simh-testsetgenerator/S3/s3_sys.c
Bob Supnik b6393b36b4 Notes For V3.3
RESTRICTION: The HP DS disk is not debugged.  DO NOT enable this
feature for normal operations.
WARNING: Massive changes in the PDP-11 make all previous SAVEd
file obsolete.  Do not attempt to use a PDP-11 SAVE file from a
prior release with V3.3!

1. New Features in 3.3

1.1 SCP

- Added -p (powerup) qualifier to RESET
- Changed SET <unit> ONLINE/OFFLINE to SET <unit> ENABLED/DISABLED
- Moved SET DEBUG under SET CONSOLE hierarchy
- Added optional parameter value to SHOW command
- Added output file option to SHOW command

1.2 PDP-11

- Separated RH Massbus adapter from RP controller
- Added TU tape support
- Added model emulation framework
- Added model details

1.3 VAX

- Separated out CVAX-specific features from core instruction simulator
- Implemented capability for CIS, octaword, compatibility mode instructions
- Added instruction display and parse for compatibility mode
- Changed SET CPU VIRTUAL=n to SHOW CPU VIRTUAL=n
- Added =n optional parameter to SHOW CPU HISTORY

1.4 Unibus/Qbus simulators (PDP-11, VAX, PDP-10)

- Simplified DMA API's
- Modified DMA peripherals to use simplified API's

1.5 HP2100 (all changes from Dave Bryan)

CPU	- moved MP into its own device; added MP option jumpers
	- modified DMA to allow disabling
	- modified SET CPU 2100/2116 to truncate memory > 32K
	- added -F switch to SET CPU to force memory truncation
	- modified WRU to be REG_HRO
	- added BRK and DEL to save console settings

DR	- provided protected tracks and "Writing Enabled" status bit
	- added "parity error" status return on writes for 12606
	- added track origin test for 12606
	- added SCP test for 12606
	- added "Sector Flag" status bit
	- added "Read Inhibit" status bit for 12606
	- added TRACKPROT modifier

LPS	- added SET OFFLINE/ONLINE, POWEROFF/POWERON
	- added fast/realistic timing
	- added debug printouts

LPT	- added SET OFFLINE/ONLINE, POWEROFF/POWERON

PTR	- added paper tape loop mode, DIAG/READER modifiers to PTR
	- added PV_LEFT to PTR TRLLIM register

CLK	- modified CLK to permit disable

1.6 IBM 1401, IBM 1620, Interdata 16b, SDS 940, PDP-10

- Added instruction history

1.7 H316, PDP-15, PDP-8

- Added =n optional value to SHOW CPU HISTORY

2. Bugs Fixed in 3.3

2.1 SCP

- Fixed comma-separated SET options (from Dave Bryan)
- Fixed duplicate HELP displays with user-specified commands

2.2 PDP-10

- Replicated RP register state per drive
- Fixed TU to set FCE on short record
- Fixed TU to return bit<15> in drive type
- Fixed TU format specification, 1:0 are don't cares
- Fixed TU handling of TMK status
- Fixed TU handling of DONE, ATA at end of operation
- Implemented TU write check

2.3 PDP-11

- Replicated RP register state per drive
- Fixed RQ, TQ to report correct controller type and stage 1 configuration
  flags on a Unibus system
- Fixed HK CS2<output_ready> flag

2.4 VAX

- Fixed parsing of indirect displacement modes in instruction input

2.5 HP2100 (all fixes from Dave Bryan)

CPU	- fixed S-register behavior on 2116
	- fixed LIx/MIx behavior for DMA on 2116 and 2100
	- fixed LIx/MIx behavior for empty I/O card slots

DP	- fixed enable/disable from either device
	- fixed ANY ERROR status for 12557A interface
	- fixed unattached drive status for 12557A interface
	- status cmd without prior STC DC now completes (12557A)
	- OTA/OTB CC on 13210A interface also does CLC CC
	- fixed RAR model
	- fixed seek check on 13210 if sector out of range

DQ	- fixed enable/disable from either device
	- shortened xtime from 5 to 3 (drive avg 156KW/second)
	- fixed not ready/any error status
	- fixed RAR model

DR	- fixed enable/disable from either device
	- fixed sector return in status word
	- fixed DMA last word write, incomplete sector fill value
	- fixed 12610 SFC operation
	- fixed current-sector determination

IPL	- fixed enable/disable from either device

LPS	- fixed status returns for error conditions
	- fixed handling of non-printing characters
	- fixed handling of characters after column 80
	- improved timing model accuracy for RTE

LPT	- fixed status returns for error conditions
	- fixed TOF handling so form remains on line 0

SYS	- fixed display of CCA/CCB/CCE instructions

2.5 PDP-15

FPP	- fixed URFST to mask low 9b of fraction
	- fixed exception PC setting
2011-04-15 08:34:40 -07:00

942 lines
26 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* s3_sys.c: IBM System/3 system interface
Copyright (c) 2001-2003, Charles E. Owen
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Charles E. Owen shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Charles E. Owen.
*/
#include <ctype.h>
#include "s3_defs.h"
extern DEVICE cpu_dev;
extern DEVICE pkb_dev;
extern DEVICE cdr_dev;
extern DEVICE cdp_dev;
extern DEVICE stack_dev;
extern DEVICE lpt_dev;
extern DEVICE r1_dev;
extern DEVICE f1_dev;
extern DEVICE r2_dev;
extern DEVICE f2_dev;
extern UNIT cpu_unit;
extern REG cpu_reg[];
extern unsigned char M[];
extern int32 saved_PC, IAR[];
extern char ebcdic_to_ascii[256];
char *parse_addr(char *cptr, char *gbuf, int32 *addr, int32 *addrtype);
int32 printf_sym (FILE *of, char *strg, int32 addr, uint32 *val,
UNIT *uptr, int32 sw);
/* SCP data structures
sim_name simulator name string
sim_PC pointer to saved PC register descriptor
sim_emax number of words needed for examine
sim_devices array of pointers to simulated devices
sim_stop_messages array of pointers to stop messages
sim_load binary loader
*/
char sim_name[] = "System/3";
REG *sim_PC = &cpu_reg[0];
int32 sim_emax = 6;
DEVICE *sim_devices[] = { &cpu_dev,
&pkb_dev,
&cdr_dev,
&cdp_dev,
&stack_dev,
&lpt_dev,
&r1_dev,
&f1_dev,
&r2_dev,
&f2_dev,
NULL };
const char *sim_stop_messages[] = {
"Unknown error",
"Unknown I/O Instruction",
"HALT instruction",
"Breakpoint",
"Invalid Opcode",
"Invalid Qbyte",
"Invalid Address",
"Invalid Device Command",
"ATTN Card Reader"
};
/* This is the opcode master defintion table. Each possible opcode mnemonic
is defined here, with enough information to translate to and from
symbolic to binary machine code.
First field is the opcode's mnemonic
Second field is the hex of the right nybble of the binary opcode
Third field is the Q code for those with implicit Q codes
Fourth field is the symbolic format of the operands:
0 - (Q-byte),(R-byte)
1 - (Q-byte),(Address)
2 - (Address),(Address),(Qbyte)
3 - (Address),(Qbyte)
4 - (device),(modifier),(function) -- these 3 make up qbyte
5 - (device),(modifier),(function),(control)
6 - (device),(modifier),(function),(Address)
7 - (displacement) -- Q byte is implicit in opcode
8 - (address) -- Qbyte is implicit in opcode
9 - (Address),(Address) -- Qbyte is implicit in opcode
Fifth Field is the group number:
0 - Command Group (left op nybble is F)
1 - One Address Operations A (Left Nybble C, D, or E)
2 - Two Address Operations (Left Nybble 0,1,2,4,5,6,8,9, or A)
3 - One Address Operations B (left Nybble 3, 7, or B)
There is duplication in this table -- IBM defines different opcodes
that resolve to the same binary machine instruction -- e.g. JE and
JZ. On input this is no problem, on output, define the one you
want to appear first, the second will never appear on output.
*/
int32 nopcode = 75;
struct opdef opcode[75] = {
"HPL", 0x00,0,0,0, /* Halt Program Level */
"A", 0x06,0,1,3, /* Add to Register: A R,AADD */
"ST", 0x04,0,1,3, /* Store Register */
"L", 0x05,0,1,3, /* Load Register */
"LA", 0x02,0,1,1, /* Load Address */
"ZAZ", 0x04,0,2,2, /* Zero and Add Zoned */
"AZ", 0x06,0,2,2, /* Add Zoned Decimal */
"SZ", 0x07,0,2,2, /* Subtract Zoned Decimal */
"ALC", 0x0E,0,2,2, /* Add Logical: ALC BADD,AADD,LEN */
"SLC", 0x0F,0,2,2, /* Sub Logical: SLC BADD,AADD,LEN */
"MVC", 0x0C,0,2,2, /* Move Chars MVX BADD,AADD,LEN */
"ED", 0x0A,0,2,2, /* Edit: ED BADD,AADD,LEN */
"ITC", 0x0B,0,2,2, /* Insert Chars: ITC BADD,AADD,LEN */
"CLC", 0x0D,0,2,2, /* Compare Logical: CLC BADD,AADD,LEN */
"MVI", 0x0C,0,3,3, /* Move Immediate */
"SBN", 0x0A,0,3,3, /* Set Bits On */
"SBF", 0x0B,0,3,3, /* Set Bits Off */
"CLI", 0x0D,0,3,3, /* Compare Immediate */
"TBN", 0x08,0,3,3, /* Test Bits On */
"TBF", 0x09,0,3,3, /* Test Bits Off */
"APL", 0x01,0,4,0, /* Advance Program Level */
"SIO", 0x03,0,5,0, /* Start I/O */
"SNS", 0x00,0,6,3, /* Sense I/O */
"LIO", 0x01,0,6,3, /* Load I/O */
"TIO", 0x01,0,6,1, /* Test I/O */
"J", 0x02,0,7,0, /* Jump Unconditional */
"J", 0x02,0x87,7,0, /* Alternate J */
"JH", 0x02,132,7,0, /* Jump if High */
"JL", 0x02,130,7,0, /* Jump if Low */
"JE", 0x02,129,7,0, /* Jump if Equal */
"JNH", 0x02,4,7,0, /* Jump if Not High */
"JNL", 0x02,2,7,0, /* Jump if Not Low */
"JNE", 0x02,1,7,0, /* Jump if Not Equal */
"JOZ", 0x02,136,7,0, /* Jump if Overflow Zoned */
"JOL", 0x02,160,7,0, /* Jump if Overflow Logical */
"JNOZ", 0x02,8,7,0, /* Jump if No Overflow Zoned */
"JNOL", 0x02,32,7,0, /* Jump if No Overflow Logical */
"JT", 0x02,16,7,0, /* Jump if True */
"JF", 0x02,144,7,0, /* Jump if False */
"JP", 0x02,132,7,0, /* Jump if Plus */
"JM", 0x02,130,7,0, /* Jump if Minus */
"JZ", 0x02,129,7,0, /* Jump if Zero */
"JNP", 0x02,4,7,0, /* Jump if Not Plus */
"JNM", 0x02,2,7,0, /* Jump if Not Minus */
"JNZ", 0x02,1,7,0, /* Jump if Not Zero */
"NOPJ", 0x02,0x80,7,0, /* Never Jump - NOP */
"B", 0x00,0x00,8,1, /* Branch Unconditional */
"B", 0x00,0x87,8,1, /* Alternate B */
"BH", 0x00,0x84,8,1, /* Branch if High */
"BL", 0x00,0x82,8,1, /* Branch if Low */
"BE", 0x00,0x81,8,1, /* Branch if Equal */
"BNH", 0x00,0x04,8,1, /* Branch if Not High */
"BNL", 0x00,0x02,8,1, /* Branch if Not Low */
"BNE", 0x00,0x01,8,1, /* Branch if Not Equal */
"BOZ", 0x00,0x88,8,1, /* Branch if Overflow Zoned */
"BOL", 0x00,0xA0,8,1, /* Branch if Overflow Logical */
"BNOZ", 0x00,0x08,8,1, /* Branch if No Overflow Zoned */
"BNOL", 0x00,0x20,8,1, /* Branch if No Overflow Logical */
"BT", 0x00,0x10,8,1, /* Branch if True */
"BF", 0x00,0x90,8,1, /* Branch if False */
"BP", 0x00,0x84,8,1, /* Branch if Plus */
"BM", 0x00,0x82,8,1, /* Branch if Minus */
"BZ", 0x00,0x81,8,1, /* Branch if Zero */
"BNP", 0x00,0x04,8,1, /* Branch if Not Plus */
"BNM", 0x00,0x02,8,1, /* Branch if Not Minus */
"BNZ", 0x00,0x01,8,1, /* Branch if Not Zero */
"NOPB", 0x00,0x80,8,1, /* Never Branch - NOP */
"MZZ", 0x08,0,9,2, /* Move Zone to Zone */
"MNZ", 0x08,1,9,2, /* Move Numeric to Zone */
"MZN", 0x08,2,9,2, /* Move Zone to Numeric */
"MNN", 0x08,3,9,2, /* Move Numeric to Numeric */
"MVX", 0x08,0,2,2, /* Move Hex: MVX BADD,AADD,CODE */
"JC", 0x02,0,3,0, /* Jump on Specified Condition bits */
"BC", 0x00,0,3,1, /* Branch on Specified Condition */
"***", 0x00,0,0,0
};
int32 regcode[15] = { 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01,
0x80, 0xC0, 0xA0, 0x90, 0x88, 0x84, 0x82, 0x81 };
char regname[15][8] = { "(P2IAR)",
"(P1IAR)",
"(IAR)",
"(ARR)",
"(PSR)",
"(XR2)",
"(XR1)",
"(IAR0)",
"(IAR1)",
"(IAR2)",
"(IAR3)",
"(IAR4)",
"(IAR5)",
"(IAR6)",
"(IAR7)" };
/* This is the binary loader. The input file is considered to be
a string of literal bytes with no special format. The
load starts at the current value of the P1IAR.
*/
int32 sim_load (FILE *fileref, char *cptr, char *fnam, int flag)
{
int32 i, addr = 0, cnt = 0;
if ((*cptr != 0) || (flag != 0)) return SCPE_ARG;
addr = IAR[8];
while ((i = getc (fileref)) != EOF) {
M[addr] = i & 0xff;
addr++;
cnt++;
} /* end while */
printf ("%d Bytes loaded.\n", cnt);
return (SCPE_OK);
}
/* Symbolic output
Inputs:
*of = output stream
addr = current PC
*val = pointer to values
*uptr = pointer to unit
sw = switches
Outputs:
status = error code
*/
int32 fprint_sym (FILE *of, int32 addr, uint32 *val,
UNIT *uptr, int32 sw)
{
int32 r;
char strg[256];
strcpy(strg, "");
r = printf_sym(of, strg, addr, val, uptr, sw);
if (sw & SWMASK ('A'))
strcpy(strg, "");
else
fprintf(of, "%s", strg);
return (r);
}
int32 printf_sym (FILE *of, char *strg, int32 addr, uint32 *val,
UNIT *uptr, int32 sw)
{
int32 cflag, c1, c2, group, len1, len2, inst, aaddr, baddr;
int32 oplen, groupno, i, j, vpos, qbyte, da, m, n;
char bld[128], bldaddr[32], boperand[32], aoperand[32];
int32 blk[16], blt[16];
int32 blkadd;
cflag = (uptr == NULL) || (uptr == &cpu_unit);
c1 = val[0] & 0xff;
if (sw & SWMASK ('A')) {
for (i = 0; i < 16; i++) {
blkadd = addr + (i*16);
for (j = 0; j < 16; j++) {
blk[j] = M[blkadd+j] & 0xff;
c2 = ebcdic_to_ascii[blk[j]];
if (c2 < 040 || c2 > 0177 || blk[j] == 07) {
blt[j] = '.';
} else {
blt[j] = c2;
}
}
if (i == 0) {
fprintf(of, "%02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X [%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c]\n ",
blk[0], blk[1], blk[2], blk[3], blk[4], blk[5], blk[6], blk[7],
blk[8], blk[9], blk[10], blk[11], blk[12], blk[13], blk[14], blk[15],
blt[0], blt[1], blt[2], blt[3], blt[4], blt[5], blt[6], blt[7],
blt[8], blt[9], blt[10], blt[11], blt[12], blt[13], blt[14], blt[15]);
} else {
fprintf(of, "%X\t%02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X [%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c]\n ",
blkadd, blk[0], blk[1], blk[2], blk[3], blk[4], blk[5], blk[6], blk[7],
blk[8], blk[9], blk[10], blk[11], blk[12], blk[13], blk[14], blk[15],
blt[0], blt[1], blt[2], blt[3], blt[4], blt[5], blt[6], blt[7],
blt[8], blt[9], blt[10], blt[11], blt[12], blt[13], blt[14], blt[15]);
}
}
return SCPE_OK; }
if (sw & SWMASK ('C')) {
c2 = ebcdic_to_ascii[c1];
if (c2 < 040 || c2 > 0177) {
sprintf(strg, "<%02X>", c1 & 0xff);
} else {
sprintf (strg, "%c", c2 & 0xff);
}
return SCPE_OK; }
if (!(sw & SWMASK ('M'))) return SCPE_ARG;
inst = val[0] & 0x0f;
len1 = (val[0] >> 6) & 3;
len2 = (val[0] >> 4) & 3;
group = (val[0] >> 4) & 0x0f;
qbyte = val[1];
/* Get total length of instruction */
if (group == 0x0f) {
oplen = 3;
} else {
oplen = 2;
if (len1 == 0) oplen += 2;
if (len1 == 1 || len1 == 2) oplen++;
if (len2 == 0) oplen += 2;
if (len2 == 1 || len2 == 2) oplen++;
}
/* Find which group it belongs to */
switch (group) {
case 0x0f:
groupno = 0;
break;
case 0x0c:
case 0x0d:
case 0x0e:
groupno = 1;
break;
case 0x03:
case 0x07:
case 0x0b:
groupno = 3;
break;
default:
groupno = 2;
break;
}
/* find the table entry */
for (i = 0; i < nopcode; i++) {
if (opcode[i].form < 7) { /* Explicit Q */
if (opcode[i].group == groupno &&
opcode[i].opmask == inst) break;
} else { /* Implicit Q */
if (opcode[i].group == groupno &&
opcode[i].opmask == inst &&
opcode[i].q == qbyte) break;
}
}
/* print the opcode */
if (i >= nopcode) {
sprintf(strg, "%02X", val[0]);
oplen = 1;
} else {
sprintf(bld, "%s ", opcode[i].op);
/* Extract the addresses into aaddr and baddr */
strcpy(aoperand, "ERROR");
strcpy(boperand, "ERROR");
vpos = 2;
aaddr = baddr = 0;
switch (len1) {
case 0:
baddr = ((val[vpos] << 8) & 0xff00) | (val[vpos + 1] & 0x00ff);
sprintf(boperand, "%04X", baddr);
vpos = 4;
break;
case 1:
baddr = val[vpos] & 255;
sprintf(boperand, "(%02X,XR1)", baddr);
vpos = 3;
break;
case 2:
baddr = val[vpos] & 255;
sprintf(boperand, "(%02X,XR2)", baddr);
vpos = 3;
break;
default:
baddr = 0;
break;
}
switch (len2) {
case 0:
aaddr = ((val[vpos] << 8) & 0xff00) | (val[vpos + 1] & 0x00ff);
if (group == 0x0C || group == 0x0D || group == 0x0E)
sprintf(boperand, "%04X", aaddr);
else
sprintf(aoperand, "%04X", aaddr);
break;
case 1:
aaddr = val[vpos] & 255;
if (group == 0x0C || group == 0x0D || group == 0x0E)
sprintf(boperand, "(%02X,XR1)", aaddr);
else
sprintf(aoperand, "(%02X,XR1)", aaddr);
break;
case 2:
aaddr = val[vpos] & 255;
if (group == 0x0C || group == 0x0D || group == 0x0E)
sprintf(boperand, "(%02X,XR2)", aaddr);
else
sprintf(aoperand, "(%02X,XR2)", aaddr);
break;
default:
aaddr = 0;
break;
}
/* Display the operands in the correct format */
da = (qbyte >> 4) & 0x0f;
m = (qbyte >> 3) & 0x01;
n = (qbyte) & 0x07;
switch (opcode[i].form) {
case 0:
sprintf(bldaddr, "%02X,%02X", qbyte, val[2]);
break;
case 1:
if (inst == 2 || inst == 4 || inst == 5 || inst == 6) {
for (i = 0; i < 16; i++) {
if (regcode[i] == qbyte)
break;
}
if (i < 16) {
sprintf(bldaddr, "%s,%s", regname[i], boperand);
} else {
sprintf(bldaddr, "%02X,%s", qbyte, boperand);
}
} else {
sprintf(bldaddr, "%02X,%s", qbyte, boperand);
}
break;
case 2:
if (inst > 9 || inst == 4 || inst == 6 || inst == 7)
qbyte++; /* special +1 for length display */
sprintf(bldaddr, "%s,%s,%d", boperand, aoperand, qbyte);
break;
case 3:
if (strcmp(opcode[i].op, "JC") == 0) {
sprintf(bldaddr, "%04X,%02X", addr+oplen+val[2], qbyte);
} else {
sprintf(bldaddr, "%s,%02X", boperand, qbyte);
}
break;
case 4:
sprintf(bldaddr, "%d,%d,%d", da, m, n);
break;
case 5:
sprintf(bldaddr, "%d,%d,%d,%02X", da, m, n, val[2]);
break;
case 6:
sprintf(bldaddr, "%d,%d,%d,%s", da, m, n, boperand);
break;
case 7:
sprintf(bldaddr, "%04X", addr+oplen+val[2]);
break;
case 8:
sprintf(bldaddr, "%s", boperand);
break;
default:
sprintf(bldaddr, "%s,%s", boperand, aoperand);
break;
}
sprintf(strg, "%s%s", bld, bldaddr);
}
return -(oplen - 1);
}
/* Symbolic input
Inputs:
*cptr = pointer to input string
addr = current PC
*uptr = pointer to unit
*val = pointer to output values
sw = switches
Outputs:
status = error status
*/
int32 parse_sym (char *cptr, int32 addr, UNIT *uptr, uint32 *val, int32 sw)
{
int32 cflag, i = 0, j, r, oplen, addtyp, saveaddr, vptr;
char gbuf[CBUFSIZE];
cflag = (uptr == NULL) || (uptr == &cpu_unit);
while (isspace (*cptr)) cptr++; /* absorb spaces */
if ((sw & SWMASK ('A')) || ((*cptr == '\'') && cptr++)) { /* ASCII char? */
if (cptr[0] == 0) return SCPE_ARG; /* must have 1 char */
val[0] = (unsigned int) cptr[0];
return SCPE_OK; }
if ((sw & SWMASK ('C')) || ((*cptr == '"') && cptr++)) { /* ASCII string? */
if (cptr[0] == 0) return SCPE_ARG; /* must have 1 char */
val[0] = ((unsigned int) cptr[0] << 8) + (unsigned int) cptr[1];
return SCPE_OK; }
/* An instruction: get opcode (all characters until null, comma, left paren,
or numeric (including spaces).
*/
while (1) {
if (*cptr == ',' || *cptr == '\0' || *cptr == '(' ||
isdigit(*cptr))
break;
gbuf[i] = toupper(*cptr);
cptr++;
i++;
}
/* kill trailing spaces if any */
gbuf[i] = '\0';
for (j = i - 1; gbuf[j] == ' '; j--) {
gbuf[j] = '\0';
}
/* find opcode in table */
for (j = 0; j < nopcode; j++) {
if (strcmp(gbuf, opcode[j].op) == 0)
break;
}
if (j >= nopcode) /* not found */
return SCPE_ARG;
oplen = 2; /* start with op & q */
val[0] = opcode[j].opmask; /* store opcode right nybble */
switch (opcode[j].form) { /* Get operands based on operand format */
case 0: /* Single Byte Operand */
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ','); /* Get Q Byte */
sscanf(gbuf, "%x", &r);
val[1] = r;
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, 0); /* Get R Byte */
sscanf(gbuf, "%x", &r);
val[2] = r;
oplen = 3;
val[0] = 0xf0 | opcode[j].opmask;
break;
case 1:
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
if (opcode[j].opmask == 2 ||
opcode[j].opmask == 4 ||
opcode[j].opmask == 5 ||
opcode[j].opmask == 6) {
if (isdigit(gbuf[0])) {
sscanf(gbuf, "%x", &r);
} else {
for (i = 0; i < 16; i++) {
if (strcmp(gbuf, regname[i]) == 0)
break;
}
if (i < 16) {
r = regcode[i];
} else {
return SCPE_ARG;
}
}
} else {
sscanf(gbuf, "%x", &r);
}
if (r > 255) return SCPE_ARG;
val[1] = r;
if (*cptr == ',') cptr++;
cptr = parse_addr(cptr, gbuf, &addr, &addtyp);
switch(addtyp) {
case 0:
val[2] = (addr >> 8) & 0x00ff;
val[3] = addr & 0xff;
oplen = 4;
if (opcode[j].group == 1)
val[0] = 0xC0 | opcode[j].opmask;
else
val[0] = 0x30 | opcode[j].opmask;
break;
case 1:
val[2] = addr & 0xff;
oplen = 3;
if (opcode[j].group == 1)
val[0] = 0xD0 | opcode[j].opmask;
else
val[0] = 0x70 | opcode[j].opmask;
break;
case 2:
val[2] = addr & 0xff;
oplen = 3;
if (opcode[j].group == 1)
val[0] = 0xE0 | opcode[j].opmask;
else
val[0] = 0xB0 | opcode[j].opmask;
break;
default:
return SCPE_ARG;
break;
}
break;
case 2:
oplen = 2;
cptr = parse_addr(cptr, gbuf, &addr, &addtyp);
switch(addtyp) {
case 0:
val[2] = (addr >> 8) & 0xff;
val[3] = addr & 0xff;
oplen += 2;
vptr = 4;
val[0] = 0x00 | opcode[j].opmask;
break;
case 1:
val[2] = addr & 0xff;
oplen += 1;
vptr = 3;
val[0] = 0x40 | opcode[j].opmask;
break;
case 2:
val[2] = addr & 0xff;
oplen += 1;
vptr = 3;
val[0] = 0x80 | opcode[j].opmask;
break;
default:
return SCPE_ARG;
break;
}
if (*cptr == ',') cptr++;
cptr = parse_addr(cptr, gbuf, &addr, &addtyp);
switch(addtyp) {
case 0:
val[vptr] = (addr >> 8) & 0xff;
val[vptr+1] = addr & 0xff;
oplen += 2;
break;
case 1:
val[vptr] = addr & 0xff;
oplen += 1;
val[0] = 0x10 | val[0];
break;
case 2:
val[vptr] = addr & 0xff;
oplen += 1;
val[0] = 0x20 | val[0];
break;
default:
return SCPE_ARG;
break;
}
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, 0);
sscanf(gbuf, "%d", &r);
if (opcode[j].opmask > 9 ||
opcode[j].opmask == 4 ||
opcode[j].opmask == 6 ||
opcode[j].opmask == 7) r--; /* special: length -1 */
val[1] = r;
if (*cptr == ',') cptr++;
break;
case 3:
saveaddr = addr;
if (*cptr == ',') cptr++;
cptr = parse_addr(cptr, gbuf, &addr, &addtyp);
switch(addtyp) {
case 0:
if (opcode[j].group == 0) { /* Group 0 form 3 is JC with explicit Q */
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, 0);
sscanf(gbuf, "%x", &r);
if ((addr - (saveaddr+3)) > 255 || (addr - (saveaddr+3)) < 1)
return SCPE_ARG;
val[2] = addr - (saveaddr+3);
val[1] = r;
val[0] = 0xf0 | opcode[j].opmask;
oplen = 3;
} else {
val[2] = (addr >> 8) & 0x00ff;
val[3] = addr & 0xff;
oplen = 4;
if (opcode[j].group == 1)
val[0] = 0xC0 | opcode[j].opmask;
else
val[0] = 0x30 | opcode[j].opmask;
}
break;
case 1:
val[2] = addr & 0xff;
oplen = 3;
if (opcode[j].group == 1)
val[0] = 0xD0 | opcode[j].opmask;
else
val[0] = 0x70 | opcode[j].opmask;
break;
case 2:
val[2] = addr & 0xff;
oplen = 3;
if (opcode[j].group == 1)
val[0] = 0xE0 | opcode[j].opmask;
else
val[0] = 0xB0 | opcode[j].opmask;
break;
default:
return SCPE_ARG;
break;
}
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, 0);
sscanf(gbuf, "%x", &r);
if (r > 255) return SCPE_ARG;
val[1] = r;
break;
case 4:
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
sscanf(gbuf, "%d", &r);
if (r > 15) return SCPE_ARG;
val[1] = (r << 4) & 0xf0;
val[0] = 0xf0 | opcode[j].opmask;
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
sscanf(gbuf, "%d", &r);
if (r > 1) return SCPE_ARG;
val[1] |= (r << 3) & 0x08;
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, 0);
sscanf(gbuf, "%d", &r);
if (r > 7) return SCPE_ARG;
val[1] |= r & 0x07;
val[2] = 0;
oplen = 3;
break;
case 5:
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
sscanf(gbuf, "%d", &r);
if (r > 15) return SCPE_ARG;
val[1] = (r << 4) & 0xf0;
val[0] = 0xf0 | opcode[j].opmask;
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
sscanf(gbuf, "%d", &r);
if (r > 1) return SCPE_ARG;
val[1] |= (r << 3) & 0x08;
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
sscanf(gbuf, "%d", &r);
if (r > 7) return SCPE_ARG;
val[1] |= r & 0x07;
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, 0);
sscanf(gbuf, "%x", &r);
if (r > 255) return SCPE_ARG;
val[2] = r;
oplen = 3;
break;
case 6:
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
sscanf(gbuf, "%d", &r);
if (r > 15) return SCPE_ARG;
val[1] = (r << 4) & 0xf0;
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
sscanf(gbuf, "%d", &r);
if (r > 1) return SCPE_ARG;
val[1] |= (r << 3) & 0x08;
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
sscanf(gbuf, "%d", &r);
if (r > 7) return SCPE_ARG;
val[1] |= r & 0x07;
if (*cptr == ',') cptr++;
cptr = parse_addr(cptr, gbuf, &addr, &addtyp);
switch(addtyp) {
case 0:
val[2] = (addr >> 8) & 0x00ff;
val[3] = addr & 0xff;
oplen = 4;
if (opcode[j].group == 1)
val[0] = 0xC0 | opcode[j].opmask;
else
val[0] = 0x30 | opcode[j].opmask;
break;
case 1:
val[2] = addr & 0xff;
oplen = 3;
if (opcode[j].group == 1)
val[0] = 0xD0 | opcode[j].opmask;
else
val[0] = 0x70 | opcode[j].opmask;
break;
case 2:
val[2] = addr & 0xff;
oplen = 3;
if (opcode[j].group == 1)
val[0] = 0xE0 | opcode[j].opmask;
else
val[0] = 0xB0 | opcode[j].opmask;
break;
default:
return SCPE_ARG;
break;
}
break;
case 7:
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, 0);
sscanf(gbuf, "%x", &r);
if ((r - (addr+3)) > 255 || (r - (addr+3)) < 1) return SCPE_ARG;
val[2] = r - (addr+3);
val[1] = opcode[j].q;
val[0] = 0xf0 | opcode[j].opmask;
oplen = 3;
break;
case 8:
if (*cptr == ',') cptr++;
cptr = parse_addr(cptr, gbuf, &addr, &addtyp);
switch(addtyp) {
case 0:
val[2] = (addr >> 8) & 0x00ff;
val[3] = addr & 0xff;
oplen = 4;
val[0] = 0xC0 | opcode[j].opmask;
break;
case 1:
val[2] = addr & 0xff;
oplen = 3;
val[0] = 0xD0 | opcode[j].opmask;
break;
case 2:
val[2] = addr & 0xff;
oplen = 3;
val[0] = 0xE0 | opcode[j].opmask;
break;
default:
return SCPE_ARG;
break;
}
val[1] = opcode[j].q;
break;
case 9:
oplen = 2;
val[0] = 0;
cptr = parse_addr(cptr, gbuf, &addr, &addtyp);
switch(addtyp) {
case 0:
val[2] = (addr >> 8) & 0xff;
val[3] = addr & 0xff;
oplen += 2;
vptr = 4;
val[0] = 0x00 | opcode[j].opmask;
break;
case 1:
val[2] = addr & 0xff;
oplen += 1;
vptr = 3;
val[0] = 0x40 | opcode[j].opmask;
break;
case 2:
val[2] = addr & 0xff;
oplen += 1;
vptr = 3;
val[0] = 0x80 | opcode[j].opmask;
break;
default:
return SCPE_ARG;
break;
}
if (*cptr == ',') cptr++;
cptr = parse_addr(cptr, gbuf, &addr, &addtyp);
switch(addtyp) {
case 0:
val[vptr] = (addr >> 8) & 0xff;
val[vptr+1] = addr & 0xff;
oplen += 2;
break;
case 1:
val[vptr] = addr & 0xff;
oplen += 1;
val[0] = 0x10 | val[0];
break;
case 2:
val[vptr] = addr & 0xff;
oplen += 1;
val[0] = 0x20 | val[0];
break;
default:
return SCPE_ARG;
break;
}
val[1] = opcode[j].q;
break;
default:
break;
}
return (-(oplen-1));
}
char *parse_addr(char *cptr, char *gbuf, int32 *addr, int32 *addrtype)
{
int32 nybble = 0;
char temp[32];
cptr = get_glyph(cptr, gbuf, ',');
if (gbuf[0] == '(') { /* XR relative */
strcpy(temp, gbuf+1);
sscanf(temp, "%x", addr);
if (*cptr == ',') cptr++;
cptr = get_glyph(cptr, gbuf, ',');
nybble = -1;
if (strcmp(gbuf, "XR1)") == 0)
nybble = 1;
if (strcmp(gbuf, "XR2)") == 0)
nybble = 2;
} else { /* Direct */
sscanf(gbuf, "%x", addr);
nybble = 0;
}
*addrtype = nybble;
return cptr;
}