1. New Features 1.1 Directory and documentation - Only common files (SCP and libraries) are in the top level directory. Individual simulator files are in their individual directories. - simh_doc.txt has been split up. simh_doc.txt now documents only SCP. The individual simulators are documented in separate text files in their own directories. - mingw_build.bat is a batch file for the MINGW/gcc environment that will build all the simulators, assuming the root directory structure is at c:\sim. - Makefile is a UNIX make file for the gcc environment that will build all the simulators, assuming the root directory is at c:\sim. 1.2 SCP - DO <file name> executes the SCP commands in the specified file. - Replicated registers in unit structures can now be declared as arrays for examine, modify, save, and restore. Most replicated unit registers (for example, mag tape position registers) have been changed to arrays. - The ADD/REMOVE commands have been replaced by SET unit ONLINE and SET unit OFFLINE, respectively. - Register names that are unique within an entire simulator do not have to be prefaced with the device name. - The ATTACH command can attach files read only, either under user option (-r), or because the attached file is ready only. - The SET/SHOW capabilities have been extended. New forms include: SET <dev> param{=value}{ param ...} SET <unit> param{=value}{ param ...} SHOW <dev> {param param ...} SHOW <unit> {param param ...} - Multiple breakpoints have been implemented. Breakpoints are set/cleared/displayed by: BREAK addr_list{[count]} NOBREAK addr_list SHOW BREAK addr_list 1.3 PDP-11 simulator - Unibus map implemented, with 22b RP controller (URH70) or 18b RP controller (URH11) (in debug). - All DMA peripherals rewritten to use map. - Many peripherals modified for source sharing with VAX. - RQDX3 implemented. - Bugs fixed in RK11 and RL11 write check. 1.4 PDP-10 simulator - ITS 1-proceed implemented. - Bugs fixed in ITS PC sampling and LPMR 1.5 18b PDP simulator - Interrupts split out to multiple levels to allow easier expansion. 1.5 IBM System 3 Simulator - Written by Charles (Dutch) Owen. 1.6 VAX Simulator (in debug) - Simulates MicroVAX 3800 (KA655) with 16MB-64MB memory, RQDX3, RLV12, TSV11, DZV11, LPV11, PCV11. - CDROM capability has been added to the RQDX3, to allow testing with VMS hobbyist images. 1.7 SDS 940 Simulator (not tested) - Simulates SDS 940, 16K-64K memory, fixed and moving head disk, magtape, line printer, console. 1.8 Altair Z80 - Revised from Charles (Dutch) Owen's original by Peter Schorn. - MITS 8080 with full Z80 simulation. - 4K and 8K BASIC packages, Prolog package. 1.9 Interdata The I4 simulator has been withdrawn for major rework. Look for a complete 16b/32b Interdata simulator sometime next year. 2. Release Notes 2.1 SCP SCP now allows replicated registers in unit structures to be modelled as arrays. All replicated register declarations have been replaced by register array declarations. As a result, save files from prior revisions will generate errors after restoring main memory. 2.2 PDP-11 The Unibus map code is in debug. The map was implemented primarily to allow source sharing with the VAX, which requires a DMA map. DMA devices work correctly with the Unibus map disabled. The RQDX3 simulator has run a complete RSTS/E SYSGEN, with multiple drives, and booted the completed system from scratch. 2.3 VAX The VAX simulator will run the boot code up to the >>> prompt. It can successfully process a SHOW DEVICE command. It runs the HCORE instruction diagnostic. It can boot the hobbyist CD through SYSBOOT and through the date/time dialog and restore the hobbyist CD, using standalone backup. On the boot of the restored disk, it gets to the date/time dialog, and then crashes. 2.4 SDS 940 The SDS 940 is untested, awaiting real code. 2.5 GCC Optimization At -O2 and above, GCC does not correctly compile the simulators which use setjmp-longjmp (PDP-11, PDP-10, VAX). A working hypothesis is that optimized state maintained in registers is being used in the setjmp processing routine. On the PDP-11 and PDP-10, all of this state has been either made global, or volatile, to encourage GCC to keep the state up to date in memory. The VAX is still vulnerable. 3. Work list 3.1 SCP - Better ENABLE/DISABLE. 3.2 PDP-11 RQDX3 Software mapped mode, RCT read simulation, VMS debug.
1164 lines
31 KiB
C
1164 lines
31 KiB
C
/* altair_cpu.c: MITS Altair Intel 8080 CPU simulator
|
||
|
||
Copyright (c) 1997,
|
||
Charles E. Owen, Jr.
|
||
Commercial use prohibited
|
||
|
||
The register state for the 8080 CPU is:
|
||
|
||
A<0:7> Accumulator
|
||
BC<0:15> BC Register Pair
|
||
DE<0:15> DE Register Pair
|
||
HL<0:15> HL Register Pair
|
||
C carry flag
|
||
Z zero flag
|
||
S Sign bit
|
||
AC Aux carry
|
||
P Parity bit
|
||
PC<0:15> program counter
|
||
SP<0:15> Stack Pointer
|
||
|
||
The 8080 is an 8-bit CPU, which uses 16-bit registers to address
|
||
up to 64KB of memory.
|
||
|
||
The 78 basic instructions come in 1, 2, and 3-byte flavors.
|
||
*/
|
||
|
||
/* This routine is the instruction decode routine for the 8080.
|
||
It is called from the simulator control program to execute
|
||
instructions in simulated memory, starting at the simulated PC.
|
||
It runs until 'reason' is set non-zero.
|
||
|
||
General notes:
|
||
|
||
1. Reasons to stop. The simulator can be stopped by:
|
||
|
||
HALT instruction
|
||
I/O error in I/O simulator
|
||
Invalid OP code (If ITRAP is set on CPU)
|
||
|
||
2. Interrupts.
|
||
There are 8 possible levels of interrupt, and in effect they
|
||
do a hardware CALL instruction to one of 8 possible low
|
||
memory addresses.
|
||
|
||
3. Non-existent memory. On the 8080, reads to non-existent memory
|
||
return 0377, and writes are ignored. In the simulator, the
|
||
largest possible memory is instantiated and initialized to zero.
|
||
Thus, only writes need be checked against actual memory size.
|
||
|
||
4. Adding I/O devices. These modules must be modified:
|
||
|
||
altair_cpu.c add I/O service routines to dev_table
|
||
altair_sys.c add pointer to data structures in sim_devices
|
||
*/
|
||
|
||
|
||
#include <stdio.h>
|
||
|
||
#include "altair_defs.h"
|
||
|
||
#define UNIT_V_OPSTOP (UNIT_V_UF) /* Stop on Invalid OP? */
|
||
#define UNIT_OPSTOP (1 << UNIT_V_OPSTOP)
|
||
#define UNIT_V_CHIP (UNIT_V_UF+1) /* 8080 or Z80 */
|
||
#define UNIT_CHIP (1 << UNIT_V_CHIP)
|
||
#define UNIT_V_MSIZE (UNIT_V_UF+2) /* Memory Size */
|
||
#define UNIT_MSIZE (1 << UNIT_V_MSIZE)
|
||
|
||
unsigned char M[MAXMEMSIZE]; /* memory */
|
||
int32 A = 0; /* accumulator */
|
||
int32 BC = 0; /* BC register pair */
|
||
int32 DE = 0; /* DE register pair */
|
||
int32 HL = 0; /* HL register pair */
|
||
int32 SP = 0; /* Stack pointer */
|
||
int32 C = 0; /* carry flag */
|
||
int32 Z = 0; /* Zero flag */
|
||
int32 AC = 0; /* Aux carry */
|
||
int32 S = 0; /* sign flag */
|
||
int32 P = 0; /* parity flag */
|
||
int32 saved_PC = 0; /* program counter */
|
||
int32 SR = 0; /* switch register */
|
||
int32 INTE = 0; /* Interrupt Enable */
|
||
int32 int_req = 0; /* Interrupt request */
|
||
int32 chip = 0; /* 0 = 8080 chip, 1 = z80 chip */
|
||
|
||
int32 PCX; /* External view of PC */
|
||
|
||
extern int32 sim_int_char;
|
||
extern int32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
|
||
|
||
/* function prototypes */
|
||
|
||
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
|
||
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
|
||
t_stat cpu_reset (DEVICE *dptr);
|
||
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
|
||
void setarith(int32 reg);
|
||
void setlogical(int32 reg);
|
||
void setinc(int32 reg);
|
||
int32 getreg(int32 reg);
|
||
void putreg(int32 reg, int32 val);
|
||
int32 getpair(int32 reg);
|
||
int32 getpush(int32 reg);
|
||
void putpush(int32 reg, int32 data);
|
||
void putpair(int32 reg, int32 val);
|
||
void parity(int32 reg);
|
||
int32 cond(int32 con);
|
||
|
||
extern int32 sio0s(int32 io, int32 data);
|
||
extern int32 sio0d(int32 io, int32 data);
|
||
extern int32 sio1s(int32 io, int32 data);
|
||
extern int32 sio1d(int32 io, int32 data);
|
||
extern int32 dsk10(int32 io, int32 data);
|
||
extern int32 dsk11(int32 io, int32 data);
|
||
extern int32 dsk12(int32 io, int32 data);
|
||
int32 nulldev(int32 io, int32 data);
|
||
|
||
/* This is the I/O configuration table. There are 255 possible
|
||
device addresses, if a device is plugged to a port it's routine
|
||
address is here, 'nulldev' means no device is available
|
||
*/
|
||
struct idev {
|
||
int32 (*routine)();
|
||
};
|
||
struct idev dev_table[256] = {
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 000 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 004 */
|
||
{&dsk10}, {&dsk11}, {&dsk12}, {&nulldev}, /* 010 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 014 */
|
||
{&sio0s}, {&sio0d}, {&sio1s}, {&sio1d}, /* 020 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 024 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 030 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 034 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 040 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 044 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 050 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 054 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 060 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 064 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 070 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 074 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 100 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 104 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 110 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 114 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 120 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 124 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 130 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 134 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 140 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 144 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 150 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 154 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 160 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 164 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 170 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 174 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 200 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 204 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 210 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 214 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 220 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 224 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 230 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 234 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 240 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 244 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 250 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 254 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 260 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 264 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 270 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 274 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 300 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 304 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 310 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 314 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 320 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 324 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 330 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 334 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 340 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 344 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 350 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 354 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 360 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 364 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 370 */
|
||
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev} }; /* 374 */
|
||
|
||
/* Altair MITS standard BOOT EPROM, fits in upper 256K of memory */
|
||
|
||
int32 bootrom[256] = {
|
||
0041, 0000, 0114, 0021, 0030, 0377, 0016, 0346,
|
||
0032, 0167, 0023, 0043, 0015, 0302, 0010, 0377,
|
||
0303, 0000, 0114, 0000, 0000, 0000, 0000, 0000,
|
||
0363, 0061, 0142, 0115, 0257, 0323, 0010, 0076, /* 46000 */
|
||
0004, 0323, 0011, 0303, 0031, 0114, 0333, 0010, /* 46010 */
|
||
0346, 0002, 0302, 0016, 0114, 0076, 0002, 0323, /* 46020 */
|
||
0011, 0333, 0010, 0346, 0100, 0302, 0016, 0114,
|
||
0021, 0000, 0000, 0006, 0000, 0333, 0010, 0346,
|
||
0004, 0302, 0045, 0114, 0076, 0020, 0365, 0325,
|
||
0305, 0325, 0021, 0206, 0200, 0041, 0324, 0114,
|
||
0333, 0011, 0037, 0332, 0070, 0114, 0346, 0037,
|
||
0270, 0302, 0070, 0114, 0333, 0010, 0267, 0372,
|
||
0104, 0114, 0333, 0012, 0167, 0043, 0035, 0312,
|
||
0132, 0114, 0035, 0333, 0012, 0167, 0043, 0302,
|
||
0104, 0114, 0341, 0021, 0327, 0114, 0001, 0200,
|
||
0000, 0032, 0167, 0276, 0302, 0301, 0114, 0200,
|
||
0107, 0023, 0043, 0015, 0302, 0141, 0114, 0032,
|
||
0376, 0377, 0302, 0170, 0114, 0023, 0032, 0270,
|
||
0301, 0353, 0302, 0265, 0114, 0361, 0361, 0052,
|
||
0325, 0114, 0325, 0021, 0000, 0377, 0315, 0316,
|
||
0114, 0321, 0332, 0276, 0114, 0315, 0316, 0114,
|
||
0322, 0256, 0114, 0004, 0004, 0170, 0376, 0040,
|
||
0332, 0054, 0114, 0006, 0001, 0312, 0054, 0114,
|
||
0333, 0010, 0346, 0002, 0302, 0240, 0114, 0076,
|
||
0001, 0323, 0011, 0303, 0043, 0114, 0076, 0200,
|
||
0323, 0010, 0303, 0000, 0000, 0321, 0361, 0075,
|
||
0302, 0056, 0114, 0076, 0103, 0001, 0076, 0117,
|
||
0001, 0076, 0115, 0107, 0076, 0200, 0323, 0010,
|
||
0170, 0323, 0001, 0303, 0311, 0114, 0172, 0274,
|
||
0300, 0173, 0275, 0311, 0204, 0000, 0114, 0044,
|
||
0026, 0126, 0026, 0000, 0000, 0000, 0000, 0000
|
||
};
|
||
|
||
/* CPU data structures
|
||
|
||
cpu_dev CPU device descriptor
|
||
cpu_unit CPU unit descriptor
|
||
cpu_reg CPU register list
|
||
cpu_mod CPU modifiers list
|
||
*/
|
||
|
||
UNIT cpu_unit = { UDATA (NULL, UNIT_FIX + UNIT_BINK,
|
||
MAXMEMSIZE) };
|
||
|
||
REG cpu_reg[] = {
|
||
{ ORDATA (PC, saved_PC, 16) },
|
||
{ ORDATA (A, A, 8) },
|
||
{ ORDATA (BC, BC, 16) },
|
||
{ ORDATA (DE, DE, 16) },
|
||
{ ORDATA (HL, HL, 16) },
|
||
{ ORDATA (SP, SP, 16) },
|
||
{ FLDATA (C, C, 16) },
|
||
{ FLDATA (Z, Z, 16) },
|
||
{ FLDATA (AC, AC, 16) },
|
||
{ FLDATA (S, S, 16) },
|
||
{ FLDATA (P, P, 16) },
|
||
{ FLDATA (INTE, INTE, 16) },
|
||
{ FLDATA (Z80, cpu_unit.flags, UNIT_V_CHIP), REG_HRO },
|
||
{ FLDATA (OPSTOP, cpu_unit.flags, UNIT_V_OPSTOP), REG_HRO },
|
||
{ ORDATA (SR, SR, 16) },
|
||
{ ORDATA (WRU, sim_int_char, 8) },
|
||
{ NULL } };
|
||
|
||
MTAB cpu_mod[] = {
|
||
{ UNIT_CHIP, UNIT_CHIP, "Z80", "Z80", NULL },
|
||
{ UNIT_CHIP, 0, "8080", "8080", NULL },
|
||
{ UNIT_OPSTOP, UNIT_OPSTOP, "ITRAP", "ITRAP", NULL },
|
||
{ UNIT_OPSTOP, 0, "NOITRAP", "NOITRAP", NULL },
|
||
{ UNIT_MSIZE, 4096, NULL, "4K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 8192, NULL, "8K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 12288, NULL, "12K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 16384, NULL, "16K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 20480, NULL, "20K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 24576, NULL, "24K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 28672, NULL, "28K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 32768, NULL, "32K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 49152, NULL, "48K", &cpu_set_size },
|
||
{ UNIT_MSIZE, 65535, NULL, "64K", &cpu_set_size },
|
||
{ 0 } };
|
||
|
||
DEVICE cpu_dev = {
|
||
"CPU", &cpu_unit, cpu_reg, cpu_mod,
|
||
1, 8, 16, 1, 8, 8,
|
||
&cpu_ex, &cpu_dep, &cpu_reset,
|
||
NULL, NULL, NULL };
|
||
|
||
int32 sim_instr (void)
|
||
{
|
||
extern int32 sim_interval;
|
||
int32 PC, IR, OP, DAR, reason, hi, lo, carry, i;
|
||
|
||
PC = saved_PC & ADDRMASK; /* load local PC */
|
||
C = C & 0200000;
|
||
reason = 0;
|
||
|
||
/* Main instruction fetch/decode loop */
|
||
|
||
while (reason == 0) { /* loop until halted */
|
||
if (sim_interval <= 0) { /* check clock queue */
|
||
if (reason = sim_process_event ()) break;
|
||
}
|
||
|
||
if (int_req > 0) { /* interrupt? */
|
||
|
||
/* 8080 interrupts not implemented yet. None were used,
|
||
on a standard Altair 8800. All I/O is programmed. */
|
||
|
||
} /* end interrupt */
|
||
|
||
if (sim_brk_summ &&
|
||
sim_brk_test (PC, SWMASK ('E'))) { /* breakpoint? */
|
||
reason = STOP_IBKPT; /* stop simulation */
|
||
break;
|
||
}
|
||
|
||
if (PC == 0177400) { /* BOOT PROM address */
|
||
for (i = 0; i < 250; i++) {
|
||
M[i + 0177400] = bootrom[i] & 0xFF;
|
||
}
|
||
}
|
||
|
||
PCX = PC;
|
||
|
||
IR = OP = M[PC]; /* fetch instruction */
|
||
|
||
PC = (PC + 1) & ADDRMASK; /* increment PC */
|
||
|
||
sim_interval--;
|
||
|
||
if (OP == 0166) { /* HLT Instruction*/
|
||
reason = STOP_HALT;
|
||
PC--;
|
||
continue;
|
||
}
|
||
|
||
/* Handle below all operations which refer to registers or
|
||
register pairs. After that, a large switch statement
|
||
takes care of all other opcodes */
|
||
|
||
if ((OP & 0xC0) == 0x40) { /* MOV */
|
||
DAR = getreg(OP & 0x07);
|
||
putreg((OP >> 3) & 0x07, DAR);
|
||
continue;
|
||
}
|
||
if ((OP & 0xC7) == 0x06) { /* MVI */
|
||
putreg((OP >> 3) & 0x07, M[PC]);
|
||
PC++;
|
||
continue;
|
||
}
|
||
if ((OP & 0xCF) == 0x01) { /* LXI */
|
||
DAR = M[PC] & 0x00ff;
|
||
PC++;
|
||
DAR = DAR | (M[PC] <<8) & 0xFF00;;
|
||
putpair((OP >> 4) & 0x03, DAR);
|
||
PC++;
|
||
continue;
|
||
}
|
||
if ((OP & 0xEF) == 0x0A) { /* LDAX */
|
||
DAR = getpair((OP >> 4) & 0x03);
|
||
putreg(7, M[DAR]);
|
||
continue;
|
||
}
|
||
if ((OP & 0xEF) == 0x02) { /* STAX */
|
||
DAR = getpair((OP >> 4) & 0x03);
|
||
M[DAR] = getreg(7);
|
||
continue;
|
||
}
|
||
|
||
if ((OP & 0xF8) == 0xB8) { /* CMP */
|
||
DAR = A & 0xFF;
|
||
DAR -= getreg(OP & 0x07);
|
||
setarith(DAR);
|
||
continue;
|
||
}
|
||
if ((OP & 0xC7) == 0xC2) { /* JMP <condition> */
|
||
if (cond((OP >> 3) & 0x07) == 1) {
|
||
lo = M[PC];
|
||
PC++;
|
||
hi = M[PC];
|
||
PC++;
|
||
PC = (hi << 8) + lo;
|
||
} else {
|
||
PC += 2;
|
||
}
|
||
continue;
|
||
}
|
||
if ((OP & 0xC7) == 0xC4) { /* CALL <condition> */
|
||
if (cond((OP >> 3) & 0x07) == 1) {
|
||
lo = M[PC];
|
||
PC++;
|
||
hi = M[PC];
|
||
PC++;
|
||
SP--;
|
||
M[SP] = (PC >> 8) & 0xff;
|
||
SP--;
|
||
M[SP] = PC & 0xff;
|
||
PC = (hi << 8) + lo;
|
||
} else {
|
||
PC += 2;
|
||
}
|
||
continue;
|
||
}
|
||
if ((OP & 0xC7) == 0xC0) { /* RET <condition> */
|
||
if (cond((OP >> 3) & 0x07) == 1) {
|
||
PC = M[SP];
|
||
SP++;
|
||
PC |= (M[SP] << 8) & 0xff00;
|
||
SP++;
|
||
}
|
||
continue;
|
||
}
|
||
if ((OP & 0xC7) == 0xC7) { /* RST */
|
||
SP--;
|
||
M[SP] = (PC >> 8) & 0xff;
|
||
SP--;
|
||
M[SP] = PC & 0xff;
|
||
PC = OP & 0x38;
|
||
continue;
|
||
}
|
||
|
||
if ((OP & 0xCF) == 0xC5) { /* PUSH */
|
||
DAR = getpush((OP >> 4) & 0x03);
|
||
SP--;
|
||
M[SP] = (DAR >> 8) & 0xff;
|
||
SP--;
|
||
M[SP] = DAR & 0xff;
|
||
continue;
|
||
}
|
||
if ((OP & 0xCF) == 0xC1) { /*POP */
|
||
DAR = M[SP];
|
||
SP++;
|
||
DAR |= M[SP] << 8;
|
||
SP++;
|
||
putpush((OP >> 4) & 0x03, DAR);
|
||
continue;
|
||
}
|
||
if ((OP & 0xF8) == 0x80) { /* ADD */
|
||
A += getreg(OP & 0x07);
|
||
setarith(A);
|
||
A = A & 0xFF;
|
||
continue;
|
||
}
|
||
if ((OP & 0xF8) == 0x88) { /* ADC */
|
||
carry = 0;
|
||
if (C) carry = 1;
|
||
A += getreg(OP & 0x07);
|
||
A += carry;
|
||
setarith(A);
|
||
A = A & 0xFF;
|
||
continue;
|
||
}
|
||
if ((OP & 0xF8) == 0x90) { /* SUB */
|
||
A -= getreg(OP & 0x07);
|
||
setarith(A);
|
||
A = A & 0xFF;
|
||
continue;
|
||
}
|
||
if ((OP & 0xF8) == 0x98) { /* SBB */
|
||
carry = 0;
|
||
if (C) carry = 1;
|
||
A -= (getreg(OP & 0x07)) + carry ;
|
||
setarith(A);
|
||
A = A & 0xFF;
|
||
continue;
|
||
}
|
||
if ((OP & 0xC7) == 0x04) { /* INR */
|
||
DAR = getreg((OP >> 3) & 0x07);
|
||
DAR++;
|
||
setinc(DAR);
|
||
DAR = DAR & 0xFF;
|
||
putreg((OP >> 3) & 0x07, DAR);
|
||
continue;
|
||
}
|
||
if ((OP & 0xC7) == 0x05) { /* DCR */
|
||
DAR = getreg((OP >> 3) & 0x07);
|
||
DAR--;
|
||
setinc(DAR);
|
||
DAR = DAR & 0xFF;
|
||
putreg((OP >> 3) & 0x07, DAR);
|
||
continue;
|
||
}
|
||
if ((OP & 0xCF) == 0x03) { /* INX */
|
||
DAR = getpair((OP >> 4) & 0x03);
|
||
DAR++;
|
||
DAR = DAR & 0xFFFF;
|
||
putpair((OP >> 4) & 0x03, DAR);
|
||
continue;
|
||
}
|
||
if ((OP & 0xCF) == 0x0B) { /* DCX */
|
||
DAR = getpair((OP >> 4) & 0x03);
|
||
DAR--;
|
||
DAR = DAR & 0xFFFF;
|
||
putpair((OP >> 4) & 0x03, DAR);
|
||
continue;
|
||
}
|
||
if ((OP & 0xCF) == 0x09) { /* DAD */
|
||
HL += getpair((OP >> 4) & 0x03);
|
||
C = 0;
|
||
if (HL & 0x10000)
|
||
C = 0200000;
|
||
HL = HL & 0xFFFF;
|
||
continue;
|
||
}
|
||
if ((OP & 0xF8) == 0xA0) { /* ANA */
|
||
A &= getreg(OP & 0x07);
|
||
C = 0;
|
||
setlogical(A);
|
||
A &= 0xFF;
|
||
continue;
|
||
}
|
||
if ((OP & 0xF8) == 0xA8) { /* XRA */
|
||
A ^= getreg(OP & 0x07);
|
||
C = 0;
|
||
setlogical(A);
|
||
A &= 0xFF;
|
||
continue;
|
||
}
|
||
if ((OP & 0xF8) == 0xB0) { /* ORA */
|
||
A |= getreg(OP & 0x07);
|
||
C = 0;
|
||
setlogical(A);
|
||
A &= 0xFF;
|
||
continue;
|
||
}
|
||
|
||
|
||
|
||
/* The Big Instruction Decode Switch */
|
||
|
||
switch (IR) {
|
||
|
||
/* Logical instructions */
|
||
|
||
case 0376: { /* CPI */
|
||
DAR = A & 0xFF;
|
||
DAR -= M[PC];
|
||
PC++;
|
||
setarith(DAR);
|
||
break;
|
||
}
|
||
case 0346: { /* ANI */
|
||
A &= M[PC];
|
||
PC++;
|
||
C = AC = 0;
|
||
setlogical(A);
|
||
A &= 0xFF;
|
||
break;
|
||
}
|
||
case 0356: { /* XRI */
|
||
A ^= M[PC];
|
||
PC++;
|
||
C = AC = 0;
|
||
setlogical(A);
|
||
A &= 0xFF;
|
||
break;
|
||
}
|
||
case 0366: { /* ORI */
|
||
A |= M[PC];
|
||
PC++;
|
||
C = AC = 0;
|
||
setlogical(A);
|
||
A &= 0xFF;
|
||
break;
|
||
}
|
||
|
||
/* Jump instructions */
|
||
|
||
case 0303: { /* JMP */
|
||
lo = M[PC];
|
||
PC++;
|
||
hi = M[PC];
|
||
PC++;
|
||
PC = (hi << 8) + lo;
|
||
break;
|
||
}
|
||
case 0351: { /* PCHL */
|
||
PC = HL;
|
||
break;
|
||
}
|
||
case 0315: { /* CALL */
|
||
lo = M[PC];
|
||
PC++;
|
||
hi = M[PC];
|
||
PC++;
|
||
SP--;
|
||
M[SP] = (PC >> 8) & 0xff;
|
||
SP--;
|
||
M[SP] = PC & 0xff;
|
||
PC = (hi << 8) + lo;
|
||
break;
|
||
}
|
||
case 0311: { /* RET */
|
||
PC = M[SP];
|
||
SP++;
|
||
PC |= (M[SP] << 8) & 0xff00;
|
||
SP++;
|
||
break;
|
||
}
|
||
|
||
/* Data Transfer Group */
|
||
|
||
case 062: { /* STA */
|
||
lo = M[PC];
|
||
PC++;
|
||
hi = M[PC];
|
||
PC++;
|
||
DAR = (hi << 8) + lo;
|
||
M[DAR] = A;
|
||
break;
|
||
}
|
||
case 072: { /* LDA */
|
||
lo = M[PC];
|
||
PC++;
|
||
hi = M[PC];
|
||
PC++;
|
||
DAR = (hi << 8) + lo;
|
||
A = M[DAR];
|
||
break;
|
||
}
|
||
case 042: { /* SHLD */
|
||
lo = M[PC];
|
||
PC++;
|
||
hi = M[PC];
|
||
PC++;
|
||
DAR = (hi << 8) + lo;
|
||
M[DAR] = HL;
|
||
DAR++;
|
||
M[DAR] = (HL >>8) & 0x00ff;
|
||
break;
|
||
}
|
||
case 052: { /* LHLD */
|
||
lo = M[PC];
|
||
PC++;
|
||
hi = M[PC];
|
||
PC++;
|
||
DAR = (hi << 8) + lo;
|
||
HL = M[DAR];
|
||
DAR++;
|
||
HL = HL | (M[DAR] <<8);
|
||
break;
|
||
}
|
||
case 0353: { /* XCHG */
|
||
DAR = HL;
|
||
HL = DE;
|
||
DE = DAR;
|
||
break;
|
||
}
|
||
|
||
/* Arithmetic Group */
|
||
|
||
case 0306: { /* ADI */
|
||
A += M[PC];
|
||
PC++;
|
||
setarith(A);
|
||
A = A & 0xFF;
|
||
break;
|
||
}
|
||
case 0316: { /* ACI */
|
||
carry = 0;
|
||
if (C) carry = 1;
|
||
A += M[PC];
|
||
A += carry;
|
||
PC++;
|
||
setarith(A);
|
||
A = A & 0xFF;
|
||
break;
|
||
}
|
||
case 0326: { /* SUI */
|
||
A -= M[PC];
|
||
PC++;
|
||
setarith(A);
|
||
A = A & 0xFF;
|
||
break;
|
||
}
|
||
case 0336: { /* SBI */
|
||
carry = 0;
|
||
if (C) carry = 1;
|
||
A -= (M[PC] + carry);
|
||
PC++;
|
||
setarith(A);
|
||
A = A & 0xFF;
|
||
break;
|
||
}
|
||
case 047: { /* DAA */
|
||
DAR = A & 0x0F;
|
||
if (DAR > 9 || AC > 0) {
|
||
DAR += 6;
|
||
A &= 0xF0;
|
||
A |= DAR & 0x0F;
|
||
if (DAR & 0x10)
|
||
AC = 0200000;
|
||
else
|
||
AC = 0;
|
||
}
|
||
DAR = (A >> 4) & 0x0F;
|
||
if (DAR > 9 || AC > 0) {
|
||
DAR += 6;
|
||
if (AC) DAR++;
|
||
A &= 0x0F;
|
||
A |= (DAR << 4);
|
||
}
|
||
if ((DAR << 4) & 0x100)
|
||
C = 0200000;
|
||
else
|
||
C = 0;
|
||
if (A & 0x80) {
|
||
S = 0200000;
|
||
} else {
|
||
S = 0;
|
||
}
|
||
if ((A & 0xff) == 0)
|
||
Z = 0200000;
|
||
else
|
||
Z = 0;
|
||
parity(A);
|
||
A = A & 0xFF;
|
||
break;
|
||
}
|
||
case 07: { /* RLC */
|
||
C = 0;
|
||
C = (A << 9) & 0200000;
|
||
A = (A << 1) & 0xFF;
|
||
if (C)
|
||
A |= 0x01;
|
||
break;
|
||
}
|
||
case 017: { /* RRC */
|
||
C = 0;
|
||
if (A & 0x01 == 1)
|
||
C |= 0200000;
|
||
A = (A >> 1) & 0xFF;
|
||
if (C)
|
||
A |= 0x80;
|
||
break;
|
||
}
|
||
case 027: { /* RAL */
|
||
DAR = C;
|
||
C = 0;
|
||
C = (A << 9) & 0200000;
|
||
A = (A << 1) & 0xFF;
|
||
if (DAR)
|
||
A |= 1;
|
||
else
|
||
A &= 0xFE;
|
||
break;
|
||
}
|
||
case 037: { /* RAR */
|
||
DAR = C;
|
||
C = 0;
|
||
if (A & 0x01 == 1)
|
||
C |= 0200000;
|
||
A = (A >> 1) & 0xFF;
|
||
if (DAR)
|
||
A |= 0x80;
|
||
else
|
||
A &= 0x7F;
|
||
break;
|
||
}
|
||
case 057: { /* CMA */
|
||
A = ~ A;
|
||
A &= 0xFF;
|
||
break;
|
||
}
|
||
case 077: { /* CMC */
|
||
C = ~ C;
|
||
C &= 0200000;
|
||
break;
|
||
}
|
||
case 067: { /* STC */
|
||
C = 0200000;
|
||
break;
|
||
}
|
||
|
||
/* Stack, I/O & Machine Control Group */
|
||
|
||
case 0: { /* NOP */
|
||
break;
|
||
}
|
||
case 0343: { /* XTHL */
|
||
lo = M[SP];
|
||
hi = M[SP + 1];
|
||
M[SP] = HL & 0xFF;
|
||
M[SP + 1] = (HL >> 8) & 0xFF;
|
||
HL = (hi << 8) + lo;
|
||
break;
|
||
}
|
||
case 0371: { /* SPHL */
|
||
SP = HL;
|
||
break;
|
||
}
|
||
case 0373: { /* EI */
|
||
INTE = 0200000;
|
||
break;
|
||
}
|
||
case 0363: { /* DI */
|
||
INTE = 0;
|
||
break;
|
||
}
|
||
case 0333: { /* IN */
|
||
DAR = M[PC] & 0xFF;
|
||
PC++;
|
||
if (DAR == 0xFF) {
|
||
A = (SR >> 8) & 0xFF;
|
||
} else {
|
||
A = dev_table[DAR].routine(0, 0);
|
||
}
|
||
break;
|
||
}
|
||
case 0323: { /* OUT */
|
||
DAR = M[PC] & 0xFF;
|
||
PC++;
|
||
dev_table[DAR].routine(1, A);
|
||
break;
|
||
}
|
||
|
||
default: {
|
||
if (cpu_unit.flags & UNIT_OPSTOP) {
|
||
reason = STOP_OPCODE;
|
||
PC--;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Simulation halted */
|
||
|
||
saved_PC = PC;
|
||
return reason;
|
||
}
|
||
|
||
/* Test an 8080 flag condition and return 1 if true, 0 if false */
|
||
int32 cond(int32 con)
|
||
{
|
||
int32 r = 0;
|
||
|
||
switch (con) {
|
||
case 0:
|
||
if (Z == 0) return (1);
|
||
break;
|
||
case 1:
|
||
if (Z != 0) return (1);
|
||
break;
|
||
case 2:
|
||
if (C == 0) return (1);
|
||
break;
|
||
case 3:
|
||
if (C != 0) return (1);
|
||
break;
|
||
case 4:
|
||
if (P == 0) return (1);
|
||
break;
|
||
case 5:
|
||
if (P != 0) return (1);
|
||
break;
|
||
case 6:
|
||
if (S == 0) return (1);
|
||
break;
|
||
case 7:
|
||
if (S != 0) return (1);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
return (0);
|
||
}
|
||
|
||
/* Set the <C>arry, <S>ign, <Z>ero and <P>arity flags following
|
||
an arithmetic operation on 'reg'.
|
||
*/
|
||
|
||
void setarith(int32 reg)
|
||
{
|
||
int32 bc = 0;
|
||
|
||
if (reg & 0x100)
|
||
C = 0200000;
|
||
else
|
||
C = 0;
|
||
if (reg & 0x80) {
|
||
bc++;
|
||
S = 0200000;
|
||
} else {
|
||
S = 0;
|
||
}
|
||
if ((reg & 0xff) == 0)
|
||
Z = 0200000;
|
||
else
|
||
Z = 0;
|
||
AC = 0;
|
||
if (cpu_unit.flags & UNIT_CHIP) {
|
||
P = 0; /* parity is zero for *all* arith ops on Z80 */
|
||
} else {
|
||
parity(reg);
|
||
}
|
||
}
|
||
|
||
/* Set the <C>arry, <S>ign, <Z>ero amd <P>arity flags following
|
||
a logical (bitwise) operation on 'reg'.
|
||
*/
|
||
|
||
void setlogical(int32 reg)
|
||
{
|
||
C = 0;
|
||
if (reg & 0x80) {
|
||
S = 0200000;
|
||
} else {
|
||
S = 0;
|
||
}
|
||
if ((reg & 0xff) == 0)
|
||
Z = 0200000;
|
||
else
|
||
Z = 0;
|
||
AC = 0;
|
||
parity(reg);
|
||
}
|
||
|
||
/* Set the Parity (P) flag based on parity of 'reg', i.e., number
|
||
of bits on even: P=0200000, else P=0
|
||
*/
|
||
|
||
void parity(int32 reg)
|
||
{
|
||
int32 bc = 0;
|
||
|
||
if (reg & 0x01) bc++;
|
||
if (reg & 0x02) bc++;
|
||
if (reg & 0x04) bc++;
|
||
if (reg & 0x08) bc++;
|
||
if (reg & 0x10) bc++;
|
||
if (reg & 0x20) bc++;
|
||
if (reg & 0x40) bc++;
|
||
if (reg & 0x80) bc++;
|
||
P = ~(bc << 16);
|
||
P &= 0200000;
|
||
}
|
||
|
||
/* Set the <S>ign, <Z>ero amd <P>arity flags following
|
||
an INR/DCR operation on 'reg'.
|
||
*/
|
||
|
||
void setinc(int32 reg)
|
||
{
|
||
int32 bc = 0;
|
||
|
||
if (reg & 0x80) {
|
||
bc++;
|
||
S = 0200000;
|
||
} else {
|
||
S = 0;
|
||
}
|
||
if ((reg & 0xff) == 0)
|
||
Z = 0200000;
|
||
else
|
||
Z = 0;
|
||
if (cpu_unit.flags & UNIT_CHIP) {
|
||
P = 0; /* parity is zero for *all* arith ops on Z80 */
|
||
} else {
|
||
parity(reg);
|
||
}
|
||
}
|
||
|
||
/* Get an 8080 register and return it */
|
||
int32 getreg(int32 reg)
|
||
{
|
||
switch (reg) {
|
||
case 0:
|
||
return ((BC >>8) & 0x00ff);
|
||
case 1:
|
||
return (BC & 0x00FF);
|
||
case 2:
|
||
return ((DE >>8) & 0x00ff);
|
||
case 3:
|
||
return (DE & 0x00ff);
|
||
case 4:
|
||
return ((HL >>8) & 0x00ff);
|
||
case 5:
|
||
return (HL & 0x00ff);
|
||
case 6:
|
||
return (M[HL]);
|
||
case 7:
|
||
return (A);
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Put a value into an 8080 register from memory */
|
||
void putreg(int32 reg, int32 val)
|
||
{
|
||
switch (reg) {
|
||
case 0:
|
||
BC = BC & 0x00FF;
|
||
BC = BC | (val <<8);
|
||
break;
|
||
case 1:
|
||
BC = BC & 0xFF00;
|
||
BC = BC | val;
|
||
break;
|
||
case 2:
|
||
DE = DE & 0x00FF;
|
||
DE = DE | (val <<8);
|
||
break;
|
||
case 3:
|
||
DE = DE & 0xFF00;
|
||
DE = DE | val;
|
||
break;
|
||
case 4:
|
||
HL = HL & 0x00FF;
|
||
HL = HL | (val <<8);
|
||
break;
|
||
case 5:
|
||
HL = HL & 0xFF00;
|
||
HL = HL | val;
|
||
break;
|
||
case 6:
|
||
M[HL] = val & 0xff;
|
||
break;
|
||
case 7:
|
||
A = val & 0xff;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Return the value of a selected register pair */
|
||
int32 getpair(int32 reg)
|
||
{
|
||
switch (reg) {
|
||
case 0:
|
||
return (BC);
|
||
case 1:
|
||
return (DE);
|
||
case 2:
|
||
return (HL);
|
||
case 3:
|
||
return (SP);
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Return the value of a selected register pair, in PUSH
|
||
format where 3 means A& flags, not SP */
|
||
int32 getpush(int32 reg)
|
||
{
|
||
int32 stat;
|
||
|
||
switch (reg) {
|
||
case 0:
|
||
return (BC);
|
||
case 1:
|
||
return (DE);
|
||
case 2:
|
||
return (HL);
|
||
case 3:
|
||
stat = A << 8;
|
||
if (S) stat |= 0x80;
|
||
if (Z) stat |= 0x40;
|
||
if (AC) stat |= 0x10;
|
||
if (P) stat |= 0x04;
|
||
stat |= 0x02;
|
||
if (C) stat |= 0x01;
|
||
return (stat);
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
/* Place data into the indicated register pair, in PUSH
|
||
format where 3 means A& flags, not SP */
|
||
void putpush(int32 reg, int32 data)
|
||
{
|
||
switch (reg) {
|
||
case 0:
|
||
BC = data;
|
||
break;
|
||
case 1:
|
||
DE = data;
|
||
break;
|
||
case 2:
|
||
HL = data;
|
||
break;
|
||
case 3:
|
||
A = (data >> 8) & 0xff;
|
||
S = Z = AC = P = C = 0;
|
||
if (data & 0x80) S = 0200000;
|
||
if (data & 0x40) Z = 0200000;
|
||
if (data & 0x10) AC = 0200000;
|
||
if (data & 0x04) P = 0200000;
|
||
if (data & 0x01) C = 0200000;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
/* Put a value into an 8080 register pair */
|
||
void putpair(int32 reg, int32 val)
|
||
{
|
||
switch (reg) {
|
||
case 0:
|
||
BC = val;
|
||
break;
|
||
case 1:
|
||
DE = val;
|
||
break;
|
||
case 2:
|
||
HL = val;
|
||
break;
|
||
case 3:
|
||
SP = val;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
/* Reset routine */
|
||
|
||
t_stat cpu_reset (DEVICE *dptr)
|
||
{
|
||
C = 0;
|
||
Z = 0;
|
||
saved_PC = 0;
|
||
int_req = 0;
|
||
sim_brk_types = sim_brk_dflt = SWMASK ('E');
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Memory examine */
|
||
|
||
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
|
||
{
|
||
if (addr >= MEMSIZE) return SCPE_NXM;
|
||
if (vptr != NULL) *vptr = M[addr] & 0377;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* Memory deposit */
|
||
|
||
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
|
||
{
|
||
if (addr >= MEMSIZE) return SCPE_NXM;
|
||
M[addr] = val & 0377;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
|
||
{
|
||
int32 mc = 0;
|
||
t_addr i;
|
||
|
||
if ((val <= 0) || (val > MAXMEMSIZE) || ((val & 07777) != 0))
|
||
return SCPE_ARG;
|
||
for (i = val; i < MEMSIZE; i++) mc = mc | M[i];
|
||
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
|
||
return SCPE_OK;
|
||
MEMSIZE = val;
|
||
for (i = MEMSIZE; i < MAXMEMSIZE; i++) M[i] = 0;
|
||
return SCPE_OK;
|
||
}
|
||
|
||
int32 nulldev(int32 flag, int32 data)
|
||
{
|
||
if (flag == 0)
|
||
return (0377);
|
||
}
|
||
|