simh-testsetgenerator/PDP10/ka10_dkb.c

495 lines
14 KiB
C

/* ka10_dkb.c:Stanford Microswitch scanner.
Copyright (c) 2019-2020, Richard Cornwell
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
RICHARD CORNWELL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Richard Cornwell shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Richard Cornwell
*/
#include "kx10_defs.h"
#ifndef NUM_DEVS_DKB
#define NUM_DEVS_DKB 0
#endif
#if NUM_DEVS_DKB > 0
#include "sim_video.h"
#define DKB_DEVNUM 0310
#define DONE 010 /* Device has character */
#define SPW 020 /* Scanner in SPW mode */
#define VALID 010000
#define SPW_FLG 020000
#define CHAR 001777
#define SHFT 000100
#define TOP 000200
#define CTRL 000400
#define META 001000
#define STATUS u3
#define DATA u4
#define PIA u5
#define LINE u6
t_stat dkb_devio(uint32 dev, uint64 *data);
t_stat dkb_svc(UNIT *uptr);
int dkb_keyboard (SIM_KEY_EVENT *kev);
t_stat dkb_reset(DEVICE *dptr);
t_stat dkb_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr);
const char *dkb_description (DEVICE *dptr);
int dkb_kmod = 0;
DIB dkb_dib = { DKB_DEVNUM, 1, dkb_devio, NULL};
UNIT dkb_unit[] = {
{UDATA (&dkb_svc, UNIT_IDLE, 0) },
};
MTAB dkb_mod[] = {
{ 0 }
};
DEVICE dkb_dev = {
"DKB", dkb_unit, NULL, dkb_mod,
1, 10, 31, 1, 8, 8,
NULL, NULL, dkb_reset,
NULL, NULL, NULL, &dkb_dib, DEV_DEBUG | DEV_DISABLE | DEV_DIS, 0, dev_debug,
NULL, NULL, &dkb_help, NULL, NULL, &dkb_description
};
t_stat dkb_devio(uint32 dev, uint64 *data) {
UNIT *uptr = &dkb_unit[0];
switch(dev & 3) {
case CONI:
*data = (uint64)(uptr->STATUS|uptr->PIA);
sim_debug(DEBUG_CONI, &dkb_dev, "DKB %03o CONI %06o\n", dev, (uint32)*data);
break;
case CONO:
uptr->PIA = (int)(*data&7);
if (*data & DONE)
uptr->STATUS = 0;
clr_interrupt(DKB_DEVNUM);
sim_debug(DEBUG_CONO, &dkb_dev, "DKB %03o CONO %06o\n", dev, (uint32)*data);
break;
case DATAI:
*data = (uint64)((uptr->LINE << 18) | (uptr->DATA));
uptr->STATUS = 0;
clr_interrupt(DKB_DEVNUM);
sim_debug(DEBUG_DATAIO, &dkb_dev, "DKB %03o DATAI %06o\n", dev, (uint32)*data);
break;
case DATAO:
if (*data & 010000) {
uptr->STATUS |= SPW;
uptr->LINE = (int)(*data & 077);
}
sim_debug(DEBUG_DATAIO, &dkb_dev, "DKB %03o DATAO %06o\n", dev, (uint32)*data);
break;
}
return SCPE_OK;
}
int dkb_modifiers (SIM_KEY_EVENT *kev)
{
if (kev->state == SIM_KEYPRESS_UP) {
switch (kev->key) {
case SIM_KEY_SHIFT_L:
case SIM_KEY_SHIFT_R:
case SIM_KEY_CAPS_LOCK:
dkb_kmod |= SHFT;
return 1;
case SIM_KEY_CTRL_L:
case SIM_KEY_CTRL_R:
dkb_kmod |= CTRL;
return 1;
case SIM_KEY_WIN_L:
case SIM_KEY_WIN_R:
dkb_kmod |= TOP;
return 1;
case SIM_KEY_ALT_L:
case SIM_KEY_ALT_R:
dkb_kmod |= META;
return 1;
}
return 0;
}
if (kev->state == SIM_KEYPRESS_DOWN) {
switch (kev->key) {
case SIM_KEY_SHIFT_L:
case SIM_KEY_SHIFT_R:
case SIM_KEY_CAPS_LOCK:
dkb_kmod &= ~SHFT;
return 1;
case SIM_KEY_CTRL_L:
case SIM_KEY_CTRL_R:
dkb_kmod &= ~CTRL;
return 1;
case SIM_KEY_WIN_L:
case SIM_KEY_WIN_R:
dkb_kmod &= ~TOP;
return 1;
case SIM_KEY_ALT_L:
case SIM_KEY_ALT_R:
dkb_kmod &= ~META;
return 1;
}
return 0;
}
return 0;
}
int dkb_keys (SIM_KEY_EVENT *kev, UNIT *uptr)
{
if (kev->state == SIM_KEYPRESS_UP) {
if (kev->key == SIM_KEY_F11)
vid_set_fullscreen_window (kev->vptr, !vid_is_fullscreen_window (kev->vptr));
return 0;
}
switch (kev->key) {
case SIM_KEY_0: /* ok */
if ((dkb_kmod & (TOP|SHFT)) == TOP)
uptr->DATA = dkb_kmod | 051; /* ) */
else
uptr->DATA = dkb_kmod | 060;
return 1;
case SIM_KEY_1:
if ((dkb_kmod & (TOP|SHFT)) == TOP)
uptr->DATA = (dkb_kmod | 054) & ~TOP; /* ! */
else
uptr->DATA = dkb_kmod | 061;
return 1;
case SIM_KEY_2:
if ((dkb_kmod & (TOP|SHFT)) == TOP)
uptr->DATA = (dkb_kmod | 005) & ~TOP; /* @ */
else
uptr->DATA = dkb_kmod | 062;
return 1;
case SIM_KEY_3:
if ((dkb_kmod & (TOP|SHFT)) == TOP)
uptr->DATA = (dkb_kmod | 022) & ~TOP; /* # */
else
uptr->DATA = dkb_kmod | 063;
return 1;
case SIM_KEY_4:
if ((dkb_kmod & (TOP|SHFT)) == TOP)
uptr->DATA = (dkb_kmod | 066) & ~TOP; /* $ */
else
uptr->DATA = dkb_kmod | 064;
return 1;
case SIM_KEY_5:
if ((dkb_kmod & (TOP|SHFT)) == TOP)
uptr->DATA = (dkb_kmod | 067) & ~TOP; /* % */
else
uptr->DATA = dkb_kmod | 065;
return 1;
case SIM_KEY_6:
if ((dkb_kmod & (TOP|SHFT)) == TOP)
uptr->DATA = (dkb_kmod | 073) & ~TOP; /* ^ */
else
uptr->DATA = dkb_kmod | 066;
return 1;
case SIM_KEY_7:
if ((dkb_kmod & (TOP|SHFT)) == TOP)
uptr->DATA = (dkb_kmod | 024) & ~TOP; /* & (TOP+T) */
else
uptr->DATA = dkb_kmod | 067;
return 1;
case SIM_KEY_8: /* ok */
if ((dkb_kmod & (TOP|SHFT)) == TOP)
uptr->DATA = dkb_kmod | 052 | SHFT; /* * */
else
uptr->DATA = dkb_kmod | 070;
return 1;
case SIM_KEY_9: /* ok */
if ((dkb_kmod & (TOP|SHFT)) == TOP)
uptr->DATA = dkb_kmod | 050 | SHFT; /* ( */
else
uptr->DATA = dkb_kmod | 071;
return 1;
case SIM_KEY_A:
uptr->DATA = dkb_kmod | 001;
return 1;
case SIM_KEY_B:
uptr->DATA = dkb_kmod | 002;
return 1;
case SIM_KEY_C:
if (dkb_kmod == (META|TOP|SHFT)) /* Control C */
uptr->DATA = dkb_kmod | 043;
else
uptr->DATA = dkb_kmod | 003;
return 1;
case SIM_KEY_D:
uptr->DATA = dkb_kmod | 004;
return 1;
case SIM_KEY_E:
uptr->DATA = dkb_kmod | 005;
return 1;
case SIM_KEY_F:
uptr->DATA = dkb_kmod | 006;
return 1;
case SIM_KEY_G:
uptr->DATA = dkb_kmod | 007;
return 1;
case SIM_KEY_H:
uptr->DATA = dkb_kmod | 010;
return 1;
case SIM_KEY_I:
uptr->DATA = dkb_kmod | 011;
return 1;
case SIM_KEY_J:
uptr->DATA = dkb_kmod | 012;
return 1;
case SIM_KEY_K:
uptr->DATA = dkb_kmod | 013;
return 1;
case SIM_KEY_L:
uptr->DATA = dkb_kmod | 014;
return 1;
case SIM_KEY_M:
uptr->DATA = dkb_kmod | 015;
return 1;
case SIM_KEY_N:
uptr->DATA = dkb_kmod | 016;
return 1;
case SIM_KEY_O:
uptr->DATA = dkb_kmod | 017;
return 1;
case SIM_KEY_P:
uptr->DATA = dkb_kmod | 020;
return 1;
case SIM_KEY_Q:
uptr->DATA = dkb_kmod | 021;
return 1;
case SIM_KEY_R:
uptr->DATA = dkb_kmod | 022;
return 1;
case SIM_KEY_S:
uptr->DATA = dkb_kmod | 023;
return 1;
case SIM_KEY_T:
uptr->DATA = dkb_kmod | 024;
return 1;
case SIM_KEY_U:
uptr->DATA = dkb_kmod | 025;
return 1;
case SIM_KEY_V:
uptr->DATA = dkb_kmod | 026;
return 1;
case SIM_KEY_W:
uptr->DATA = dkb_kmod | 027;
return 1;
case SIM_KEY_X:
uptr->DATA = dkb_kmod | 030;
return 1;
case SIM_KEY_Y:
uptr->DATA = dkb_kmod | 031;
return 1;
case SIM_KEY_Z:
uptr->DATA = dkb_kmod | 032;
return 1;
case SIM_KEY_BACKQUOTE:
if ((dkb_kmod & (TOP|SHFT)) == TOP)
uptr->DATA = (dkb_kmod | 025) & ~TOP; //` (TOP+U)
else
uptr->DATA = (dkb_kmod | 070) & ~TOP; //~ (TOP+8)
return 1;
case SIM_KEY_MINUS: /* - not */
if ((dkb_kmod & (TOP|SHFT)) == TOP)
uptr->DATA = (dkb_kmod | 071) & ~TOP; //_ (TOP+9)
else
uptr->DATA = dkb_kmod | 055;
return 1;
case SIM_KEY_EQUALS: /* = + */
if ((dkb_kmod & (TOP|SHFT)) == TOP)
uptr->DATA = dkb_kmod | 053 | SHFT;
else
uptr->DATA = (dkb_kmod | 010) & ~TOP; //TOP+H
return 1;
case SIM_KEY_LEFT_BRACKET: /* [ { */
if ((dkb_kmod & (TOP|SHFT)) == TOP)
uptr->DATA = (dkb_kmod | 017) & ~TOP; //TOP+P
else
uptr->DATA = (dkb_kmod | 050) & ~TOP; //TOP+(
return 1;
case SIM_KEY_RIGHT_BRACKET: /* ] } */
if ((dkb_kmod & (TOP|SHFT)) == TOP)
uptr->DATA = (dkb_kmod | 020) & ~TOP; //TOP+O
else
uptr->DATA = (dkb_kmod | 051) & ~TOP; //TOP+)
return 1;
case SIM_KEY_SEMICOLON: /* ; : */
if ((dkb_kmod & (TOP|SHFT)) == TOP)
uptr->DATA = dkb_kmod | 072 | SHFT;
else
uptr->DATA = dkb_kmod | 073;
return 1;
case SIM_KEY_SINGLE_QUOTE: /* ok */ /* ' " */
if ((dkb_kmod & (TOP|SHFT)) == TOP)
uptr->DATA = (dkb_kmod | 031) & ~TOP;
else
uptr->DATA = (dkb_kmod | 011) & ~TOP;
return 1;
case SIM_KEY_BACKSLASH: /* Ok */
if ((dkb_kmod & (TOP|SHFT)) == TOP) /* \ | */
uptr->DATA = (dkb_kmod | 053) & ~TOP; //TOP++
else
uptr->DATA = dkb_kmod | 034;
return 1;
case SIM_KEY_LEFT_BACKSLASH:
uptr->DATA = dkb_kmod | 034;
return 1;
case SIM_KEY_COMMA: /* ok */
if ((dkb_kmod & (TOP|SHFT)) == TOP) /* , < */
uptr->DATA = (dkb_kmod | 04) & ~TOP; //TOP+D
else
uptr->DATA = dkb_kmod | 054;
return 1;
case SIM_KEY_PERIOD: /* Ok */
if ((dkb_kmod & (TOP|SHFT)) == TOP) /* . > */
uptr->DATA = (dkb_kmod | 06) & ~TOP; //TOP+F
else
uptr->DATA = dkb_kmod | 056;
return 1;
case SIM_KEY_SLASH: /* Ok */
if ((dkb_kmod & (TOP|SHFT)) == TOP) /* / ? */
uptr->DATA = (dkb_kmod | 056) & ~TOP; //TOP+.
else
uptr->DATA = dkb_kmod | 057;
return 1;
case SIM_KEY_ESC:
uptr->DATA = dkb_kmod | 075; //ALT
return 1;
case SIM_KEY_BACKSPACE:
uptr->DATA = dkb_kmod | 074;
return 1;
case SIM_KEY_DELETE:
uptr->DATA = dkb_kmod | 044;
return 1;
case SIM_KEY_TAB:
uptr->DATA = dkb_kmod | 045;
return 1;
case SIM_KEY_ENTER:
uptr->DATA = dkb_kmod | 033;
return 1;
case SIM_KEY_SPACE:
uptr->DATA = dkb_kmod | 040;
return 1;
case SIM_KEY_F1:
uptr->DATA = dkb_kmod | 043; //CALL
return 1;
case SIM_KEY_F2:
uptr->DATA = dkb_kmod | 042; //ESC
return 1;
case SIM_KEY_F3:
uptr->DATA = dkb_kmod | 041; //BREAK
return 1;
case SIM_KEY_F4:
uptr->DATA = dkb_kmod | 035; //LINE
return 1;
case SIM_KEY_F5:
uptr->DATA = dkb_kmod | 046; //FORM
return 1;
case SIM_KEY_F6:
uptr->DATA = dkb_kmod | 047; //VT
return 1;
case SIM_KEY_LEFT:
uptr->DATA = (dkb_kmod | 012) & ~TOP; //Left arrow (TOP+J)
return 1;
case SIM_KEY_RIGHT:
uptr->DATA = (dkb_kmod | 013) & ~TOP; //Right arrow (TOP+K)
return 1;
case SIM_KEY_DOWN:
uptr->DATA = (dkb_kmod | 072 ) & ~TOP; //Down arrow (TOP+;)
return 1;
case SIM_KEY_UP:
uptr->DATA = (dkb_kmod | 073) & ~TOP; //Up arrow (TOP+:)
return 1;
default:
return 0;
}
}
uint32 dkb_line (SIM_KEY_EVENT *kev)
{
#if NUM_DEVS_III
if (kev->dev == &iii_dev)
return iii_keyboard_line ((void *)kev->vptr);
#endif
#if NUM_DEVS_DD
if (kev->dev == &dd_dev)
return dd_keyboard_line ((void *)kev->vptr);
#endif
return ~0U;
}
int dkb_keyboard (SIM_KEY_EVENT *kev)
{
sim_debug(DEBUG_DETAIL, &dkb_dev, "DKB key %d %o\n", kev->key, kev->state);
if (dkb_modifiers (kev))
return 0;
dkb_unit[0].LINE = dkb_line (kev);
if (dkb_unit[0].LINE != ~0U && dkb_keys (kev, &dkb_unit[0])) {
dkb_unit[0].DATA |= VALID;
dkb_unit[0].STATUS |= DONE;
sim_debug(DEBUG_DETAIL, &dkb_dev, "DKB interrupt, data %o\n", dkb_unit[0].DATA);
set_interrupt(DKB_DEVNUM, dkb_unit[0].PIA);
return 0;
}
return 1;
}
t_stat dkb_svc(UNIT *uptr)
{
SIM_KEY_EVENT ev;
sim_activate_after (uptr, 10000);
if (vid_poll_kb (&ev) == SCPE_OK)
dkb_keyboard (&ev);
return SCPE_OK;
}
t_stat dkb_reset( DEVICE *dptr)
{
if ((dkb_dev.flags & DEV_DIS) == 0)
sim_activate_abs (dkb_unit, 0);
dkb_kmod = SHFT|TOP|META|CTRL;
return SCPE_OK;
}
t_stat dkb_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr)
{
fprintf (stderr, "Keyboard input for the Stanford III and Data Disc displays\n");
return SCPE_OK;
}
const char *dkb_description (DEVICE *dptr)
{
return "Keyboard scanner for III and DD display devices";
}
#endif