simh-testsetgenerator/VAX/vax_mmu.c
Bob Supnik b6393b36b4 Notes For V3.3
RESTRICTION: The HP DS disk is not debugged.  DO NOT enable this
feature for normal operations.
WARNING: Massive changes in the PDP-11 make all previous SAVEd
file obsolete.  Do not attempt to use a PDP-11 SAVE file from a
prior release with V3.3!

1. New Features in 3.3

1.1 SCP

- Added -p (powerup) qualifier to RESET
- Changed SET <unit> ONLINE/OFFLINE to SET <unit> ENABLED/DISABLED
- Moved SET DEBUG under SET CONSOLE hierarchy
- Added optional parameter value to SHOW command
- Added output file option to SHOW command

1.2 PDP-11

- Separated RH Massbus adapter from RP controller
- Added TU tape support
- Added model emulation framework
- Added model details

1.3 VAX

- Separated out CVAX-specific features from core instruction simulator
- Implemented capability for CIS, octaword, compatibility mode instructions
- Added instruction display and parse for compatibility mode
- Changed SET CPU VIRTUAL=n to SHOW CPU VIRTUAL=n
- Added =n optional parameter to SHOW CPU HISTORY

1.4 Unibus/Qbus simulators (PDP-11, VAX, PDP-10)

- Simplified DMA API's
- Modified DMA peripherals to use simplified API's

1.5 HP2100 (all changes from Dave Bryan)

CPU	- moved MP into its own device; added MP option jumpers
	- modified DMA to allow disabling
	- modified SET CPU 2100/2116 to truncate memory > 32K
	- added -F switch to SET CPU to force memory truncation
	- modified WRU to be REG_HRO
	- added BRK and DEL to save console settings

DR	- provided protected tracks and "Writing Enabled" status bit
	- added "parity error" status return on writes for 12606
	- added track origin test for 12606
	- added SCP test for 12606
	- added "Sector Flag" status bit
	- added "Read Inhibit" status bit for 12606
	- added TRACKPROT modifier

LPS	- added SET OFFLINE/ONLINE, POWEROFF/POWERON
	- added fast/realistic timing
	- added debug printouts

LPT	- added SET OFFLINE/ONLINE, POWEROFF/POWERON

PTR	- added paper tape loop mode, DIAG/READER modifiers to PTR
	- added PV_LEFT to PTR TRLLIM register

CLK	- modified CLK to permit disable

1.6 IBM 1401, IBM 1620, Interdata 16b, SDS 940, PDP-10

- Added instruction history

1.7 H316, PDP-15, PDP-8

- Added =n optional value to SHOW CPU HISTORY

2. Bugs Fixed in 3.3

2.1 SCP

- Fixed comma-separated SET options (from Dave Bryan)
- Fixed duplicate HELP displays with user-specified commands

2.2 PDP-10

- Replicated RP register state per drive
- Fixed TU to set FCE on short record
- Fixed TU to return bit<15> in drive type
- Fixed TU format specification, 1:0 are don't cares
- Fixed TU handling of TMK status
- Fixed TU handling of DONE, ATA at end of operation
- Implemented TU write check

2.3 PDP-11

- Replicated RP register state per drive
- Fixed RQ, TQ to report correct controller type and stage 1 configuration
  flags on a Unibus system
- Fixed HK CS2<output_ready> flag

2.4 VAX

- Fixed parsing of indirect displacement modes in instruction input

2.5 HP2100 (all fixes from Dave Bryan)

CPU	- fixed S-register behavior on 2116
	- fixed LIx/MIx behavior for DMA on 2116 and 2100
	- fixed LIx/MIx behavior for empty I/O card slots

DP	- fixed enable/disable from either device
	- fixed ANY ERROR status for 12557A interface
	- fixed unattached drive status for 12557A interface
	- status cmd without prior STC DC now completes (12557A)
	- OTA/OTB CC on 13210A interface also does CLC CC
	- fixed RAR model
	- fixed seek check on 13210 if sector out of range

DQ	- fixed enable/disable from either device
	- shortened xtime from 5 to 3 (drive avg 156KW/second)
	- fixed not ready/any error status
	- fixed RAR model

DR	- fixed enable/disable from either device
	- fixed sector return in status word
	- fixed DMA last word write, incomplete sector fill value
	- fixed 12610 SFC operation
	- fixed current-sector determination

IPL	- fixed enable/disable from either device

LPS	- fixed status returns for error conditions
	- fixed handling of non-printing characters
	- fixed handling of characters after column 80
	- improved timing model accuracy for RTE

LPT	- fixed status returns for error conditions
	- fixed TOF handling so form remains on line 0

SYS	- fixed display of CCA/CCB/CCE instructions

2.5 PDP-15

FPP	- fixed URFST to mask low 9b of fraction
	- fixed exception PC setting
2011-04-15 08:34:40 -07:00

540 lines
16 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* vax_mm.c - VAX memory management
Copyright (c) 1998-2004, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
30-Sep-04 RMS Comment and formating changes
19-Sep-03 RMS Fixed upper/lower case linkage problems on VMS
01-Jun-03 RMS Fixed compilation problem with USE_ADDR64
This module contains the instruction simulators for
Read - read virtual
Write - write virtual
ReadL(P) - read aligned physical longword (physical context)
WriteL(P) - write aligned physical longword (physical context)
ReadB(W) - read aligned physical byte (word)
WriteB(W) - write aligned physical byte (word)
Test - test acccess
zap_tb - clear TB
zap_tb_ent - clear TB entry
chk_tb_ent - check TB entry
set_map_reg - set up working map registers
*/
#include "vax_defs.h"
#include <setjmp.h>
struct tlbent {
int32 tag; /* tag */
int32 pte; /* pte */
};
typedef struct tlbent TLBENT;
extern uint32 *M;
extern uint32 align[4];
extern int32 PSL;
extern int32 mapen;
extern int32 p1, p2;
extern int32 P0BR, P0LR;
extern int32 P1BR, P1LR;
extern int32 SBR, SLR;
extern int32 SISR;
extern jmp_buf save_env;
extern UNIT cpu_unit;
int32 d_p0br, d_p0lr; /* dynamic copies */
int32 d_p1br, d_p1lr; /* altered per ucode */
int32 d_sbr, d_slr;
extern int32 mchk_va, mchk_ref; /* for mcheck */
TLBENT stlb[VA_TBSIZE], ptlb[VA_TBSIZE];
static const int32 insert[4] = {
0x00000000, 0x000000FF, 0x0000FFFF, 0x00FFFFFF };
static const int32 cvtacc[16] = { 0, 0,
TLB_ACCW (KERN)+TLB_ACCR (KERN),
TLB_ACCR (KERN),
TLB_ACCW (KERN)+TLB_ACCW (EXEC)+TLB_ACCW (SUPV)+TLB_ACCW (USER)+
TLB_ACCR (KERN)+TLB_ACCR (EXEC)+TLB_ACCR (SUPV)+TLB_ACCR (USER),
TLB_ACCW (KERN)+TLB_ACCW (EXEC)+TLB_ACCR (KERN)+TLB_ACCR (EXEC),
TLB_ACCW (KERN)+TLB_ACCR (KERN)+TLB_ACCR (EXEC),
TLB_ACCR (KERN)+TLB_ACCR (EXEC),
TLB_ACCW (KERN)+TLB_ACCW (EXEC)+TLB_ACCW (SUPV)+
TLB_ACCR (KERN)+TLB_ACCR (EXEC)+TLB_ACCR (SUPV),
TLB_ACCW (KERN)+TLB_ACCW (EXEC)+
TLB_ACCR (KERN)+TLB_ACCR (EXEC)+TLB_ACCR (SUPV),
TLB_ACCW (KERN)+TLB_ACCR (KERN)+TLB_ACCR (EXEC)+TLB_ACCR (SUPV),
TLB_ACCR (KERN)+TLB_ACCR (EXEC)+TLB_ACCR (SUPV),
TLB_ACCW (KERN)+TLB_ACCW (EXEC)+TLB_ACCW (SUPV)+
TLB_ACCR (KERN)+TLB_ACCR (EXEC)+TLB_ACCR (SUPV)+TLB_ACCR (USER),
TLB_ACCW (KERN)+TLB_ACCW (EXEC)+
TLB_ACCR (KERN)+TLB_ACCR (EXEC)+TLB_ACCR (SUPV)+TLB_ACCR (USER),
TLB_ACCW (KERN)+
TLB_ACCR (KERN)+TLB_ACCR (EXEC)+TLB_ACCR (SUPV)+TLB_ACCR (USER),
TLB_ACCR (KERN)+TLB_ACCR (EXEC)+TLB_ACCR (SUPV)+TLB_ACCR (USER)
};
t_stat tlb_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat tlb_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat tlb_reset (DEVICE *dptr);
TLBENT fill (uint32 va, int32 lnt, int32 acc, int32 *stat);
int32 ReadB (uint32 pa);
void WriteB (uint32 pa, int32 val);
int32 ReadW (uint32 pa);
void WriteW (uint32 pa, int32 val);
int32 ReadL (uint32 pa);
void WriteL (uint32 pa, int32 val);
int32 ReadLP (uint32 pa);
void WriteLP (uint32 pa, int32 val);
extern int32 ReadIO (uint32 pa, int32 lnt);
extern void WriteIO (uint32 pa, int32 val, int32 lnt);
extern int32 ReadReg (uint32 pa, int32 lnt);
extern void WriteReg (uint32 pa, int32 val, int32 lnt);
/* TLB data structures
tlb_dev pager device descriptor
tlb_unit pager units
pager_reg pager register list
*/
UNIT tlb_unit[] = {
{ UDATA (NULL, UNIT_FIX, VA_TBSIZE * 2) },
{ UDATA (NULL, UNIT_FIX, VA_TBSIZE * 2) } };
REG tlb_reg[] = {
{ NULL } };
DEVICE tlb_dev = {
"TLB", tlb_unit, tlb_reg, NULL,
2, 16, VA_N_TBI * 2, 1, 16, 32,
&tlb_ex, &tlb_dep, &tlb_reset,
NULL, NULL, NULL };
/* Read and write virtual
These routines logically fall into three phases:
1. Look up the virtual address in the translation buffer, calling
the fill routine on a tag mismatch or access mismatch (invalid
tlb entries have access = 0 and thus always mismatch). The
fill routine handles all errors. If the resulting physical
address is aligned, do an aligned physical read or write.
2. Test for unaligned across page boundaries. If cross page, look
up the physical address of the second page. If not cross page,
the second physical address is the same as the first.
3. Using the two physical addresses, do an unaligned read or
write, with three cases: unaligned long, unaligned word within
a longword, unaligned word crossing a longword boundary.
*/
/* Read virtual
Inputs:
va = virtual address
lnt = length code (BWLQ)
acc = access code (KESU)
Output:
returned data, right justified in 32b longword
*/
int32 Read (uint32 va, int32 lnt, int32 acc)
{
int32 vpn, off, tbi, pa;
int32 pa1, bo, sc, wl, wh;
TLBENT xpte;
mchk_va = va;
if (mapen) { /* mapping on? */
vpn = VA_GETVPN (va); /* get vpn, offset */
off = VA_GETOFF (va);
tbi = VA_GETTBI (vpn);
xpte = (va & VA_S0)? stlb[tbi]: ptlb[tbi]; /* access tlb */
if (((xpte.pte & acc) == 0) || (xpte.tag != vpn) ||
((acc & TLB_WACC) && ((xpte.pte & TLB_M) == 0)))
xpte = fill (va, lnt, acc, NULL); /* fill if needed */
pa = (xpte.pte & TLB_PFN) | off; } /* get phys addr */
else pa = va & PAMASK;
if ((pa & (lnt - 1)) == 0) { /* aligned? */
if (lnt >= L_LONG) return ReadL (pa); /* long, quad? */
if (lnt == L_WORD) return ReadW (pa); /* word? */
return ReadB (pa); } /* byte */
if (mapen && ((off + lnt) > VA_PAGSIZE)) { /* cross page? */
vpn = VA_GETVPN (va + lnt); /* vpn 2nd page */
tbi = VA_GETTBI (vpn);
xpte = (va & VA_S0)? stlb[tbi]: ptlb[tbi]; /* access tlb */
if (((xpte.pte & acc) == 0) || (xpte.tag != vpn) ||
((acc & TLB_WACC) && ((xpte.pte & TLB_M) == 0)))
xpte = fill (va + lnt, lnt, acc, NULL); /* fill if needed */
pa1 = (xpte.pte & TLB_PFN) | VA_GETOFF (va + 4); }
else pa1 = (pa + 4) & PAMASK; /* not cross page */
bo = pa & 3;
if (lnt >= L_LONG) { /* lw unaligned? */
sc = bo << 3;
wl = ReadL (pa); /* read both lw */
wh = ReadL (pa1); /* extract */
return ((((wl >> sc) & align[bo]) | (wh << (32 - sc))) & LMASK); }
else if (bo == 1) return ((ReadL (pa) >> 8) & WMASK);
else { wl = ReadL (pa); /* word cross lw */
wh = ReadL (pa1); /* read, extract */
return (((wl >> 24) & 0xFF) | ((wh & 0xFF) << 8)); }
}
/* Write virtual
Inputs:
va = virtual address
val = data to be written, right justified in 32b lw
lnt = length code (BWLQ)
acc = access code (KESU)
Output:
none
*/
void Write (uint32 va, int32 val, int32 lnt, int32 acc)
{
int32 vpn, off, tbi, pa;
int32 pa1, bo, sc, wl, wh;
TLBENT xpte;
mchk_va = va;
if (mapen) {
vpn = VA_GETVPN (va);
off = VA_GETOFF (va);
tbi = VA_GETTBI (vpn);
xpte = (va & VA_S0)? stlb[tbi]: ptlb[tbi]; /* access tlb */
if (((xpte.pte & acc) == 0) || (xpte.tag != vpn) ||
((xpte.pte & TLB_M) == 0))
xpte = fill (va, lnt, acc, NULL);
pa = (xpte.pte & TLB_PFN) | off; }
else pa = va & PAMASK;
if ((pa & (lnt - 1)) == 0) { /* aligned? */
if (lnt >= L_LONG) WriteL (pa, val); /* long, quad? */
else if (lnt == L_WORD) WriteW (pa, val); /* word? */
else WriteB (pa, val); /* byte */
return; }
if (mapen && ((off + lnt) > VA_PAGSIZE)) {
vpn = VA_GETVPN (va + 4);
tbi = VA_GETTBI (vpn);
xpte = (va & VA_S0)? stlb[tbi]: ptlb[tbi]; /* access tlb */
if (((xpte.pte & acc) == 0) || (xpte.tag != vpn) ||
((xpte.pte & TLB_M) == 0))
xpte = fill (va + lnt, lnt, acc, NULL);
pa1 = (xpte.pte & TLB_PFN) | VA_GETOFF (va + 4); }
else pa1 = (pa + 4) & PAMASK;
bo = pa & 3;
wl = ReadL (pa);
if (lnt >= L_LONG) {
sc = bo << 3;
wh = ReadL (pa1);
wl = (wl & insert[bo]) | ((val << sc) & LMASK);
wh = (wh & ~insert[bo]) | ((val >> (32 - sc)) & insert[bo]);
WriteL (pa, wl);
WriteL (pa1, wh); }
else if (bo == 1) {
wl = (wl & 0xFF0000FF) | (val << 8);
WriteL (pa, wl); }
else { wh = ReadL (pa1);
wl = (wl & 0x00FFFFFF) | ((val & 0xFF) << 24);
wh = (wh & 0xFFFFFF00) | ((val >> 8) & 0xFF);
WriteL (pa, wl);
WriteL (pa1, wh); }
return;
}
/* Test access to a byte (VAX PROBEx) */
int32 Test (int32 va, int32 acc, int32 *status)
{
int32 vpn, off, tbi;
TLBENT xpte;
*status = PR_OK; /* assume ok */
if (mapen) { /* mapping on? */
vpn = VA_GETVPN (va); /* get vpn, off */
off = VA_GETOFF (va);
tbi = VA_GETTBI (vpn);
xpte = (va & VA_S0)? stlb[tbi]: ptlb[tbi]; /* access tlb */
if ((xpte.pte & acc) && (xpte.tag == vpn)) /* TB hit, acc ok? */
return (xpte.pte & TLB_PFN) | off;
xpte = fill (va, L_BYTE, acc, status); /* fill TB */
if (*status == PR_OK) return (xpte.pte & TLB_PFN) | off;
else return -1; }
return va & PAMASK; /* ret phys addr */
}
/* Read aligned physical (in virtual context, unless indicated)
Inputs:
pa = physical address, naturally aligned
Output:
returned data, right justified in 32b longword
*/
int32 ReadB (uint32 pa)
{
int32 dat;
if (ADDR_IS_MEM (pa)) dat = M[pa >> 2];
else { mchk_ref = REF_V;
if (ADDR_IS_IO (pa)) dat = ReadIO (pa, L_BYTE);
else dat = ReadReg (pa, L_BYTE); }
return ((dat >> ((pa & 3) << 3)) & BMASK);
}
int32 ReadW (uint32 pa)
{
int32 dat;
if (ADDR_IS_MEM (pa)) dat = M[pa >> 2];
else { mchk_ref = REF_V;
if (ADDR_IS_IO (pa)) dat = ReadIO (pa, L_WORD);
else dat = ReadReg (pa, L_WORD); }
return ((dat >> ((pa & 2)? 16: 0)) & WMASK);
}
int32 ReadL (uint32 pa)
{
if (ADDR_IS_MEM (pa)) return M[pa >> 2];
mchk_ref = REF_V;
if (ADDR_IS_IO (pa)) return ReadIO (pa, L_LONG);
return ReadReg (pa, L_LONG);
}
int32 ReadLP (uint32 pa)
{
if (ADDR_IS_MEM (pa)) return M[pa >> 2];
mchk_va = pa;
mchk_ref = REF_P;
if (ADDR_IS_IO (pa)) return ReadIO (pa, L_LONG);
return ReadReg (pa, L_LONG);
}
/* Write aligned physical (in virtual context, unless indicated)
Inputs:
pa = physical address, naturally aligned
val = data to be written, right justified in 32b longword
Output:
none
*/
void WriteB (uint32 pa, int32 val)
{
if (ADDR_IS_MEM (pa)) {
int32 id = pa >> 2;
int32 sc = (pa & 3) << 3;
int32 mask = 0xFF << sc;
M[id] = (M[id] & ~mask) | (val << sc); }
else { mchk_ref = REF_V;
if (ADDR_IS_IO (pa)) WriteIO (pa, val, L_BYTE);
else WriteReg (pa, val, L_BYTE); }
return;
}
void WriteW (uint32 pa, int32 val)
{
if (ADDR_IS_MEM (pa)) {
int32 id = pa >> 2;
M[id] = (pa & 2)? (M[id] & 0xFFFF) | (val << 16):
(M[id] & ~0xFFFF) | val; }
else { mchk_ref = REF_V;
if (ADDR_IS_IO (pa)) WriteIO (pa, val, L_WORD);
else WriteReg (pa, val, L_WORD); }
return;
}
void WriteL (uint32 pa, int32 val)
{
if (ADDR_IS_MEM (pa)) M[pa >> 2] = val;
else { mchk_ref = REF_V;
if (ADDR_IS_IO (pa)) WriteIO (pa, val, L_LONG);
else WriteReg (pa, val, L_LONG); }
return;
}
void WriteLP (uint32 pa, int32 val)
{
if (ADDR_IS_MEM (pa)) M[pa >> 2] = val;
else { mchk_va = pa;
mchk_ref = REF_P;
if (ADDR_IS_IO (pa)) WriteIO (pa, val, L_LONG);
else WriteReg (pa, val, L_LONG); }
return;
}
/* TLB fill
This routine fills the TLB after a tag or access mismatch, or
on a write if pte<m> = 0. It fills the TLB and returns the
pte to the caller. On an error, it aborts directly to the
fault handler in the CPU.
If called from map (VAX PROBEx), the error status is returned
to the caller, and no fault occurs.
*/
#define MM_ERR(param) { \
if (stat) { *stat = param; return zero_pte; } \
p1 = MM_PARAM (acc & TLB_WACC, param); \
p2 = va; \
ABORT ((param & PR_TNV)? ABORT_TNV: ABORT_ACV); }
TLBENT fill (uint32 va, int32 lnt, int32 acc, int32 *stat)
{
int32 ptidx = (((uint32) va) >> 7) & ~03;
int32 tlbpte, ptead, pte, tbi, vpn;
static TLBENT zero_pte = { 0, 0 };
if (va & VA_S0) { /* system space? */
if (ptidx >= d_slr) MM_ERR (PR_LNV); /* system */
ptead = d_sbr + ptidx; }
else { if (va & VA_P1) { /* P1? */
if (ptidx < d_p1lr) MM_ERR (PR_LNV);
ptead = d_p1br + ptidx; }
else { /* P0 */
if (ptidx >= d_p0lr)
MM_ERR (PR_LNV);
ptead = d_p0br + ptidx; }
if ((ptead & VA_S0) == 0)
ABORT (STOP_PPTE); /* ppte must be sys */
vpn = VA_GETVPN (ptead); /* get vpn, tbi */
tbi = VA_GETTBI (vpn);
if (stlb[tbi].tag != vpn) { /* in sys tlb? */
ptidx = ((uint32) ptead) >> 7; /* xlate like sys */
if (ptidx >= d_slr) MM_ERR (PR_PLNV);
pte = ReadLP (d_sbr + ptidx); /* get system pte */
if ((pte & PTE_V) == 0) MM_ERR (PR_PTNV); /* spte TNV? */
stlb[tbi].tag = vpn; /* set stlb tag */
stlb[tbi].pte = cvtacc[PTE_GETACC (pte)] |
((pte << VA_N_OFF) & TLB_PFN); } /* set stlb data */
ptead = (stlb[tbi].pte & TLB_PFN) | VA_GETOFF (ptead); }
pte = ReadL (ptead); /* read pte */
tlbpte = cvtacc[PTE_GETACC (pte)] | /* cvt access */
((pte << VA_N_OFF) & TLB_PFN); /* set addr */
if ((tlbpte & acc) == 0) MM_ERR (PR_ACV); /* chk access */
if ((pte & PTE_V) == 0) MM_ERR (PR_TNV); /* check valid */
if (acc & TLB_WACC) { /* write? */
if ((pte & PTE_M) == 0) WriteL (ptead, pte | PTE_M);
tlbpte = tlbpte | TLB_M; } /* set M */
vpn = VA_GETVPN (va);
tbi = VA_GETTBI (vpn);
if ((va & VA_S0) == 0) { /* process space? */
ptlb[tbi].tag = vpn; /* store tlb ent */
ptlb[tbi].pte = tlbpte;
return ptlb[tbi]; }
stlb[tbi].tag = vpn; /* system space */
stlb[tbi].pte = tlbpte; /* store tlb ent */
return stlb[tbi];
}
/* Utility routines */
extern void set_map_reg (void)
{
d_p0br = P0BR & ~03;
d_p1br = (P1BR - 0x800000) & ~03; /* VA<30> >> 7 */
d_sbr = (SBR - 0x1000000) & ~03; /* VA<31> >> 7 */
d_p0lr = (P0LR << 2);
d_p1lr = (P1LR << 2) + 0x800000; /* VA<30> >> 7 */
d_slr = (SLR << 2) + 0x1000000; /* VA<31> >> 7 */
return;
}
/* Zap process (0) or whole (1) tb */
void zap_tb (int stb)
{
int32 i;
for (i = 0; i < VA_TBSIZE; i++) {
ptlb[i].tag = ptlb[i].pte = -1;
if (stb) stlb[i].tag = stlb[i].pte = -1; }
return;
}
/* Zap single tb entry corresponding to va */
void zap_tb_ent (int32 va)
{
int32 tbi = VA_GETTBI (VA_GETVPN (va));
if (va & VA_S0) stlb[tbi].tag = stlb[tbi].pte = -1;
else ptlb[tbi].tag = ptlb[tbi].pte = -1;
return;
}
/* Check for tlb entry corresponding to va */
t_bool chk_tb_ent (int32 va)
{
int32 vpn = VA_GETVPN (va);
int32 tbi = VA_GETTBI (vpn);
TLBENT xpte;
xpte = (va & VA_S0)? stlb[tbi]: ptlb[tbi];
if (xpte.tag == vpn) return TRUE;
return FALSE;
}
/* TLB examine */
t_stat tlb_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
int32 tlbn = uptr - tlb_unit;
int32 idx = (uint32) addr >> 1;
if (idx >= VA_TBSIZE) return SCPE_NXM;
if (addr & 1) *vptr = ((uint32) (tlbn? stlb[idx].pte: ptlb[idx].pte));
else *vptr = ((uint32) (tlbn? stlb[idx].tag: ptlb[idx].tag));
return SCPE_OK;
}
/* TLB deposit */
t_stat tlb_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
int32 tlbn = uptr - tlb_unit;
int32 idx = (uint32) addr >> 1;
if (idx >= VA_TBSIZE) return SCPE_NXM;
if (addr & 1) {
if (tlbn) stlb[idx].pte = (int32) val;
else ptlb[idx].pte = (int32) val; }
else { if (tlbn) stlb[idx].tag = (int32) val;
else ptlb[idx].tag = (int32) val; }
return SCPE_OK;
}
/* TLB reset */
t_stat tlb_reset (DEVICE *dptr)
{
int32 i;
for (i = 0; i < VA_TBSIZE; i++)
stlb[i].tag = ptlb[i].tag = stlb[i].pte = ptlb[i].pte = -1;
return SCPE_OK;
}