RESTRICTION: The HP DS disk is not debugged. DO NOT enable this feature for normal operations. WARNING: Massive changes in the PDP-11 make all previous SAVEd file obsolete. Do not attempt to use a PDP-11 SAVE file from a prior release with V3.3! 1. New Features in 3.3 1.1 SCP - Added -p (powerup) qualifier to RESET - Changed SET <unit> ONLINE/OFFLINE to SET <unit> ENABLED/DISABLED - Moved SET DEBUG under SET CONSOLE hierarchy - Added optional parameter value to SHOW command - Added output file option to SHOW command 1.2 PDP-11 - Separated RH Massbus adapter from RP controller - Added TU tape support - Added model emulation framework - Added model details 1.3 VAX - Separated out CVAX-specific features from core instruction simulator - Implemented capability for CIS, octaword, compatibility mode instructions - Added instruction display and parse for compatibility mode - Changed SET CPU VIRTUAL=n to SHOW CPU VIRTUAL=n - Added =n optional parameter to SHOW CPU HISTORY 1.4 Unibus/Qbus simulators (PDP-11, VAX, PDP-10) - Simplified DMA API's - Modified DMA peripherals to use simplified API's 1.5 HP2100 (all changes from Dave Bryan) CPU - moved MP into its own device; added MP option jumpers - modified DMA to allow disabling - modified SET CPU 2100/2116 to truncate memory > 32K - added -F switch to SET CPU to force memory truncation - modified WRU to be REG_HRO - added BRK and DEL to save console settings DR - provided protected tracks and "Writing Enabled" status bit - added "parity error" status return on writes for 12606 - added track origin test for 12606 - added SCP test for 12606 - added "Sector Flag" status bit - added "Read Inhibit" status bit for 12606 - added TRACKPROT modifier LPS - added SET OFFLINE/ONLINE, POWEROFF/POWERON - added fast/realistic timing - added debug printouts LPT - added SET OFFLINE/ONLINE, POWEROFF/POWERON PTR - added paper tape loop mode, DIAG/READER modifiers to PTR - added PV_LEFT to PTR TRLLIM register CLK - modified CLK to permit disable 1.6 IBM 1401, IBM 1620, Interdata 16b, SDS 940, PDP-10 - Added instruction history 1.7 H316, PDP-15, PDP-8 - Added =n optional value to SHOW CPU HISTORY 2. Bugs Fixed in 3.3 2.1 SCP - Fixed comma-separated SET options (from Dave Bryan) - Fixed duplicate HELP displays with user-specified commands 2.2 PDP-10 - Replicated RP register state per drive - Fixed TU to set FCE on short record - Fixed TU to return bit<15> in drive type - Fixed TU format specification, 1:0 are don't cares - Fixed TU handling of TMK status - Fixed TU handling of DONE, ATA at end of operation - Implemented TU write check 2.3 PDP-11 - Replicated RP register state per drive - Fixed RQ, TQ to report correct controller type and stage 1 configuration flags on a Unibus system - Fixed HK CS2<output_ready> flag 2.4 VAX - Fixed parsing of indirect displacement modes in instruction input 2.5 HP2100 (all fixes from Dave Bryan) CPU - fixed S-register behavior on 2116 - fixed LIx/MIx behavior for DMA on 2116 and 2100 - fixed LIx/MIx behavior for empty I/O card slots DP - fixed enable/disable from either device - fixed ANY ERROR status for 12557A interface - fixed unattached drive status for 12557A interface - status cmd without prior STC DC now completes (12557A) - OTA/OTB CC on 13210A interface also does CLC CC - fixed RAR model - fixed seek check on 13210 if sector out of range DQ - fixed enable/disable from either device - shortened xtime from 5 to 3 (drive avg 156KW/second) - fixed not ready/any error status - fixed RAR model DR - fixed enable/disable from either device - fixed sector return in status word - fixed DMA last word write, incomplete sector fill value - fixed 12610 SFC operation - fixed current-sector determination IPL - fixed enable/disable from either device LPS - fixed status returns for error conditions - fixed handling of non-printing characters - fixed handling of characters after column 80 - improved timing model accuracy for RTE LPT - fixed status returns for error conditions - fixed TOF handling so form remains on line 0 SYS - fixed display of CCA/CCB/CCE instructions 2.5 PDP-15 FPP - fixed URFST to mask low 9b of fraction - fixed exception PC setting
1418 lines
39 KiB
C
1418 lines
39 KiB
C
/* vax_sysdev.c: VAX 3900 system-specific logic
|
||
|
||
Copyright (c) 1998-2004, Robert M Supnik
|
||
|
||
Permission is hereby granted, free of charge, to any person obtaining a
|
||
copy of this software and associated documentation files (the "Software"),
|
||
to deal in the Software without restriction, including without limitation
|
||
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
and/or sell copies of the Software, and to permit persons to whom the
|
||
Software is furnished to do so, subject to the following conditions:
|
||
|
||
The above copyright notice and this permission notice shall be included in
|
||
all copies or substantial portions of the Software.
|
||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
||
Except as contained in this notice, the name of Robert M Supnik shall not
|
||
be used in advertising or otherwise to promote the sale, use or other dealings
|
||
in this Software without prior written authorization from Robert M Supnik.
|
||
|
||
This module contains the CVAX chip and VAX 3900 system-specific registers
|
||
and devices.
|
||
|
||
rom bootstrap ROM (no registers)
|
||
nvr non-volatile ROM (no registers)
|
||
csi console storage input
|
||
cso console storage output
|
||
sysd system devices (SSC miscellany)
|
||
|
||
30-Sep-04 RMS Moved CADR, MSER, CONPC, CONPSL, machine_check, cpu_boot,
|
||
con_halt here from vax_cpu.c
|
||
Moved model-specific IPR's here from vax_cpu1.c
|
||
09-Sep-04 RMS Integrated powerup into RESET (with -p)
|
||
Added model-specific registers and routines from CPU
|
||
23-Jan-04 MP Added extended physical memory support (Mark Pizzolato)
|
||
07-Jun-03 MP Added calibrated delay to ROM reads (Mark Pizzolato)
|
||
Fixed calibration problems interval timer (Mark Pizzolato)
|
||
12-May-03 RMS Fixed compilation warnings from VC.Net
|
||
23-Apr-03 RMS Revised for 32b/64b t_addr
|
||
19-Aug-02 RMS Removed unused variables (found by David Hittner)
|
||
Allowed NVR to be attached to file
|
||
30-May-02 RMS Widened POS to 32b
|
||
28-Feb-02 RMS Fixed bug, missing end of table (found by Lars Brinkhoff)
|
||
*/
|
||
|
||
#include "vax_defs.h"
|
||
|
||
#define UNIT_V_NODELAY (UNIT_V_UF + 0) /* ROM access equal to RAM access */
|
||
#define UNIT_NODELAY (1u << UNIT_V_NODELAY)
|
||
|
||
/* Console storage control/status */
|
||
|
||
#define CSICSR_IMP (CSR_DONE + CSR_IE) /* console input */
|
||
#define CSICSR_RW (CSR_IE)
|
||
#define CSOCSR_IMP (CSR_DONE + CSR_IE) /* console output */
|
||
#define CSOCSR_RW (CSR_IE)
|
||
|
||
/* CMCTL configuration registers */
|
||
|
||
#define CMCNF_VLD 0x80000000 /* addr valid */
|
||
#define CMCNF_BA 0x1FF00000 /* base addr */
|
||
#define CMCNF_LOCK 0x00000040 /* lock NI */
|
||
#define CMCNF_SRQ 0x00000020 /* sig req WO */
|
||
#define CMCNF_SIG 0x0000001F /* signature */
|
||
#define CMCNF_RW (CMCNF_VLD | CMCNF_BA) /* read/write */
|
||
#define CMCNF_MASK (CMCNF_RW | CMCNF_SIG)
|
||
#define MEM_BANK (1 << 22) /* bank size 4MB */
|
||
#define MEM_SIG (0x17) /* ECC, 4 x 4MB */
|
||
|
||
/* CMCTL error register */
|
||
|
||
#define CMERR_RDS 0x80000000 /* uncorr err NI */
|
||
#define CMERR_FRQ 0x40000000 /* 2nd RDS NI */
|
||
#define CMERR_CRD 0x20000000 /* CRD err NI */
|
||
#define CMERR_PAG 0x1FFFFC00 /* page addr NI */
|
||
#define CMERR_DMA 0x00000100 /* DMA err NI */
|
||
#define CMERR_BUS 0x00000080 /* bus err NI */
|
||
#define CMERR_SYN 0x0000007F /* syndrome NI */
|
||
#define CMERR_W1C (CMERR_RDS | CMERR_FRQ | CMERR_CRD | \
|
||
CMERR_DMA | CMERR_BUS)
|
||
|
||
/* CMCTL control/status register */
|
||
|
||
#define CMCSR_PMI 0x00002000 /* PMI speed NI */
|
||
#define CMCSR_CRD 0x00001000 /* enb CRD int NI */
|
||
#define CMCSR_FRF 0x00000800 /* force ref WONI */
|
||
#define CMCSR_DET 0x00000400 /* dis err NI */
|
||
#define CMCSR_FDT 0x00000200 /* fast diag NI */
|
||
#define CMCSR_DCM 0x00000080 /* diag mode NI */
|
||
#define CMCSR_SYN 0x0000007F /* syndrome NI */
|
||
#define CMCSR_MASK (CMCSR_PMI | CMCSR_CRD | CMCSR_DET | \
|
||
CMCSR_FDT | CMCSR_DCM | CMCSR_SYN)
|
||
|
||
/* KA655 boot/diagnostic register */
|
||
|
||
#define BDR_BRKENB 0x00000080 /* break enable */
|
||
|
||
/* KA655 cache control register */
|
||
|
||
#define CACR_DRO 0x00FFFF00 /* diag bits RO */
|
||
#define CACR_V_DPAR 24 /* data parity */
|
||
#define CACR_FIXED 0x00000040 /* fixed bits */
|
||
#define CACR_CPE 0x00000020 /* parity err W1C */
|
||
#define CACR_CEN 0x00000010 /* enable */
|
||
#define CACR_DPE 0x00000004 /* disable par NI */
|
||
#define CACR_WWP 0x00000002 /* write wrong par NI */
|
||
#define CACR_DIAG 0x00000001 /* diag mode */
|
||
#define CACR_W1C (CACR_CPE)
|
||
#define CACR_RW (CACR_CEN | CACR_DPE | CACR_WWP | CACR_DIAG)
|
||
|
||
/* SSC base register */
|
||
|
||
#define SSCBASE_MBO 0x20000000 /* must be one */
|
||
#define SSCBASE_RW 0x1FFFFC00 /* base address */
|
||
|
||
/* SSC configuration register */
|
||
|
||
#define SSCCNF_BLO 0x80000000 /* batt low W1C */
|
||
#define SSCCNF_IVD 0x08000000 /* int dsbl NI */
|
||
#define SSCCNF_IPL 0x03000000 /* int IPL NI */
|
||
#define SSCCNF_ROM 0x00F70000 /* ROM param NI */
|
||
#define SSCCNF_CTLP 0x00008000 /* ctrl P enb */
|
||
#define SSCCNF_BAUD 0x00007700 /* baud rates NI */
|
||
#define SSCCNF_ADS 0x00000077 /* addr strb NI */
|
||
#define SSCCNF_W1C SSCCNF_BLO
|
||
#define SSCCNF_RW 0x0BF7F777
|
||
|
||
/* SSC timeout register */
|
||
|
||
#define SSCBTO_BTO 0x80000000 /* timeout W1C */
|
||
#define SSCBTO_RWT 0x40000000 /* read/write W1C */
|
||
#define SSCBTO_INTV 0x00FFFFFF /* interval NI */
|
||
#define SSCBTO_W1C (SSCBTO_BTO | SSCBTO_RWT)
|
||
#define SSCBTO_RW SSCBTO_INTV
|
||
|
||
/* SSC output port */
|
||
|
||
#define SSCOTP_MASK 0x0000000F /* output port */
|
||
|
||
/* SSC timer control/status */
|
||
|
||
#define TMR_CSR_ERR 0x80000000 /* error W1C */
|
||
#define TMR_CSR_DON 0x00000080 /* done W1C */
|
||
#define TMR_CSR_IE 0x00000040 /* int enb */
|
||
#define TMR_CSR_SGL 0x00000020 /* single WO */
|
||
#define TMR_CSR_XFR 0x00000010 /* xfer WO */
|
||
#define TMR_CSR_STP 0x00000004 /* stop */
|
||
#define TMR_CSR_RUN 0x00000001 /* run */
|
||
#define TMR_CSR_W1C (TMR_CSR_ERR | TMR_CSR_DON)
|
||
#define TMR_CSR_RW (TMR_CSR_IE | TMR_CSR_STP | TMR_CSR_RUN)
|
||
|
||
/* SSC timer intervals */
|
||
|
||
#define TMR_INC 10000 /* usec/interval */
|
||
|
||
/* SSC timer vector */
|
||
|
||
#define TMR_VEC_MASK 0x000003FC /* vector */
|
||
|
||
/* SSC address strobes */
|
||
|
||
#define SSCADS_MASK 0x3FFFFFFC /* match or mask */
|
||
|
||
extern int32 R[16];
|
||
extern int32 STK[5];
|
||
extern int32 PSL;
|
||
extern int32 SISR;
|
||
extern int32 mapen;
|
||
extern int32 pcq[PCQ_SIZE];
|
||
extern int32 pcq_p;
|
||
extern int32 ibcnt, ppc;
|
||
extern int32 in_ie;
|
||
extern int32 mchk_va, mchk_ref;
|
||
extern int32 fault_PC;
|
||
extern int32 int_req[IPL_HLVL];
|
||
extern UNIT cpu_unit;
|
||
extern UNIT clk_unit;
|
||
extern jmp_buf save_env;
|
||
extern int32 p1;
|
||
extern int32 sim_switches;
|
||
extern int32 MSER;
|
||
extern int32 tmr_poll;
|
||
extern int32 cpu_extmem;
|
||
|
||
uint32 *rom = NULL; /* boot ROM */
|
||
uint32 *nvr = NULL; /* non-volatile mem */
|
||
int32 CADR = 0; /* cache disable reg */
|
||
int32 MSER = 0; /* mem sys error reg */
|
||
int32 conpc, conpsl; /* console reg */
|
||
int32 csi_csr = 0; /* control/status */
|
||
int32 cso_csr = 0; /* control/status */
|
||
int32 cmctl_reg[CMCTLSIZE >> 2] = { 0 }; /* CMCTL reg */
|
||
int32 ka_cacr = 0; /* KA655 cache ctl */
|
||
int32 ka_bdr = BDR_BRKENB; /* KA655 boot diag */
|
||
int32 ssc_base = SSCBASE; /* SSC base */
|
||
int32 ssc_cnf = 0; /* SSC conf */
|
||
int32 ssc_bto = 0; /* SSC timeout */
|
||
int32 ssc_otp = 0; /* SSC output port */
|
||
int32 tmr_csr[2] = { 0 }; /* SSC timers */
|
||
uint32 tmr_tir[2] = { 0 }; /* curr interval */
|
||
uint32 tmr_tnir[2] = { 0 }; /* next interval */
|
||
int32 tmr_tivr[2] = { 0 }; /* vector */
|
||
uint32 tmr_inc[2] = { 0 }; /* tir increment */
|
||
uint32 tmr_sav[2] = { 0 }; /* saved inst cnt */
|
||
int32 ssc_adsm[2] = { 0 }; /* addr strobes */
|
||
int32 ssc_adsk[2] = { 0 };
|
||
int32 cdg_dat[CDASIZE >> 2]; /* cache data */
|
||
static uint32 rom_delay = 0;
|
||
|
||
t_stat rom_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw);
|
||
t_stat rom_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw);
|
||
t_stat rom_reset (DEVICE *dptr);
|
||
t_stat nvr_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw);
|
||
t_stat nvr_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw);
|
||
t_stat nvr_reset (DEVICE *dptr);
|
||
t_stat nvr_attach (UNIT *uptr, char *cptr);
|
||
t_stat nvr_detach (UNIT *uptr);
|
||
t_stat csi_reset (DEVICE *dptr);
|
||
t_stat cso_reset (DEVICE *dptr);
|
||
t_stat cso_svc (UNIT *uptr);
|
||
t_stat tmr_svc (UNIT *uptr);
|
||
t_stat sysd_reset (DEVICE *dptr);
|
||
|
||
int32 rom_rd (int32 pa);
|
||
int32 nvr_rd (int32 pa);
|
||
void nvr_wr (int32 pa, int32 val, int32 lnt);
|
||
int32 csrs_rd (void);
|
||
int32 csrd_rd (void);
|
||
int32 csts_rd (void);
|
||
void csrs_wr (int32 dat);
|
||
void csts_wr (int32 dat);
|
||
void cstd_wr (int32 dat);
|
||
int32 cmctl_rd (int32 pa);
|
||
void cmctl_wr (int32 pa, int32 val, int32 lnt);
|
||
int32 ka_rd (int32 pa);
|
||
void ka_wr (int32 pa, int32 val, int32 lnt);
|
||
int32 cdg_rd (int32 pa);
|
||
void cdg_wr (int32 pa, int32 val, int32 lnt);
|
||
int32 ssc_rd (int32 pa);
|
||
void ssc_wr (int32 pa, int32 val, int32 lnt);
|
||
int32 tmr_tir_rd (int32 tmr, t_bool interp);
|
||
void tmr_csr_wr (int32 tmr, int32 val);
|
||
void tmr_sched (int32 tmr);
|
||
void tmr_incr (int32 tmr, uint32 inc);
|
||
int32 tmr0_inta (void);
|
||
int32 tmr1_inta (void);
|
||
int32 parity (int32 val, int32 odd);
|
||
t_stat sysd_powerup (void);
|
||
|
||
extern void Write (uint32 va, int32 val, int32 lnt, int32 acc);
|
||
extern int32 intexc (int32 vec, int32 cc, int32 ipl, int ei);
|
||
extern int32 cqmap_rd (int32 pa);
|
||
extern void cqmap_wr (int32 pa, int32 val, int32 lnt);
|
||
extern int32 cqipc_rd (int32 pa);
|
||
extern void cqipc_wr (int32 pa, int32 val, int32 lnt);
|
||
extern int32 cqbic_rd (int32 pa);
|
||
extern void cqbic_wr (int32 pa, int32 val, int32 lnt);
|
||
extern int32 cqmem_rd (int32 pa);
|
||
extern void cqmem_wr (int32 pa, int32 val, int32 lnt);
|
||
extern int32 iccs_rd (void);
|
||
extern int32 todr_rd (void);
|
||
extern int32 rxcs_rd (void);
|
||
extern int32 rxdb_rd (void);
|
||
extern int32 txcs_rd (void);
|
||
extern void iccs_wr (int32 dat);
|
||
extern void todr_wr (int32 dat);
|
||
extern void rxcs_wr (int32 dat);
|
||
extern void txcs_wr (int32 dat);
|
||
extern void txdb_wr (int32 dat);
|
||
extern void ioreset_wr (int32 dat);
|
||
extern uint32 sim_os_msec();
|
||
|
||
/* ROM data structures
|
||
|
||
rom_dev ROM device descriptor
|
||
rom_unit ROM units
|
||
rom_reg ROM register list
|
||
*/
|
||
|
||
UNIT rom_unit = { UDATA (NULL, UNIT_FIX+UNIT_BINK, ROMSIZE) };
|
||
|
||
REG rom_reg[] = {
|
||
{ NULL } };
|
||
|
||
MTAB rom_mod[] = {
|
||
{ UNIT_NODELAY, UNIT_NODELAY, "fast access", "NODELAY", NULL },
|
||
{ UNIT_NODELAY, 0, "1usec calibrated access", "DELAY", NULL },
|
||
{ 0 } };
|
||
|
||
DEVICE rom_dev = {
|
||
"ROM", &rom_unit, rom_reg, rom_mod,
|
||
1, 16, ROMAWIDTH, 4, 16, 32,
|
||
&rom_ex, &rom_dep, &rom_reset,
|
||
NULL, NULL, NULL,
|
||
NULL, 0 };
|
||
|
||
/* NVR data structures
|
||
|
||
nvr_dev NVR device descriptor
|
||
nvr_unit NVR units
|
||
nvr_reg NVR register list
|
||
*/
|
||
|
||
UNIT nvr_unit =
|
||
{ UDATA (NULL, UNIT_FIX+UNIT_BINK, NVRSIZE) };
|
||
|
||
REG nvr_reg[] = {
|
||
{ NULL } };
|
||
|
||
DEVICE nvr_dev = {
|
||
"NVR", &nvr_unit, nvr_reg, NULL,
|
||
1, 16, NVRAWIDTH, 4, 16, 32,
|
||
&nvr_ex, &nvr_dep, &nvr_reset,
|
||
NULL, &nvr_attach, &nvr_detach,
|
||
NULL, 0 };
|
||
|
||
/* CSI data structures
|
||
|
||
csi_dev CSI device descriptor
|
||
csi_unit CSI unit descriptor
|
||
csi_reg CSI register list
|
||
*/
|
||
|
||
DIB csi_dib = { 0, 0, NULL, NULL, 1, IVCL (CSI), SCB_CSI, { NULL } };
|
||
|
||
UNIT csi_unit = { UDATA (NULL, 0, 0), KBD_POLL_WAIT };
|
||
|
||
REG csi_reg[] = {
|
||
{ ORDATA (BUF, csi_unit.buf, 8) },
|
||
{ ORDATA (CSR, csi_csr, 16) },
|
||
{ FLDATA (INT, int_req[IPL_CSI], INT_V_CSI) },
|
||
{ FLDATA (DONE, csi_csr, CSR_V_DONE) },
|
||
{ FLDATA (IE, csi_csr, CSR_V_IE) },
|
||
{ DRDATA (POS, csi_unit.pos, 32), PV_LEFT },
|
||
{ DRDATA (TIME, csi_unit.wait, 24), REG_NZ + PV_LEFT },
|
||
{ NULL } };
|
||
|
||
MTAB csi_mod[] = {
|
||
{ MTAB_XTD|MTAB_VDV, 0, "VECTOR", NULL, NULL, &show_vec },
|
||
{ 0 } };
|
||
|
||
DEVICE csi_dev = {
|
||
"CSI", &csi_unit, csi_reg, csi_mod,
|
||
1, 10, 31, 1, 8, 8,
|
||
NULL, NULL, &csi_reset,
|
||
NULL, NULL, NULL,
|
||
&csi_dib, 0 };
|
||
|
||
/* CSO data structures
|
||
|
||
cso_dev CSO device descriptor
|
||
cso_unit CSO unit descriptor
|
||
cso_reg CSO register list
|
||
*/
|
||
|
||
DIB cso_dib = { 0, 0, NULL, NULL, 1, IVCL (CSO), SCB_CSO, { NULL } };
|
||
|
||
UNIT cso_unit = { UDATA (&cso_svc, UNIT_SEQ+UNIT_ATTABLE, 0), SERIAL_OUT_WAIT };
|
||
|
||
REG cso_reg[] = {
|
||
{ ORDATA (BUF, cso_unit.buf, 8) },
|
||
{ ORDATA (CSR, cso_csr, 16) },
|
||
{ FLDATA (INT, int_req[IPL_CSO], INT_V_CSO) },
|
||
{ FLDATA (DONE, cso_csr, CSR_V_DONE) },
|
||
{ FLDATA (IE, cso_csr, CSR_V_IE) },
|
||
{ DRDATA (POS, cso_unit.pos, 32), PV_LEFT },
|
||
{ DRDATA (TIME, cso_unit.wait, 24), PV_LEFT },
|
||
{ NULL } };
|
||
|
||
MTAB cso_mod[] = {
|
||
{ MTAB_XTD|MTAB_VDV, 0, "VECTOR", NULL, NULL, &show_vec },
|
||
{ 0 } };
|
||
|
||
DEVICE cso_dev = {
|
||
"CSO", &cso_unit, cso_reg, cso_mod,
|
||
1, 10, 31, 1, 8, 8,
|
||
NULL, NULL, &cso_reset,
|
||
NULL, NULL, NULL,
|
||
&cso_dib, 0 };
|
||
|
||
/* SYSD data structures
|
||
|
||
sysd_dev SYSD device descriptor
|
||
sysd_unit SYSD units
|
||
sysd_reg SYSD register list
|
||
*/
|
||
|
||
DIB sysd_dib[] = { 0, 0, NULL, NULL,
|
||
2, IVCL (TMR0), 0, { &tmr0_inta, &tmr1_inta } };
|
||
|
||
UNIT sysd_unit[] = {
|
||
{ UDATA (&tmr_svc, 0, 0) },
|
||
{ UDATA (&tmr_svc, 0, 0) } };
|
||
|
||
REG sysd_reg[] = {
|
||
{ HRDATA (CADR, CADR, 8) },
|
||
{ HRDATA (MSER, MSER, 8) },
|
||
{ HRDATA (CONPC, conpc, 32) },
|
||
{ HRDATA (CONPSL, conpsl, 32) },
|
||
{ BRDATA (CMCSR, cmctl_reg, 16, 32, CMCTLSIZE >> 2) },
|
||
{ HRDATA (CACR, ka_cacr, 8) },
|
||
{ HRDATA (BDR, ka_bdr, 8) },
|
||
{ HRDATA (BASE, ssc_base, 29) },
|
||
{ HRDATA (CNF, ssc_cnf, 32) },
|
||
{ HRDATA (BTO, ssc_bto, 32) },
|
||
{ HRDATA (OTP, ssc_otp, 4) },
|
||
{ HRDATA (TCSR0, tmr_csr[0], 32) },
|
||
{ HRDATA (TIR0, tmr_tir[0], 32) },
|
||
{ HRDATA (TNIR0, tmr_tnir[0], 32) },
|
||
{ HRDATA (TIVEC0, tmr_tivr[0], 9) },
|
||
{ HRDATA (TINC0, tmr_inc[0], 32) },
|
||
{ HRDATA (TSAV0, tmr_sav[0], 32) },
|
||
{ HRDATA (TCSR1, tmr_csr[1], 32) },
|
||
{ HRDATA (TIR1, tmr_tir[1], 32) },
|
||
{ HRDATA (TNIR1, tmr_tnir[1], 32) },
|
||
{ HRDATA (TIVEC1, tmr_tivr[1], 9) },
|
||
{ HRDATA (TINC1, tmr_inc[1], 32) },
|
||
{ HRDATA (TSAV1, tmr_sav[1], 32) },
|
||
{ HRDATA (ADSM0, ssc_adsm[0], 32) },
|
||
{ HRDATA (ADSK0, ssc_adsk[0], 32) },
|
||
{ HRDATA (ADSM1, ssc_adsm[1], 32) },
|
||
{ HRDATA (ADSK1, ssc_adsk[1], 32) },
|
||
{ BRDATA (CDGDAT, cdg_dat, 16, 32, CDASIZE >> 2) },
|
||
{ NULL } };
|
||
|
||
DEVICE sysd_dev = {
|
||
"SYSD", sysd_unit, sysd_reg, NULL,
|
||
2, 16, 16, 1, 16, 8,
|
||
NULL, NULL, &sysd_reset,
|
||
NULL, NULL, NULL,
|
||
&sysd_dib, 0 };
|
||
|
||
/* ROM: read only memory - stored in a buffered file
|
||
Register space access routines see ROM twice
|
||
|
||
ROM access has been 'regulated' to about 1Mhz to avoid issues
|
||
with testing the interval timers in self-test. Specifically,
|
||
the VAX boot ROM (ka655.bin) contains code which presumes that
|
||
the VAX runs at a particular slower speed when code is running
|
||
from ROM (which is not cached). These assumptions are built
|
||
into instruction based timing loops. As the host platform gets
|
||
much faster than the original VAX, the assumptions embedded in
|
||
these code loops are no longer valid.
|
||
|
||
Code has been added to the ROM implementation to limit CPU speed
|
||
to about 500K instructions per second. This heads off any future
|
||
issues with the embedded timing loops.
|
||
*/
|
||
|
||
int32 rom_swapb(int32 val)
|
||
{
|
||
return ((val << 24) & 0xff000000) | (( val << 8) & 0xff0000) |
|
||
((val >> 8) & 0xff00) | ((val >> 24) & 0xff);
|
||
}
|
||
|
||
int32 rom_read_delay (int32 val)
|
||
{
|
||
uint32 i, l = rom_delay;
|
||
int32 loopval = 0;
|
||
|
||
if (rom_unit.flags & UNIT_NODELAY) return val;
|
||
|
||
/* Calibrate the loop delay factor when first used.
|
||
Do this 4 times to and use the largest value computed. */
|
||
|
||
if (rom_delay == 0) {
|
||
uint32 ts, te, c = 10000, samples = 0;
|
||
while (1) {
|
||
c = c * 2;
|
||
te = sim_os_msec();
|
||
while (te == (ts = sim_os_msec ())); /* align on ms tick */
|
||
|
||
/* This is merely a busy wait with some "work" that won't get optimized
|
||
away by a good compiler. loopval always is zero. To avoid smart compilers,
|
||
the loopval variable is referenced in the function arguments so that the
|
||
function expression is not loop invariant. It also must be referenced
|
||
by subsequent code or to avoid the whole computation being eliminated. */
|
||
|
||
for (i = 0; i < c; i++)
|
||
loopval |= (loopval + ts) ^ rom_swapb (rom_swapb (loopval + ts));
|
||
te = sim_os_msec ();
|
||
if ((te - ts) < 50) continue; /* sample big enough? */
|
||
if (rom_delay < (loopval + (c / (te - ts) / 1000) + 1))
|
||
rom_delay = loopval + (c / (te - ts) / 1000) + 1;
|
||
if (++samples >= 4) break;
|
||
c = c / 2; }
|
||
if (rom_delay < 5) rom_delay = 5; }
|
||
|
||
for (i = 0; i < l; i++)
|
||
loopval |= (loopval + val) ^ rom_swapb (rom_swapb (loopval + val));
|
||
return val + loopval;
|
||
}
|
||
|
||
int32 rom_rd (int32 pa)
|
||
{
|
||
int32 rg = ((pa - ROMBASE) & ROMAMASK) >> 2;
|
||
|
||
return rom_read_delay (rom[rg]);
|
||
}
|
||
|
||
void rom_wr_B (int32 pa, int32 val)
|
||
{
|
||
int32 rg = ((pa - ROMBASE) & ROMAMASK) >> 2;
|
||
int32 sc = (pa & 3) << 3;
|
||
|
||
rom[rg] = ((val & 0xFF) << sc) | (rom[rg] & ~(0xFF << sc));
|
||
return;
|
||
}
|
||
|
||
/* ROM examine */
|
||
|
||
t_stat rom_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw)
|
||
{
|
||
uint32 addr = (uint32) exta;
|
||
|
||
if ((vptr == NULL) || (addr & 03)) return SCPE_ARG;
|
||
if (addr >= ROMSIZE) return SCPE_NXM;
|
||
*vptr = rom[addr >> 2];
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* ROM deposit */
|
||
|
||
t_stat rom_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw)
|
||
{
|
||
uint32 addr = (uint32) exta;
|
||
|
||
if (addr & 03) return SCPE_ARG;
|
||
if (addr >= ROMSIZE) return SCPE_NXM;
|
||
rom[addr >> 2] = (uint32) val;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* ROM reset */
|
||
|
||
t_stat rom_reset (DEVICE *dptr)
|
||
{
|
||
if (rom == NULL) rom = calloc (ROMSIZE >> 2, sizeof (int32));
|
||
if (rom == NULL) return SCPE_MEM;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* NVR: non-volatile RAM - stored in a buffered file */
|
||
|
||
int32 nvr_rd (int32 pa)
|
||
{
|
||
int32 rg = (pa - NVRBASE) >> 2;
|
||
|
||
return nvr[rg];
|
||
}
|
||
|
||
void nvr_wr (int32 pa, int32 val, int32 lnt)
|
||
{
|
||
int32 rg = (pa - NVRBASE) >> 2;
|
||
|
||
if (lnt < L_LONG) { /* byte or word? */
|
||
int32 sc = (pa & 3) << 3; /* merge */
|
||
int32 mask = (lnt == L_WORD)? 0xFFFF: 0xFF;
|
||
nvr[rg] = ((val & mask) << sc) | (nvr[rg] & ~(mask << sc)); }
|
||
else nvr[rg] = val;
|
||
return;
|
||
}
|
||
|
||
/* NVR examine */
|
||
|
||
t_stat nvr_ex (t_value *vptr, t_addr exta, UNIT *uptr, int32 sw)
|
||
{
|
||
uint32 addr = (uint32) exta;
|
||
|
||
if ((vptr == NULL) || (addr & 03)) return SCPE_ARG;
|
||
if (addr >= NVRSIZE) return SCPE_NXM;
|
||
*vptr = nvr[addr >> 2];
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* NVR deposit */
|
||
|
||
t_stat nvr_dep (t_value val, t_addr exta, UNIT *uptr, int32 sw)
|
||
{
|
||
uint32 addr = (uint32) exta;
|
||
|
||
if (addr & 03) return SCPE_ARG;
|
||
if (addr >= NVRSIZE) return SCPE_NXM;
|
||
nvr[addr >> 2] = (uint32) val;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* NVR reset */
|
||
|
||
t_stat nvr_reset (DEVICE *dptr)
|
||
{
|
||
if (nvr == NULL) {
|
||
nvr = calloc (NVRSIZE >> 2, sizeof (int32));
|
||
nvr_unit.filebuf = nvr;
|
||
ssc_cnf = ssc_cnf | SSCCNF_BLO; }
|
||
if (nvr == NULL) return SCPE_MEM;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* NVR attach */
|
||
|
||
t_stat nvr_attach (UNIT *uptr, char *cptr)
|
||
{
|
||
t_stat r;
|
||
|
||
uptr->flags = uptr->flags | (UNIT_ATTABLE | UNIT_BUFABLE);
|
||
r = attach_unit (uptr, cptr);
|
||
if (r != SCPE_OK)
|
||
uptr->flags = uptr->flags & ~(UNIT_ATTABLE | UNIT_BUFABLE);
|
||
else { uptr->hwmark = (uint32) uptr->capac;
|
||
ssc_cnf = ssc_cnf & ~SSCCNF_BLO; }
|
||
return r;
|
||
}
|
||
|
||
/* NVR detach */
|
||
|
||
t_stat nvr_detach (UNIT *uptr)
|
||
{
|
||
t_stat r;
|
||
|
||
r = detach_unit (uptr);
|
||
if ((uptr->flags & UNIT_ATT) == 0)
|
||
uptr->flags = uptr->flags & ~(UNIT_ATTABLE | UNIT_BUFABLE);
|
||
return r;
|
||
}
|
||
|
||
/* CSI: console storage input */
|
||
|
||
int32 csrs_rd (void)
|
||
{
|
||
return (csi_csr & CSICSR_IMP);
|
||
}
|
||
|
||
int32 csrd_rd (void)
|
||
{
|
||
csi_csr = csi_csr & ~CSR_DONE;
|
||
CLR_INT (CSI);
|
||
return (csi_unit.buf & 0377);
|
||
}
|
||
|
||
void csrs_wr (int32 data)
|
||
{
|
||
if ((data & CSR_IE) == 0) CLR_INT (CSI);
|
||
else if ((csi_csr & (CSR_DONE + CSR_IE)) == CSR_DONE)
|
||
SET_INT (CSI);
|
||
csi_csr = (csi_csr & ~CSICSR_RW) | (data & CSICSR_RW);
|
||
return;
|
||
}
|
||
|
||
t_stat csi_reset (DEVICE *dptr)
|
||
{
|
||
csi_unit.buf = 0;
|
||
csi_csr = 0;
|
||
CLR_INT (CSI);
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* CSO: console storage output */
|
||
|
||
int32 csts_rd (void)
|
||
{
|
||
return (cso_csr & CSOCSR_IMP);
|
||
}
|
||
|
||
void csts_wr (int32 data)
|
||
{
|
||
if ((data & CSR_IE) == 0) CLR_INT (CSO);
|
||
else if ((cso_csr & (CSR_DONE + CSR_IE)) == CSR_DONE)
|
||
SET_INT (CSO);
|
||
cso_csr = (cso_csr & ~CSOCSR_RW) | (data & CSOCSR_RW);
|
||
return;
|
||
}
|
||
|
||
void cstd_wr (int32 data)
|
||
{
|
||
cso_unit.buf = data & 0377;
|
||
cso_csr = cso_csr & ~CSR_DONE;
|
||
CLR_INT (CSO);
|
||
sim_activate (&cso_unit, cso_unit.wait);
|
||
return;
|
||
}
|
||
|
||
t_stat cso_svc (UNIT *uptr)
|
||
{
|
||
cso_csr = cso_csr | CSR_DONE;
|
||
if (cso_csr & CSR_IE) SET_INT (CSO);
|
||
if ((cso_unit.flags & UNIT_ATT) == 0) return SCPE_OK;
|
||
if (putc (cso_unit.buf, cso_unit.fileref) == EOF) {
|
||
perror ("CSO I/O error");
|
||
clearerr (cso_unit.fileref);
|
||
return SCPE_IOERR; }
|
||
cso_unit.pos = cso_unit.pos + 1;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
t_stat cso_reset (DEVICE *dptr)
|
||
{
|
||
cso_unit.buf = 0;
|
||
cso_csr = CSR_DONE;
|
||
CLR_INT (CSO);
|
||
sim_cancel (&cso_unit); /* deactivate unit */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* SYSD: SSC access mechanisms and devices
|
||
|
||
- IPR space read/write routines
|
||
- register space read/write routines
|
||
- SSC local register read/write routines
|
||
- SSC console storage UART
|
||
- SSC timers
|
||
- CMCTL local register read/write routines
|
||
*/
|
||
|
||
/* Read/write IPR register space
|
||
|
||
These routines implement the SSC's response to IPR's which are
|
||
sent off the CPU chip for processing.
|
||
*/
|
||
|
||
int32 ReadIPR (int32 rg)
|
||
{
|
||
int32 val;
|
||
|
||
switch (rg) {
|
||
case MT_ICCS: /* ICCS */
|
||
val = iccs_rd ();
|
||
break;
|
||
case MT_CSRS: /* CSRS */
|
||
val = csrs_rd ();
|
||
break;
|
||
case MT_CSRD: /* CSRD */
|
||
val = csrd_rd ();
|
||
break;
|
||
case MT_CSTS: /* CSTS */
|
||
val = csts_rd ();
|
||
break;
|
||
case MT_CSTD: /* CSTD */
|
||
val = 0;
|
||
break;
|
||
case MT_RXCS: /* RXCS */
|
||
val = rxcs_rd ();
|
||
break;
|
||
case MT_RXDB: /* RXDB */
|
||
val = rxdb_rd ();
|
||
break;
|
||
case MT_TXCS: /* TXCS */
|
||
val = txcs_rd ();
|
||
break;
|
||
case MT_TXDB: /* TXDB */
|
||
val = 0;
|
||
break;
|
||
case MT_TODR:
|
||
val = todr_rd ();
|
||
break;
|
||
case MT_CADR: /* CADR */
|
||
val = CADR & 0xFF;
|
||
break;
|
||
case MT_MSER: /* MSER */
|
||
val = MSER & 0xFF;
|
||
break;
|
||
case MT_CONPC: /* console PC */
|
||
val = conpc;
|
||
break;
|
||
case MT_CONPSL: /* console PSL */
|
||
val = conpsl;
|
||
break;
|
||
case MT_SID: /* SID */
|
||
val = CVAX_SID | CVAX_UREV;
|
||
break;
|
||
default:
|
||
ssc_bto = ssc_bto | SSCBTO_BTO; /* set BTO */
|
||
val = 0;
|
||
break; }
|
||
return val;
|
||
}
|
||
|
||
void WriteIPR (int32 rg, int32 val)
|
||
{
|
||
switch (rg) {
|
||
case MT_ICCS: /* ICCS */
|
||
iccs_wr (val);
|
||
break;
|
||
case MT_TODR: /* TODR */
|
||
todr_wr (val);
|
||
break;
|
||
case MT_CSRS: /* CSRS */
|
||
csrs_wr (val);
|
||
break;
|
||
case MT_CSRD: /* CSRD */
|
||
break;
|
||
case MT_CSTS: /* CSTS */
|
||
csts_wr (val);
|
||
break;
|
||
case MT_CSTD: /* CSTD */
|
||
cstd_wr (val);
|
||
break;
|
||
case MT_RXCS: /* RXCS */
|
||
rxcs_wr (val);
|
||
break;
|
||
case MT_RXDB: /* RXDB */
|
||
break;
|
||
case MT_TXCS: /* TXCS */
|
||
txcs_wr (val);
|
||
break;
|
||
case MT_TXDB: /* TXDB */
|
||
txdb_wr (val);
|
||
break;
|
||
case MT_CADR: /* CADR */
|
||
CADR = (val & CADR_RW) | CADR_MBO;
|
||
break;
|
||
case MT_MSER: /* MSER */
|
||
MSER = MSER & MSER_HM;
|
||
break;
|
||
case MT_IORESET: /* IORESET */
|
||
ioreset_wr (val);
|
||
break;
|
||
case MT_SID:
|
||
case MT_CONPC:
|
||
case MT_CONPSL: /* halt reg */
|
||
RSVD_OPND_FAULT;
|
||
default:
|
||
ssc_bto = ssc_bto | SSCBTO_BTO; /* set BTO */
|
||
break; }
|
||
return;
|
||
}
|
||
|
||
/* Read/write I/O register space
|
||
|
||
These routines are the 'catch all' for address space map. Any
|
||
address that doesn't explicitly belong to memory, I/O, or ROM
|
||
is given to these routines for processing.
|
||
*/
|
||
|
||
struct reglink { /* register linkage */
|
||
int32 low; /* low addr */
|
||
int32 high; /* high addr */
|
||
t_stat (*read)(int32 pa); /* read routine */
|
||
void (*write)(int32 pa, int32 val, int32 lnt); }; /* write routine */
|
||
|
||
struct reglink regtable[] = {
|
||
{ CQMAPBASE, CQMAPBASE+CQMAPSIZE, &cqmap_rd, &cqmap_wr },
|
||
{ ROMBASE, ROMBASE+ROMSIZE+ROMSIZE, &rom_rd, NULL },
|
||
{ NVRBASE, NVRBASE+NVRSIZE, &nvr_rd, &nvr_wr },
|
||
{ CMCTLBASE, CMCTLBASE+CMCTLSIZE, &cmctl_rd, &cmctl_wr },
|
||
{ SSCBASE, SSCBASE+SSCSIZE, &ssc_rd, &ssc_wr },
|
||
{ KABASE, KABASE+KASIZE, &ka_rd, &ka_wr },
|
||
{ CQBICBASE, CQBICBASE+CQBICSIZE, &cqbic_rd, &cqbic_wr },
|
||
{ CQIPCBASE, CQIPCBASE+CQIPCSIZE, &cqipc_rd, &cqipc_wr },
|
||
{ CQMBASE, CQMBASE+CQMSIZE, &cqmem_rd, &cqmem_wr },
|
||
{ CDGBASE, CDGBASE+CDGSIZE, &cdg_rd, &cdg_wr },
|
||
{ 0, 0, NULL, NULL } };
|
||
|
||
/* ReadReg - read register space
|
||
|
||
Inputs:
|
||
pa = physical address
|
||
lnt = length (BWLQ) - ignored
|
||
Output:
|
||
longword of data
|
||
*/
|
||
|
||
int32 ReadReg (int32 pa, int32 lnt)
|
||
{
|
||
struct reglink *p;
|
||
|
||
for (p = ®table[0]; p->low != 0; p++) {
|
||
if ((pa >= p->low) && (pa < p->high) && p->read)
|
||
return p->read (pa); }
|
||
ssc_bto = ssc_bto | SSCBTO_BTO | SSCBTO_RWT;
|
||
MACH_CHECK (MCHK_READ);
|
||
return 0;
|
||
}
|
||
|
||
/* WriteReg - write register space
|
||
|
||
Inputs:
|
||
pa = physical address
|
||
val = data to write, right justified in 32b longword
|
||
lnt = length (BWLQ)
|
||
Outputs:
|
||
none
|
||
*/
|
||
|
||
void WriteReg (int32 pa, int32 val, int32 lnt)
|
||
{
|
||
struct reglink *p;
|
||
|
||
for (p = ®table[0]; p->low != 0; p++) {
|
||
if ((pa >= p->low) && (pa < p->high) && p->write) {
|
||
p->write (pa, val, lnt);
|
||
return; } }
|
||
ssc_bto = ssc_bto | SSCBTO_BTO | SSCBTO_RWT;
|
||
MACH_CHECK (MCHK_WRITE);
|
||
return;
|
||
}
|
||
|
||
/* CMCTL registers
|
||
|
||
CMCTL00 - 15 configure memory banks 00 - 15. Note that they are
|
||
here merely to entertain the firmware; the actual configuration
|
||
of memory is unaffected by the settings here.
|
||
|
||
CMCTL16 - error status register
|
||
|
||
CMCTL17 - control/diagnostic status register
|
||
|
||
The CMCTL registers are cleared at power up.
|
||
*/
|
||
|
||
int32 cmctl_rd (int32 pa)
|
||
{
|
||
int32 rg = (pa - CMCTLBASE) >> 2;
|
||
|
||
switch (rg) {
|
||
default: /* config reg */
|
||
return cmctl_reg[rg] & CMCNF_MASK;
|
||
case 16: /* err status */
|
||
return cmctl_reg[rg];
|
||
case 17: /* csr */
|
||
return cmctl_reg[rg] & CMCSR_MASK;
|
||
case 18: /* KA655X ext mem */
|
||
if (cpu_extmem) return ((int32) MEMSIZE);
|
||
MACH_CHECK (MCHK_READ); }
|
||
return 0;
|
||
}
|
||
|
||
void cmctl_wr (int32 pa, int32 val, int32 lnt)
|
||
{
|
||
int32 i, rg = (pa - CMCTLBASE) >> 2;
|
||
|
||
if (lnt < L_LONG) { /* LW write only */
|
||
int32 sc = (pa & 3) << 3; /* shift data to */
|
||
val = val << sc; } /* proper location */
|
||
switch (rg) {
|
||
default: /* config reg */
|
||
if (val & CMCNF_SRQ) { /* sig request? */
|
||
int32 rg_g = rg & ~3; /* group of 4 */
|
||
for (i = rg_g; i < (rg_g + 4); i++) {
|
||
cmctl_reg[i] = cmctl_reg[i] & ~CMCNF_SIG;
|
||
if (ADDR_IS_MEM (i * MEM_BANK))
|
||
cmctl_reg[i] = cmctl_reg[i] | MEM_SIG; } }
|
||
cmctl_reg[rg] = (cmctl_reg[rg] & ~CMCNF_RW) | (val & CMCNF_RW);
|
||
break;
|
||
case 16: /* err status */
|
||
cmctl_reg[rg] = cmctl_reg[rg] & ~(val & CMERR_W1C);
|
||
break;
|
||
case 17: /* csr */
|
||
cmctl_reg[rg] = val & CMCSR_MASK;
|
||
break;
|
||
case 18:
|
||
MACH_CHECK (MCHK_WRITE); }
|
||
return;
|
||
}
|
||
|
||
/* KA655 registers */
|
||
|
||
int32 ka_rd (int32 pa)
|
||
{
|
||
int32 rg = (pa - KABASE) >> 2;
|
||
|
||
switch (rg)
|
||
{
|
||
case 0: /* CACR */
|
||
return ka_cacr;
|
||
case 1: /* BDR */
|
||
return ka_bdr; }
|
||
return 0;
|
||
}
|
||
|
||
void ka_wr (int32 pa, int32 val, int32 lnt)
|
||
{
|
||
int32 rg = (pa - KABASE) >> 2;
|
||
|
||
if ((rg == 0) && ((pa & 3) == 0)) { /* lo byte only */
|
||
ka_cacr = (ka_cacr & ~(val & CACR_W1C)) | CACR_FIXED;
|
||
ka_cacr = (ka_cacr & ~CACR_RW) | (val & CACR_RW); }
|
||
return;
|
||
}
|
||
|
||
int32 sysd_hlt_enb (void)
|
||
{
|
||
return ka_bdr & BDR_BRKENB;
|
||
}
|
||
|
||
/* Cache diagnostic space */
|
||
|
||
int32 cdg_rd (int32 pa)
|
||
{
|
||
int32 t, row = CDG_GETROW (pa);
|
||
|
||
t = cdg_dat[row];
|
||
ka_cacr = ka_cacr & ~CACR_DRO; /* clear diag */
|
||
ka_cacr = ka_cacr |
|
||
(parity ((t >> 24) & 0xFF, 1) << (CACR_V_DPAR + 3)) |
|
||
(parity ((t >> 16) & 0xFF, 0) << (CACR_V_DPAR + 2)) |
|
||
(parity ((t >> 8) & 0xFF, 1) << (CACR_V_DPAR + 1)) |
|
||
(parity (t & 0xFF, 0) << CACR_V_DPAR);
|
||
return t;
|
||
}
|
||
|
||
void cdg_wr (int32 pa, int32 val, int32 lnt)
|
||
{
|
||
int32 row = CDG_GETROW (pa);
|
||
|
||
if (lnt < L_LONG) { /* byte or word? */
|
||
int32 sc = (pa & 3) << 3; /* merge */
|
||
int32 mask = (lnt == L_WORD)? 0xFFFF: 0xFF;
|
||
int32 t = cdg_dat[row];
|
||
val = ((val & mask) << sc) | (t & ~(mask << sc)); }
|
||
cdg_dat[row] = val; /* store data */
|
||
return;
|
||
}
|
||
|
||
int32 parity (int32 val, int32 odd)
|
||
{
|
||
for ( ; val != 0; val = val >> 1) {
|
||
if (val & 1) odd = odd ^ 1; }
|
||
return odd;
|
||
}
|
||
|
||
/* SSC registers - byte/word merges done in WriteReg */
|
||
|
||
int32 ssc_rd (int32 pa)
|
||
{
|
||
int32 rg = (pa - SSCBASE) >> 2;
|
||
|
||
switch (rg) {
|
||
case 0x00: /* base reg */
|
||
return ssc_base;
|
||
case 0x04: /* conf reg */
|
||
return ssc_cnf;
|
||
case 0x08: /* bus timeout */
|
||
return ssc_bto;
|
||
case 0x0C: /* output port */
|
||
return ssc_otp & SSCOTP_MASK;
|
||
case 0x1B: /* TODR */
|
||
return todr_rd ();
|
||
case 0x1C: /* CSRS */
|
||
return csrs_rd ();
|
||
case 0x1D: /* CSRD */
|
||
return csrd_rd ();
|
||
case 0x1E: /* CSTS */
|
||
return csts_rd ();
|
||
case 0x20: /* RXCS */
|
||
return rxcs_rd ();
|
||
case 0x21: /* RXDB */
|
||
return rxdb_rd ();
|
||
case 0x22: /* TXCS */
|
||
return txcs_rd ();
|
||
case 0x40: /* T0CSR */
|
||
return tmr_csr[0];
|
||
case 0x41: /* T0INT */
|
||
return tmr_tir_rd (0, FALSE);
|
||
case 0x42: /* T0NI */
|
||
return tmr_tnir[0];
|
||
case 0x43: /* T0VEC */
|
||
return tmr_tivr[0];
|
||
case 0x44: /* T1CSR */
|
||
return tmr_csr[1];
|
||
case 0x45: /* T1INT */
|
||
return tmr_tir_rd (1, FALSE);
|
||
case 0x46: /* T1NI */
|
||
return tmr_tnir[1];
|
||
case 0x47: /* T1VEC */
|
||
return tmr_tivr[1];
|
||
case 0x4C: /* ADS0M */
|
||
return ssc_adsm[0];
|
||
case 0x4D: /* ADS0K */
|
||
return ssc_adsk[0];
|
||
case 0x50: /* ADS1M */
|
||
return ssc_adsm[1];
|
||
case 0x51: /* ADS1K */
|
||
return ssc_adsk[1]; }
|
||
return 0;
|
||
}
|
||
|
||
void ssc_wr (int32 pa, int32 val, int32 lnt)
|
||
{
|
||
int32 rg = (pa - SSCBASE) >> 2;
|
||
|
||
if (lnt < L_LONG) { /* byte or word? */
|
||
int32 sc = (pa & 3) << 3; /* merge */
|
||
int32 mask = (lnt == L_WORD)? 0xFFFF: 0xFF;
|
||
int32 t = ssc_rd (pa);
|
||
val = ((val & mask) << sc) | (t & ~(mask << sc)); }
|
||
|
||
switch (rg) {
|
||
case 0x00: /* base reg */
|
||
ssc_base = (val & SSCBASE_RW) | SSCBASE_MBO;
|
||
break;
|
||
case 0x04: /* conf reg */
|
||
ssc_cnf = ssc_cnf & ~(val & SSCCNF_W1C);
|
||
ssc_cnf = (ssc_cnf & ~SSCCNF_RW) | (val & SSCCNF_RW);
|
||
break;
|
||
case 0x08: /* bus timeout */
|
||
ssc_bto = ssc_bto & ~(val & SSCBTO_W1C);
|
||
ssc_bto = (ssc_bto & ~SSCBTO_RW) | (val & SSCBTO_RW);
|
||
break;
|
||
case 0x0C: /* output port */
|
||
ssc_otp = val & SSCOTP_MASK;
|
||
break;
|
||
case 0x1B: /* TODR */
|
||
todr_wr (val);
|
||
break;
|
||
case 0x1C: /* CSRS */
|
||
csrs_wr (val);
|
||
break;
|
||
case 0x1E: /* CSTS */
|
||
csts_wr (val);
|
||
break;
|
||
case 0x1F: /* CSTD */
|
||
cstd_wr (val);
|
||
break;
|
||
case 0x20: /* RXCS */
|
||
rxcs_wr (val);
|
||
break;
|
||
case 0x22: /* TXCS */
|
||
txcs_wr (val);
|
||
break;
|
||
case 0x23: /* TXDB */
|
||
txdb_wr (val);
|
||
break;
|
||
case 0x40: /* T0CSR */
|
||
tmr_csr_wr (0, val);
|
||
break;
|
||
case 0x42: /* T0NI */
|
||
tmr_tnir[0] = val;
|
||
break;
|
||
case 0x43: /* T0VEC */
|
||
tmr_tivr[0] = val & TMR_VEC_MASK;
|
||
break;
|
||
case 0x44: /* T1CSR */
|
||
tmr_csr_wr (1, val);
|
||
break;
|
||
case 0x46: /* T1NI */
|
||
tmr_tnir[1] = val;
|
||
break;
|
||
case 0x47: /* T1VEC */
|
||
tmr_tivr[1] = val & TMR_VEC_MASK;
|
||
break;
|
||
case 0x4C: /* ADS0M */
|
||
ssc_adsm[0] = val & SSCADS_MASK;
|
||
break;
|
||
case 0x4D: /* ADS0K */
|
||
ssc_adsk[0] = val & SSCADS_MASK;
|
||
break;
|
||
case 0x50: /* ADS1M */
|
||
ssc_adsm[1] = val & SSCADS_MASK;
|
||
break;
|
||
case 0x51: /* ADS1K */
|
||
ssc_adsk[1] = val & SSCADS_MASK;
|
||
break; }
|
||
return;
|
||
}
|
||
|
||
/* Programmable timers
|
||
|
||
The SSC timers, which increment at 1Mhz, cannot be accurately
|
||
simulated due to the overhead that would be required for 1M
|
||
clock events per second. Instead, a gross hack is used. When
|
||
a timer is started, the clock interval is inspected.
|
||
|
||
if (int < 0 and small) then testing timer, count instructions.
|
||
Small is determined by when the requested interval is less
|
||
than the size of a 100hz system clock tick.
|
||
if (int >= 0 or large) then counting a real interval, schedule
|
||
clock events at 100Hz using calibrated line clock delay
|
||
and when the remaining time value gets small enough, behave
|
||
like the small case above.
|
||
|
||
If the interval register is read, then its value between events
|
||
is interpolated using the current instruction count versus the
|
||
count when the most recent event started, the result is scaled
|
||
to the calibrated system clock, unless the interval being timed
|
||
is less than a calibrated system clock tick (or the calibrated
|
||
clock is running very slowly) at which time the result will be
|
||
the elapsed instruction count.
|
||
|
||
The powerup TOY Test sometimes fails its tolerance test. This was
|
||
due to varying system load causing varying calibration values to be
|
||
used at different times while referencing the TIR. While timing long
|
||
intervals, we now synchronize the stepping (and calibration) of the
|
||
system tick with the opportunity to reference the value. This gives
|
||
precise tolerance measurement values (when interval timers are used
|
||
to measure the system clock), regardless of other load issues on the
|
||
host system which might cause varying values of the system clock's
|
||
calibration factor.
|
||
*/
|
||
|
||
int32 tmr_tir_rd (int32 tmr, t_bool interp)
|
||
{
|
||
uint32 delta;
|
||
|
||
if (interp || (tmr_csr[tmr] & TMR_CSR_RUN)) { /* interp, running? */
|
||
delta = sim_grtime () - tmr_sav[tmr]; /* delta inst */
|
||
if ((tmr_inc[tmr] == TMR_INC) && /* scale large int */
|
||
(tmr_poll > TMR_INC))
|
||
delta = (uint32) ((((double) delta) * TMR_INC) / tmr_poll);
|
||
if (delta >= tmr_inc[tmr]) delta = tmr_inc[tmr] - 1;
|
||
return tmr_tir[tmr] + delta; }
|
||
return tmr_tir[tmr];
|
||
}
|
||
|
||
void tmr_csr_wr (int32 tmr, int32 val)
|
||
{
|
||
if ((tmr < 0) || (tmr > 1)) return;
|
||
if ((val & TMR_CSR_RUN) == 0) { /* clearing run? */
|
||
sim_cancel (&sysd_unit[tmr]); /* cancel timer */
|
||
if (tmr_csr[tmr] & TMR_CSR_RUN) /* run 1 -> 0? */
|
||
tmr_tir[tmr] = tmr_tir_rd (tmr, TRUE); } /* update itr */
|
||
tmr_csr[tmr] = tmr_csr[tmr] & ~(val & TMR_CSR_W1C); /* W1C csr */
|
||
tmr_csr[tmr] = (tmr_csr[tmr] & ~TMR_CSR_RW) | /* new r/w */
|
||
(val & TMR_CSR_RW);
|
||
if (val & TMR_CSR_XFR) tmr_tir[tmr] = tmr_tnir[tmr]; /* xfr set? */
|
||
if (val & TMR_CSR_RUN) { /* run? */
|
||
if (val & TMR_CSR_XFR) /* new tir? */
|
||
sim_cancel (&sysd_unit[tmr]); /* stop prev */
|
||
if (!sim_is_active (&sysd_unit[tmr])) /* not running? */
|
||
tmr_sched (tmr); } /* activate */
|
||
else if (val & TMR_CSR_SGL) { /* single step? */
|
||
tmr_incr (tmr, 1); /* incr tmr */
|
||
if (tmr_tir[tmr] == 0) /* if ovflo, */
|
||
tmr_tir[tmr] = tmr_tnir[tmr]; } /* reload tir */
|
||
if ((tmr_csr[tmr] & (TMR_CSR_DON | TMR_CSR_IE)) != /* update int */
|
||
(TMR_CSR_DON | TMR_CSR_IE)) {
|
||
if (tmr) CLR_INT (TMR1);
|
||
else CLR_INT (TMR0); }
|
||
return;
|
||
}
|
||
|
||
/* Unit service */
|
||
|
||
t_stat tmr_svc (UNIT *uptr)
|
||
{
|
||
int32 tmr = uptr - sysd_dev.units; /* get timer # */
|
||
|
||
tmr_incr (tmr, tmr_inc[tmr]); /* incr timer */
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Timer increment */
|
||
|
||
void tmr_incr (int32 tmr, uint32 inc)
|
||
{
|
||
uint32 new_tir = tmr_tir[tmr] + inc; /* add incr */
|
||
|
||
if (new_tir < tmr_tir[tmr]) { /* ovflo? */
|
||
tmr_tir[tmr] = 0; /* now 0 */
|
||
if (tmr_csr[tmr] & TMR_CSR_DON) /* done? set err */
|
||
tmr_csr[tmr] = tmr_csr[tmr] | TMR_CSR_ERR;
|
||
else tmr_csr[tmr] = tmr_csr[tmr] | TMR_CSR_DON; /* set done */
|
||
if (tmr_csr[tmr] & TMR_CSR_STP) /* stop? */
|
||
tmr_csr[tmr] = tmr_csr[tmr] & ~TMR_CSR_RUN; /* clr run */
|
||
if (tmr_csr[tmr] & TMR_CSR_RUN) { /* run? */
|
||
tmr_tir[tmr] = tmr_tnir[tmr]; /* reload */
|
||
tmr_sched (tmr); } /* reactivate */
|
||
if (tmr_csr[tmr] & TMR_CSR_IE) { /* set int req */
|
||
if (tmr) SET_INT (TMR1);
|
||
else SET_INT (TMR0); } }
|
||
else { tmr_tir[tmr] = new_tir; /* no, upd tir */
|
||
if (tmr_csr[tmr] & TMR_CSR_RUN) /* still running? */
|
||
tmr_sched (tmr); } /* reactivate */
|
||
return;
|
||
}
|
||
|
||
/* Timer scheduling */
|
||
|
||
void tmr_sched (int32 tmr)
|
||
{
|
||
int32 clk_time = sim_is_active (&clk_unit) - 1;
|
||
int32 tmr_time;
|
||
|
||
tmr_sav[tmr] = sim_grtime (); /* save intvl base */
|
||
if (tmr_tir[tmr] > (0xFFFFFFFFu - TMR_INC)) { /* short interval? */
|
||
tmr_inc[tmr] = (~tmr_tir[tmr] + 1); /* inc = interval */
|
||
tmr_time = tmr_inc[tmr]; }
|
||
else { tmr_inc[tmr] = TMR_INC; /* usec/interval */
|
||
tmr_time = tmr_poll; }
|
||
if (tmr_time == 0) tmr_time = 1;
|
||
if ((tmr_inc[tmr] = TMR_INC) && (tmr_time > clk_time)) {
|
||
|
||
/* Align scheduled event to be identical to the event for the next clock
|
||
tick. This lets us always see a consistent calibrated value, both for
|
||
this scheduling, AND for any query of the current timer register that
|
||
may happen in tmr_tir_rd (). This presumes that sim_activate will
|
||
queue the interval timer behind the event for the clock tick. */
|
||
|
||
tmr_inc[tmr] = (uint32) (((double) clk_time * TMR_INC) / tmr_poll);
|
||
tmr_time = clk_time; }
|
||
sim_activate (&sysd_unit[tmr], tmr_time);
|
||
return;
|
||
}
|
||
|
||
int32 tmr0_inta (void)
|
||
{
|
||
return tmr_tivr[0];
|
||
}
|
||
|
||
int32 tmr1_inta (void)
|
||
{
|
||
return tmr_tivr[1];
|
||
}
|
||
|
||
/* Machine check */
|
||
|
||
int32 machine_check (int32 p1, int32 opc, int32 cc, int32 delta)
|
||
{
|
||
int32 i, st1, st2, p2, hsir, acc;
|
||
|
||
if (p1 & 0x80) p1 = p1 + mchk_ref; /* mref? set v/p */
|
||
p2 = mchk_va + 4; /* save vap */
|
||
for (i = hsir = 0; i < 16; i++) { /* find hsir */
|
||
if ((SISR >> i) & 1) hsir = i; }
|
||
st1 = ((((uint32) opc) & 0xFF) << 24) |
|
||
(hsir << 16) |
|
||
((CADR & 0xFF) << 8) |
|
||
(MSER & 0xFF);
|
||
st2 = 0x00C07000 + (delta & 0xFF);
|
||
cc = intexc (SCB_MCHK, cc, 0, IE_SVE); /* take exception */
|
||
acc = ACC_MASK (KERN); /* in kernel mode */
|
||
in_ie = 1;
|
||
SP = SP - 20; /* push 5 words */
|
||
Write (SP, 16, L_LONG, WA); /* # bytes */
|
||
Write (SP + 4, p1, L_LONG, WA); /* mcheck type */
|
||
Write (SP + 8, p2, L_LONG, WA); /* address */
|
||
Write (SP + 12, st1, L_LONG, WA); /* state 1 */
|
||
Write (SP + 16, st2, L_LONG, WA); /* state 2 */
|
||
in_ie = 0;
|
||
return cc;
|
||
}
|
||
|
||
/* Console entry */
|
||
|
||
int32 con_halt (int32 code, int32 cc)
|
||
{
|
||
int32 temp;
|
||
|
||
conpc = PC; /* save PC */
|
||
conpsl = ((PSL | cc) & 0xFFFF00FF) | CON_HLTINS; /* PSL, param */
|
||
temp = (PSL >> PSL_V_CUR) & 0x7; /* get is'cur */
|
||
if (temp > 4) conpsl = conpsl | CON_BADPSL; /* invalid? */
|
||
else STK[temp] = SP; /* save stack */
|
||
if (mapen) conpsl = conpsl | CON_MAPON; /* mapping on? */
|
||
mapen = 0; /* turn off map */
|
||
SP = IS; /* set SP from IS */
|
||
PSL = PSL_IS | PSL_IPL1F; /* PSL = 41F0000 */
|
||
JUMP (ROMBASE); /* PC = 20040000 */
|
||
return 0; /* new cc = 0 */
|
||
}
|
||
|
||
/* Bootstrap */
|
||
|
||
t_stat cpu_boot (int32 unitno, DEVICE *dptr)
|
||
{
|
||
extern t_stat load_cmd (int32 flag, char *cptr);
|
||
extern FILE *sim_log;
|
||
t_stat r;
|
||
|
||
PC = ROMBASE;
|
||
PSL = PSL_IS | PSL_IPL1F;
|
||
conpc = 0;
|
||
conpsl = PSL_IS | PSL_IPL1F | CON_PWRUP;
|
||
if (rom == NULL) return SCPE_IERR;
|
||
if (*rom == 0) { /* no boot? */
|
||
printf ("Loading boot code from ka655x.bin\n");
|
||
if (sim_log) fprintf (sim_log,
|
||
"Loading boot code from ka655x.bin\n");
|
||
r = load_cmd (0, "-R ka655x.bin");
|
||
if (r != SCPE_OK) return r; }
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* SYSD reset */
|
||
|
||
t_stat sysd_reset (DEVICE *dptr)
|
||
{
|
||
int32 i;
|
||
|
||
if (sim_switches & SWMASK ('P')) sysd_powerup (); /* powerup? */
|
||
for (i = 0; i < 2; i++) {
|
||
tmr_csr[i] = tmr_tnir[i] = tmr_tir[i] = 0;
|
||
tmr_inc[i] = tmr_sav[i] = 0;
|
||
sim_cancel (&sysd_unit[i]); }
|
||
csi_csr = 0;
|
||
csi_unit.buf = 0;
|
||
sim_cancel (&csi_unit);
|
||
CLR_INT (CSI);
|
||
cso_csr = CSR_DONE;
|
||
cso_unit.buf = 0;
|
||
sim_cancel (&cso_unit);
|
||
CLR_INT (CSO);
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* SYSD powerup */
|
||
|
||
t_stat sysd_powerup (void)
|
||
{
|
||
int32 i;
|
||
|
||
for (i = 0; i < (CMCTLSIZE >> 2); i++) cmctl_reg[i] = 0;
|
||
for (i = 0; i < 2; i++) {
|
||
tmr_tivr[i] = 0;
|
||
ssc_adsm[i] = ssc_adsk[i] = 0; }
|
||
ka_cacr = 0;
|
||
ssc_base = SSCBASE;
|
||
ssc_cnf = ssc_cnf & SSCCNF_BLO;
|
||
ssc_bto = 0;
|
||
ssc_otp = 0;
|
||
return SCPE_OK;
|
||
}
|
||
|