 data, int32 pa, int32 access)
{
switch ((pa >> 1) & 017) { /* decode pa<4:1> */
case 2: /* MEMERR */
ODD_WO (data);
MEMERR = MEMERR & ~data;
return SCPE_OK;
case 3: /* CCR */
ODD_MRG (CCR, data);
CCR = data;
return SCPE_OK;
case 4: /* MAINT */
return SCPE_OK;
case 5: /* Hit/miss */
return SCPE_OK;
case 013: /* CPUERR */
CPUERR = 0;
return SCPE_OK;
case 015: /* PIRQ */
ODD_WO (data);
put_PIRQ (data);
return SCPE_OK;
case 016: /* STKLIM */
ODD_WO (data);
STKLIM = data & STKLIM_RW;
return SCPE_OK; } /* end switch pa */
return SCPE_NXM; /* unimplemented */
}
/* CPU control registers - J11 */
t_stat CPUJ_rd (int32 *data, int32 pa, int32 access)
{
switch ((pa >> 1) & 017) { /* decode pa<4:1> */
case 2: /* MEMERR */
*data = MEMERR;
return SCPE_OK;
case 3: /* CCR */
*data = CCR;
return SCPE_OK;
case 4: /* MAINT */
*data = MAINT | MAINT_NOFPA | MAINT_BPOK | (UNIBUS? MAINT_U: MAINT_Q);
if (CPUT (CPUT_53)) *data |= MAINT_KDJD | MAINT_POROM;
if (CPUT (CPUT_73)) *data |= MAINT_KDJA | MAINT_POODT;
if (CPUT (CPUT_73B|CPUT_83|CPUT_84)) *data |= MAINT_KDJB | MAINT_POROM;
if (CPUT (CPUT_93|CPUT_94)) *data |= MAINT_KDJE | MAINT_POROM;
return SCPE_OK;
case 5: /* Hit/miss */
if (CPUT (CPUT_73B)) *data = 0; /* must be 0 for 73B */
else *data = HITMISS | 010; /* must be nz for 11/8X */
return SCPE_OK;
case 013: /* CPUERR */
*data = CPUERR & CPUE_IMP;
return SCPE_OK;
case 015: /* PIRQ */
*data = PIRQ;
return SCPE_OK; } /* end switch PA */
*data = 0;
return SCPE_NXM; /* unimplemented */
}
t_stat CPUJ_wr (int32 data, int32 pa, int32 access)
{
switch ((pa >> 1) & 017) { /* decode pa<4:1> */
case 2: /* MEMERR */
MEMERR = 0;
return SCPE_OK;
case 3: /* CCR */
ODD_MRG (CCR, data);
CCR = data;
return SCPE_OK;
case 4: /* MAINT */
return SCPE_OK;
case 5: /* Hit/miss */
return SCPE_OK;
case 013: /* CPUERR */
CPUERR = 0;
return SCPE_OK;
case 015: /* PIRQ */
ODD_WO (data);
put_PIRQ (data);
return SCPE_OK; } /* end switch pa */
return SCPE_NXM; /* unimplemented */
}
/* Board control registers - KDF11B */
t_stat CTLFB_rd (int32 *data, int32 pa, int32 access)
{
switch ((pa >> 1) & 03) { /* decode pa<2:1> */
case 0: /* PCR */
*data = JPCR & PCRFB_RW;
return SCPE_OK;
case 1: /* MAINT */
*data = MAINT;
return SCPE_OK;
case 2: /* CDR */
*data = SR & CDRFB_RD;
return SCPE_OK; }
*data = 0;
return SCPE_NXM;
}
t_stat CTLFB_wr (int32 data, int32 pa, int32 access)
{
switch ((pa >> 1) & 03) { /* decode pa<2:1> */
case 0: /* PCR */
ODD_MRG (JPCR, data);
JPCR = data & PCRFB_RW;
return SCPE_OK;
case 1: /* MAINT */
ODD_MRG (MAINT, data);
MAINT = data;
return SCPE_OK;
case 2: /* CDR */
ODD_WO (data);
DR = data & CDRFB_WR;
return SCPE_OK; }
return SCPE_NXM;
}
/* Board control registers - KDJ11B */
t_stat CTLJB_rd (int32 *data, int32 pa, int32 access)
{
switch ((pa >> 1) & 03) { /* decode pa<2:1> */
case 0: /* CSR */
*data = JCSR & CSRJB_RD;
return SCPE_OK;
case 1: /* PCR */
*data = JPCR & PCRJB_RW;
return SCPE_OK;
case 2: /* CDR */
*data = SR & CDRJB_RD;
return SCPE_OK; }
*data = 0;
return SCPE_NXM;
}
t_stat CTLJB_wr (int32 data, int32 pa, int32 access)
{
int32 t;
switch ((pa >> 1) & 03) { /* decode pa<2:1> */
case 0: /* CSR */
ODD_MRG (JCSR, data);
JCSR = (JCSR & ~CSRJB_WR) | (data & CSRJB_WR);
if (JCSR & CSRJ_LTCI) clk_fie = 1; /* force LTC int enb? */
else clk_fie = 0;
if (JCSR & CSRJ_LTCD) clk_fnxm = 1; /* force LTC reg nxm? */
else clk_fnxm = 0;
t = CSRJ_LTCSEL (JCSR); /* get freq sel */
if (t) clk_tps = clk_tps_map[t];
else clk_tps = clk_default;
return SCPE_OK;
case 1: /* PCR */
ODD_MRG (JPCR, data);
JPCR = data & PCRJB_RW;
return SCPE_OK;
case 2: /* CDR */
ODD_WO (data);
DR = data & CDRJB_WR;
return SCPE_OK; }
return SCPE_NXM;
}
/* Board control registers - KDJ11D */
t_stat CTLJD_rd (int32 *data, int32 pa, int32 access)
{
switch ((pa >> 1) & 03) { /* decode pa<2:1> */
case 0: /* CSR */
*data = JCSR & CSRJD_RD;
return SCPE_OK; }
*data = 0;
return SCPE_NXM;
}
t_stat CTLJD_wr (int32 data, int32 pa, int32 access)
{
switch ((pa >> 1) & 03) { /* decode pa<2:1> */
case 0: /* CSR */
ODD_MRG (JCSR, data);
JCSR = (JCSR & ~CSRJD_WR) | (data & CSRJD_WR);
return SCPE_OK; }
return SCPE_NXM;
}
/* Board control registers - KDJ11E */
t_stat CTLJE_rd (int32 *data, int32 pa, int32 access)
{
switch ((pa >> 1) & 03) { /* decode pa<2:1> */
case 0: /* CSR */
*data = JCSR & CSRJE_RD;
return SCPE_OK;
case 1: /* PCR */
*data = JPCR & PCRJE_RW;
return SCPE_OK;
case 2: /* CDR */
*data = SR & CDRJE_RD;
return SCPE_OK;
case 3: /* ASR */
JASR = (JASR & ~ASRJE_TOY) | (toy_read () << ASRJE_V_TOY);
*data = JASR & ASRJE_RW;
return SCPE_OK; }
*data = 0;
return SCPE_NXM;
}
t_stat CTLJE_wr (int32 data, int32 pa, int32 access)
{
int32 t;
switch ((pa >> 1) & 03) { /* decode pa<2:1> */
case 0: /* CSR */
ODD_MRG (JCSR, data);
JCSR = (JCSR & ~CSRJE_WR) | (data & CSRJE_WR);
if (JCSR & CSRJ_LTCI) clk_fie = 1; /* force LTC int enb? */
else clk_fie = 0;
if (JCSR & CSRJ_LTCD) clk_fnxm = 1; /* force LTC reg nxm? */
else clk_fnxm = 0;
t = CSRJ_LTCSEL (JCSR); /* get freq sel */
if (t) clk_tps = clk_tps_map[t];
else clk_tps = clk_default;
return SCPE_OK;
case 1: /* PCR */
ODD_MRG (JPCR, data);
JPCR = data & PCRJE_RW;
return SCPE_OK;
case 2: /* CDR */
ODD_WO (data);
DR = data & CDRJE_WR;
return SCPE_OK;
case 3: /* ASR */
ODD_MRG (JASR, data);
JASR = data & ASRJE_RW;
toy_write (ASRJE_TOYBIT (JASR));
return SCPE_OK; }
return SCPE_NXM;
}
/* Unibus adapter registers - KT24 */
t_stat UBA24_rd (int32 *data, int32 pa, int32 access)
{
switch ((pa >> 1) & 03) { /* decode pa<2:1> */
case 2: /* LMAL */
*data = uba_last & LMAL_RD;
return SCPE_OK;
case 3: /* LMAH */
*data = uba_last & LMAH_RD;
return SCPE_OK; }
*data = 0;
return SCPE_NXM;
}
t_stat UBA24_wr (int32 data, int32 pa, int32 access)
{
switch ((pa >> 1) & 03) { /* decode pa<2:1> */
case 3: /* ASR */
ODD_IGN (data);
uba_last = (uba_last & ~LMAH_WR) | ((data & LMAH_WR) << 16);
return SCPE_OK; }
return SCPE_NXM;
}
/* Unibus registers - KTJ11B */
t_stat UBAJ_rd (int32 *data, int32 pa, int32 access)
{
switch ((pa >> 1) & 03) { /* decode pa<2:1> */
case 0: /* DCR */
*data = UDCR & DCRKTJ_RD;
return SCPE_OK;
case 1: /* DDR */
*data = UDDR & DDRKTJ_RW;
return SCPE_OK;
case 2: /* CSR */
*data = UCSR & MCRKTJ_RD;
return SCPE_OK; }
*data = 0;
return SCPE_NXM;
}
t_stat UBAJ_wr (int32 data, int32 pa, int32 access)
{
switch ((pa >> 1) & 03) { /* decode pa<2:1> */
case 0: /* DCR */
ODD_MRG (UDCR, data);
UDCR = (UDCR & ~DCRKTJ_WR) | (data & DCRKTJ_WR);
return SCPE_OK;
case 1: /* DDR */
ODD_MRG (UDDR, data);
UDDR = data & DDRKTJ_RW;;
return SCPE_OK;
case 2: /* CSR */
ODD_MRG (UCSR, data);
UCSR = (UCSR & ~MCRKTJ_WR) | (data & MCRKTJ_WR);
return SCPE_OK; }
return SCPE_NXM;
}
/* KDJ11E TOY routines */
int32 toy_read (void)
{
time_t curr;
struct tm *ctm;
int32 bit;
if (toy_state == 0) {
curr = time (NULL); /* get curr time */
if (curr == (time_t) -1) return 0; /* error? */
ctm = localtime (&curr); /* decompose */
if (ctm == NULL) return 0; /* error? */
toy_data[TOY_HSEC] = 0x50;
toy_data[TOY_SEC] = toy_set (ctm->tm_sec);
toy_data[TOY_MIN] = toy_set (ctm->tm_min);
toy_data[TOY_HR] = toy_set (ctm->tm_hour);
toy_data[TOY_DOW] = toy_set (ctm->tm_wday);
toy_data[TOY_DOM] = toy_set (ctm->tm_mday);
toy_data[TOY_MON] = toy_set (ctm->tm_mon + 1);
toy_data[TOY_YR] = toy_set (ctm->tm_year % 100); }
bit = toy_data[toy_state >> 3] >> (toy_state & 07);
toy_state = (toy_state + 1) % (TOY_LNT * 8);
return (bit & 1);
}
void toy_write (int32 bit)
{
toy_state = 0;
return;
}
uint8 toy_set (int32 val)
{
uint32 d1, d2;
d1 = val / 10;
d2 = val % 10;
return (uint8) ((d1 << 4) | d2);
}
/* Build I/O space entries for CPU */
t_stat cpu_build_dib (void)
{
int32 i;
t_stat r;
for (i = 0; cnf_tab[i].dib != NULL; i++) { /* loop thru config tab */
if (((cnf_tab[i].cpum == 0) || (cpu_type & cnf_tab[i].cpum)) &&
((cnf_tab[i].optm == 0) || (cpu_opt & cnf_tab[i].optm))) {
if (r = build_ubus_tab (&cpu_dev, cnf_tab[i].dib)) /* add to dispatch tab */
return r;
}
}
return SCPE_OK;
}
/* Set/show CPU model */
t_stat cpu_set_model (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (cptr != NULL) return SCPE_ARG;
if (val >= MOD_MAX) return SCPE_IERR;
if (val == (int32) cpu_model) return SCPE_OK;
if (MEMSIZE > cpu_tab[val].maxm)
cpu_set_size (uptr, cpu_tab[val].maxm, NULL, NULL);
if (MEMSIZE > cpu_tab[val].maxm) return SCPE_INCOMP;
cpu_model = val;
cpu_type = 1u << cpu_model;
cpu_opt = cpu_tab[cpu_model].std;
cpu_set_bus (cpu_opt);
reset_all (0); /* reset world */
return SCPE_OK;
}
t_stat cpu_show_model (FILE *st, UNIT *uptr, int32 val, void *desc)
{
uint32 i, std;
fprintf (st, "%s", cpu_tab[cpu_model].name);
std = cpu_tab[cpu_model].opt;
for (i = 0; std && opt_name[i]; i = i++) {
if ((std >> i) & 1) fprintf (st, ", %s",
((cpu_opt >> i) & 1)? opt_name[2 * i]: opt_name[(2 * i) + 1]);
}
return SCPE_OK;
}
/* Set/clear CPU option */
t_stat cpu_set_opt (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (cptr) return SCPE_ARG;
if ((val & cpu_tab[cpu_model].opt) == 0) return SCPE_ARG;
cpu_opt = cpu_opt | val;
return SCPE_OK;
}
t_stat cpu_clr_opt (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (cptr) return SCPE_ARG;
if ((val & cpu_tab[cpu_model].opt) == 0) return SCPE_ARG;
cpu_opt = cpu_opt & ~val;
return SCPE_OK;
}
/* Memory allocation */
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 mc = 0;
uint32 i, clim;
uint16 *nM;
if ((val <= 0) || (val > (int32) cpu_tab[cpu_model].maxm) ||
((val & 07777) != 0)) return SCPE_ARG;
for (i = val; i < MEMSIZE; i = i + 2) mc = mc | M[i >> 1];
if ((mc != 0) && !get_yn ("Really truncate memory [N]?", FALSE))
return SCPE_OK;
nM = calloc (val >> 1, sizeof (uint16));
if (nM == NULL) return SCPE_MEM;
clim = (((t_addr) val) < MEMSIZE)? val: MEMSIZE;
for (i = 0; i < clim; i = i + 2) nM[i >> 1] = M[i >> 1];
free (M);
M = nM;
MEMSIZE = val;
cpu_set_bus (cpu_opt);
return SCPE_OK;
}
/* Bus configuration, disable Unibus or Qbus devices */
t_stat cpu_set_bus (int32 opt)
{
DEVICE *dptr;
uint32 i, mask;
if (opt & BUS_U) mask = DEV_UBUS; /* Unibus variant? */
else if (MEMSIZE <= UNIMEMSIZE) /* 18b Qbus devices? */
mask = DEV_QBUS | DEV_Q18;
else mask = DEV_QBUS; /* must be 22b */
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) {
if ((dptr->flags & DEV_DISABLE) && /* disable-able? */
!(dptr->flags & DEV_DIS) && /* enabled? */
((dptr->flags & mask) == 0)) { /* not allowed? */
printf ("Disabling %s\n", sim_dname (dptr));
if (sim_log) fprintf (sim_log, "Disabling %s\n", sim_dname (dptr));
dptr->flags = dptr->flags | DEV_DIS; } }
return SCPE_OK;
}
/* System reset */
t_stat sys_reset (DEVICE *dptr)
{
int32 i;
CCR = 0;
HITMISS = 0;
CPUERR = 0;
MEMERR = 0;
if (!CPUT (CPUT_J)) MAINT = 0;
MBRK = 0;
JCSR = 0;
JPCR = 0;
JASR = 0;
UDCR = 0;
UDDR = 0;
UCSR = 0;
uba_last = 0;
DR = 0;
toy_state = 0;
for (i = 0; i < UBM_LNT_LW; i++) ub_map[i] = 0;
for (i = 0; i < TOY_LNT; i++) toy_data[i] = 0;
return SCPE_OK;
}