simh-testsetgenerator/PDP10/kx10_rh.c

1190 lines
42 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* kx10_rh.c: RH10/RH20 interace routines.
Copyright (c) 2019-2020, Richard Cornwell
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
RICHARD CORNWELL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "kx10_defs.h"
#if KS
#define CS1_GO 1 /* go */
#define CS1_V_FNC 1 /* function pos */
#define CS1_M_FNC 037 /* function mask */
#define GET_FNC(x) (((x) >> CS1_V_FNC) & CS1_M_FNC)
#define CS1_IE 0000100 /* Enable interrupts */
#define CS1_RDY 0000200 /* Drive ready */
#define CS1_UBA 0001400 /* High order UBA bits */
#define CS1_PSEL 0002000 /* */
#define CS1_DVA 0004000 /* drive avail */
#define CS1_MCPE 0020000 /* */
#define CS1_TRE 0040000 /* Set if CS2 0177400 */
#define CS1_SC 0100000 /* Set if TRE or ATTN */
#define CS2_V_UNIT 0 /* unit pos */
#define CS2_M_UNIT 07 /* unit mask */
#define CS2_UNIT (CS2_M_UNIT << CS2_V_UNIT)
#define CS2_UAI 0000010 /* addr inhibit */
#define CS2_PAT 0000020 /* parity test NI */
#define CS2_CLR 0000040 /* controller clear */
#define CS2_IR 0000100 /* input ready */
#define CS2_OR 0000200 /* output ready */
#define CS2_MDPE 0000400 /* Mbus par err NI */
#define CS2_MXF 0001000 /* missed xfer NI */
#define CS2_PGE 0002000 /* program err */
#define CS2_NEM 0004000 /* nx mem err */
#define CS2_NED 0010000 /* nx drive err */
#define CS2_PE 0020000 /* parity err NI */
#define CS2_WCE 0040000 /* write check err */
#define CS2_DLT 0100000 /* data late NI */
/* Controller error bits, saved in error register */
#define ER1_ILF 0000001 /* illegal func */
#define ER1_ILR 0000002 /* illegal register */
#define ER1_RMR 0000004 /* reg mod refused */
#define ER1_PAR 0000010 /* parity err */
/* Map addresses into RH registers */
int rh_map[] = { 0, /* 776700 */
-1, /* 776702 */
-1, /* 776704 */
05, /* 776706 */
-1, /* 776710 */
01, /* 776712 */
02, /* 776714 */
04, /* 776716 */
07, /* 776720 */
-1, /* 776722 */
03, /* 776724 */
06, /* 776726 */
010, /* 776730 */
011, /* 776732 */
012, /* 776734 */
013, /* 776736 */
014, /* 776740 */
015, /* 776742 */
016, /* 776744 */
017 /* 776746 */
};
#else
/* CONI Flags */
#define IADR_ATTN 0000000000040LL /* Interrupt on attention */
#define IARD_RAE 0000000000100LL /* Interrupt on register access error */
#define DIB_CBOV 0000000000200LL /* Control bus overrun */
#define CXR_PS_FAIL 0000000002000LL /* Power supply fail (not implemented) */
#define CXR_ILC 0000000004000LL /* Illegal function code */
#define CR_DRE 0000000010000LL /* Or Data and Control Timeout */
#define DTC_OVER 0000000020000LL /* DF10 did not supply word on time (not implemented) */
#define CCW_COMP_1 0000000040000LL /* Control word written. */
#define CXR_CHAN_ER 0000000100000LL /* Channel Error */
#define CXR_EXC 0000000200000LL /* Error in drive transfer */
#define CXR_DBPE 0000000400000LL /* Device Parity error (not implemented) */
#define CXR_NXM 0000001000000LL /* Channel non-existent memory (not implemented) */
#define CXR_CWPE 0000002000000LL /* Channel Control word parity error (not implemented) */
#define CXR_CDPE 0000004000000LL /* Channel Data Parity Error (not implemented) */
#define CXR_SD_RAE 0000200000000LL /* Register access error */
#define CXR_ILFC 0000400000000LL /* Illegal CXR function code */
#define B22_FLAG 0004000000000LL /* 22 bit channel */
#define CC_CHAN_PLS 0010000000000LL /* Channel transfer pulse (not implemented) */
#define CC_CHAN_ACT 0020000000000LL /* Channel in use */
#define CC_INH 0040000000000LL /* Disconnect channel */
#define CB_FULL 0200000000000LL /* Set when channel buffer is full (not implemented) */
#define AR_FULL 0400000000000LL /* Set when AR is full (not implemented) */
/* RH20 CONI Flags */
#define RH20_PCR_FULL 0000000000020LL /* Primary command file full */
#define RH20_ATTN_ENA 0000000000040LL /* Attention enable */
#define RH20_SCR_FULL 0000000000100LL /* Secondary command full */
#define RH20_ATTN 0000000000200LL /* Attention */
#define RH20_MASS_ENA 0000000000400LL /* Mass bus enable */
#define RH20_DATA_OVR 0000000001000LL /* Data overrun */
#define RH20_CHAN_RDY 0000000002000LL /* Channel ready to start */
#define RH20_RAE 0000000004000LL /* Register access error */
#define RH20_DR_RESP 0000000010000LL /* Drive no response */
#define RH20_CHAN_ERR 0000000020000LL /* Channel error */
#define RH20_SHRT_WC 0000000040000LL /* Short word count */
#define RH20_LONG_WC 0000000100000LL /* Long word count */
#define RH20_DR_EXC 0000000200000LL /* Exception */
#define RH20_DATA_PRI 0000000400000LL /* Data parity error */
#define RH20_SBAR 0000001000000LL /* SBAR set */
#define RH20_XEND 0000002000000LL /* Transfer ended */
/* CONO Flags */
#define ATTN_EN 0000000000040LL /* enable attention interrupt. */
#define REA_EN 0000000000100LL /* enable register error interrupt */
#define CBOV_CLR 0000000000200LL /* Clear CBOV */
#define CONT_RESET 0000000002000LL /* Clear All error bits */
#define ILC_CLR 0000000004000LL /* Clear ILC and SD RAE */
#define DRE_CLR 0000000010000LL /* Clear CR_CBTO and CR_DBTO */
#define OVER_CLR 0000000020000LL /* Clear DTC overrun */
#define WRT_CW 0000000040000LL /* Write control word */
#define CHN_CLR 0000000100000LL /* Clear Channel Error */
#define DR_EXC_CLR 0000000200000LL /* Clear DR_EXC */
#define DBPE_CLR 0000000400000LL /* Clear CXR_DBPE */
/* RH20 CONO Flags */
#define RH20_DELETE_SCR 0000000000100LL /* Clear SCR */
#define RH20_RCLP 0000000000200LL /* Reset command list */
#define RH20_MASS_EN 0000000000400LL /* Mass bus enable */
#define RH20_XFER_CLR 0000000001000LL /* Clear XFER error */
#define RH20_CLR_MBC 0000000002000LL /* Clear MBC */
#define RH20_CLR_RAE 0000000004000LL /* Clear RAE error */
/* DATAO/DATAI */
#define CR_REG 0770000000000LL /* Register number */
#define LOAD_REG 0004000000000LL /* Load register */
#define CR_MAINT_MODE 0000100000000LL /* Maint mode... not implemented */
#define CR_DRIVE 0000007000000LL
#define CR_GEN_EVD 0000000400000LL /* Enable Parity */
#define CR_DXES 0000000200000LL /* Disable DXES errors */
#define CR_INAD 0000000077600LL
#define CR_WTEVM 0000000000100LL /* Verify Parity */
#define CR_FUNC 0000000000076LL
#define CR_GO 0000000000001LL
#define IRQ_VECT 0000000000777LL /* Interupt vector */
#define IRQ_KI10 0000002000000LL
#define IRQ_KA10 0000001000000LL
/* RH20 channel status flags */
#define RH20_MEM_PAR 00200000000000LL /* Memory parity error */
#define RH20_NADR_PAR 00100000000000LL /* Address parity error */
#define RH20_NOT_WC0 00040000000000LL /* Word count not zero */
#define RH20_NXM_ERR 00020000000000LL /* Non existent memory */
#define RH20_LAST_ERR 00000400000000LL /* Last transfer error */
#define RH20_ERROR 00000200000000LL /* RH20 error */
#define RH20_LONG_STS 00000100000000LL /* Did not reach wc */
#define RH20_SHRT_STS 00000040000000LL /* WC reached zero */
#define RH20_OVER 00000020000000LL /* Overrun error */
#endif
#define FNC_XFER 024 /* >=? data xfr */
/* Status register settings */
#define DS_OFF 0000001 /* offset mode */
#define DS_VV 0000100 /* volume valid */
#define DS_DRY 0000200 /* drive ready */
#define DS_DPR 0000400 /* drive present */
#define DS_PGM 0001000 /* programable NI */
#define DS_LST 0002000 /* last sector */
#define DS_WRL 0004000 /* write locked */
#define DS_MOL 0010000 /* medium online */
#define DS_PIP 0020000 /* pos in progress */
#define DS_ERR 0040000 /* error */
#define DS_ATA 0100000 /* attention active */
#if KS
DEVICE *rh_boot_dev = NULL;
int rh_boot_unit = 0;
int
uba_rh_write(DEVICE *dptr, t_addr addr, uint16 data, int32 access) {
int r = 0;
struct pdp_dib *dibp = (DIB *) dptr->ctxt;
struct rh_if *rhc;
int reg;
uint32 temp;
if (dibp == NULL)
return 1;
rhc = dibp->rh11_if;
/* Check for parity error during access */
if (rhc->cs2 & CS2_PAT) {
uba_set_parity(dibp->uba_ctl);
rhc->error |= ER1_PAR;
}
addr &= dibp->uba_mask;
reg = rh_map[addr >> 1];
switch(addr & 076) {
case 000: /* CS1 */
if (access == BYTE) {
if (addr & 1) {
rhc->dev_read(dptr, rhc, 0, &temp);
data = data | (rhc->cs1 & 0300) | (temp & 076);
} else {
data = data | (rhc->cs1 & CS1_UBA);
}
}
rhc->cs1 &= ~(CS1_IE);
rhc->cs1 |= data & (CS1_IE);
if ((rhc->status & BUSY) == 0)
rhc->cda = ((data << 8) & 0600000) | (rhc->cda & 0177777);
if ((data & CS1_GO) != 0 || (rhc->cs1 & CS1_IE) == 0)
uba_clr_irq(rhc->dib, rhc->dib->uba_vect);
if ((data & CS1_GO) != 0 && (rhc->status & BUSY) != 0 && GET_FNC(data) >= FNC_XFER) {
rhc->cs2 |= CS2_PGE;
break;
}
r = rhc->dev_write(dptr, rhc, 0, data);
/* Check if we had a go with a data transfer command */
if (r == 0 && (data & CS1_GO) != 0 && GET_FNC(data) >= FNC_XFER) {
rhc->cs2 = ((CS2_UAI|CS2_OR|CS2_IR|CS2_PAT|CS2_UNIT) & rhc->cs2);
rhc->xfer_drive = rhc->drive;
rhc->status |= BUSY;
}
break;
case 002: /* RPWC - 176702 - word count */ /* 1 */
if (access == BYTE) {
if (addr & 1)
data = data | (rhc->wcr & 0377);
else
data = (rhc->wcr & 0177400) | data;
}
rhc->wcr = data;
break;
case 004: /* RPBA - 176704 - base address */ /* 2 */
if (access == BYTE) {
if (addr & 1)
data = data | (rhc->cda & 0377);
else
data = (rhc->cda & 0177400) | data;
}
rhc->cda = (rhc->cda & 0600000) | (data & 0177776);
break;
case 010: /* RPCS2 - 176710 - Control and Status register 2 */ /* 4 */
if (access == BYTE) {
if (addr & 1)
data = data | (rhc->cs2 & 0377);
else
data = (rhc->cs2 & 0177400) | data;
}
if (data & CS2_CLR) {
rh_reset(dptr, rhc);
if (rhc->dev_reset != NULL)
rhc->dev_reset(dptr);
else
dptr->reset(dptr);
rhc->cs2 |= CS2_CLR; /* Hack for tops 10 7.04 */
break;
}
/* Don't allow UAI to be set just after reset */
if (rhc->cs2 & CS2_CLR) {
data &= ~CS2_UAI;
rhc->cs2 &= ~CS2_CLR;
}
rhc->cs2 &= ~(CS2_PE|CS2_MXF|CS2_PAT|CS2_UNIT);
if ((rhc->status & BUSY) == 0) {
rhc->cs2 &= ~(CS2_UAI);
if( data & CS2_UAI)
sim_debug(DEBUG_DETAIL, dptr, "RH%o set no UAI %06o\n", rhc->drive, PC);
rhc->cs2 |= CS2_UAI & data;
}
rhc->cs2 |= (CS2_PE|CS2_MXF|CS2_PAT|CS2_UNIT) & data;
rhc->cs2 |= CS2_IR;
rhc->drive = rhc->cs2 & CS2_UNIT;
/* Try reading the command register */
r = rhc->dev_read(dptr, rhc, 0, &temp);
if (r < 0)
rhc->cs2 |= CS2_NED;
break;
case 022: /* RPDB - 176722 - data buffer */ /* 11 */
if ((rhc->cs2 & CS2_IR) == 0) {
rhc->cs2 |= CS2_DLT;
break;
}
rhc->dba = rhc->dbb;
rhc->dbb = data;
if (rhc->cs2 & CS2_IR)
rhc->dba = rhc->dbb;
rhc->cs2 |= CS2_OR;
rhc->cs2 &= ~CS2_IR;
break;
case 014: /* RPER1 - 176714 - error status 1 */ /* 6 */
rhc->error = data;
/* Fall through */
default:
if (access == BYTE) {
rhc->dev_read(dptr, rhc, reg, &temp);
if (addr & 1)
data = data | (temp & 0377);
else
data = (temp & 0177400) | data;
}
r = rhc->dev_write(dptr, rhc, reg, data);
}
if (r < 0) {
rhc->cs2 |= CS2_NED;
r = 0;
}
if ((data & CS1_GO) == 0 && (rhc->cs1 & CS1_IE) != 0 && rhc->attn != 0)
uba_set_irq(rhc->dib, rhc->dib->uba_vect);
sim_debug(DEBUG_DETAIL, dptr, "RH%o write %06o %06o %o\n", rhc->drive,
addr, data, access);
return r;
}
int
uba_rh_read(DEVICE *dptr, t_addr addr, uint16 *data, int32 access) {
int r = 1;
struct pdp_dib *dibp = (DIB *) dptr->ctxt;
struct rh_if *rhc;
int reg;
uint32 temp = 0;
if (dibp == NULL)
return 1;
rhc = dibp->rh11_if;
addr &= dibp->uba_mask;
reg = rh_map[addr >> 1];
if (reg >= 0) {
r = rhc->dev_read(dptr, rhc, reg, &temp);
if (r < 0) {
rhc->cs2 |= CS2_NED;
return 0;
}
}
switch(addr & 076) {
case 000: /* RPC - 176700 - control */
temp |= (uint16)(rhc->cs1 & (CS1_IE));
temp |= (rhc->cda & 0600000) >> 8;
if ((rhc->status & BUSY) == 0)
temp |= CS1_RDY;
if (rhc->cs2 & (CS2_MDPE|CS2_MXF|CS2_PGE|CS2_NEM|CS2_NED|CS2_PE|CS2_WCE|CS2_DLT))
temp |= CS1_TRE;
if (rhc->attn || (temp & CS1_TRE) != 0)
temp |= CS1_SC;
r = 0;
break;
case 002: /* RPWC - 176702 - word count */
temp = rhc->wcr;
r = 0;
break;
case 004: /* RPBA - 176704 - base address */
temp = (uint16)(rhc->cda & 0177776);
r = 0;
break;
case 010: /* RPCS2 - 176710 - control/status 2 */
temp = rhc->cs2 & ~CS2_CLR;
r = 0;
break;
case 014: /* RPER1 - 176714 - error status 1 */
temp |= rhc->error;
r = 0;
break;
case 022: /* RPDB - 176722 - data buffer */
r = 0;
if ((rhc->cs2 & CS2_OR) == 0) {
rhc->cs2 |= CS2_DLT;
break;
}
temp = rhc->dba;
rhc->dba = rhc->dbb;
rhc->cs2 &= ~CS2_OR;
rhc->cs2 |= CS2_IR;
break;
default:
break;
}
*data = temp;
sim_debug(DEBUG_DETAIL, dptr, "RH%o read %o %d %06o %06o %06o\n", rhc->drive, r, reg,
addr, temp, PC);
/* Check for parity error during access */
if (rhc->cs2 & CS2_PAT) {
uba_set_parity(dibp->uba_ctl);
rhc->error |= ER1_PAR;
}
return r;
}
#else
/* 0-37 mass bus register.
70 SBAR, block address.
71 STCR, neg block count, func
72 PBAR
73 PTCR
74 IVIR Interrupt vector address.
75 Diags read.
76 Diags write.
77 Status (tra,cb test, bar test, ev par, r/w, exc,ebl, 0, attn, sclk
*/
/*
* CCW 000..... New channel comand list pointer HALT.
010..... Next CCW Address JUMP
1xycount-address. x=halt last xfer, y=reverse
*/
extern uint32 eb_ptr;
t_stat
rh_set_type(UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
DEVICE *dptr;
DIB *dibp;
dptr = find_dev_from_unit (uptr);
if (dptr == NULL)
return SCPE_IERR;
dibp = (DIB *) dptr->ctxt;
dptr->flags &= ~DEV_M_RH;
dptr->flags |= val;
dibp->dev_num &= ~(RH10_DEV|RH20_DEV);
dibp->dev_num |= (val) ? RH20_DEV: RH10_DEV;
return SCPE_OK;
}
t_stat rh_show_type (FILE *st, UNIT *uptr, int32 val, CONST void *desc)
{
DEVICE *dptr;
if (uptr == NULL)
return SCPE_IERR;
dptr = find_dev_from_unit(uptr);
if (dptr == NULL)
return SCPE_IERR;
fprintf (st, "%s", (dptr->flags & TYPE_RH20) ? "RH20" : "RH10");
return SCPE_OK;
}
t_stat rh_devio(uint32 dev, uint64 *data) {
DEVICE *dptr = NULL;
struct rh_if *rhc = NULL;
int drive;
uint32 drdat = 0;
for (drive = 0; rh[drive].dev_num != 0; drive++) {
if (rh[drive].dev_num == (dev & 0774)) {
rhc = rh[drive].rh;
dptr = rh[drive].dev;
break;
}
}
if (rhc == NULL)
return SCPE_OK;
#if KL
if (dptr->flags & TYPE_RH20) {
switch(dev & 3) {
case CONI:
*data = rhc->status & RMASK;
if (rhc->attn != 0)
*data |= RH20_ATTN;
if (rhc->rae != 0)
*data |= RH20_RAE;
sim_debug(DEBUG_CONI, dptr, "%s %03o CONI %06o PC=%o %o\n",
dptr->name, dev, (uint32)*data, PC, rhc->attn);
return SCPE_OK;
case CONO:
clr_interrupt(dev);
/* Clear flags */
if (*data & RH20_CLR_MBC) {
if (rhc->dev_reset != NULL)
rhc->dev_reset(dptr);
rhc->attn = 0;
rhc->imode = 2;
}
rhc->status &= ~(07LL|IADR_ATTN|RH20_MASS_EN);
rhc->status |= *data & (07LL|IADR_ATTN|RH20_MASS_EN);
if (*data & RH20_DELETE_SCR)
rhc->status &= ~(RH20_SBAR|RH20_SCR_FULL);
if (*data & (RH20_RCLP|RH20_CLR_MBC))
rhc->cia = eb_ptr | (rhc->devnum - 0540);
if (*data & (RH20_CLR_RAE|RH20_CLR_MBC)) {
rhc->rae = 0;
}
rhc->status &= ~RH20_DR_RESP;
if (*data & PI_ENABLE)
rhc->status &= ~PI_ENABLE;
if (((rhc->status & IADR_ATTN) != 0 && rhc->attn != 0)
|| (rhc->status & PI_ENABLE))
set_interrupt(rhc->devnum, rhc->status);
sim_debug(DEBUG_CONO, dptr, "%s %03o CONO %06o PC=%06o %06o\n",
dptr->name, dev, (uint32)*data, PC, rhc->status);
return SCPE_OK;
case DATAI:
*data = 0;
if (rhc->reg < 040) {
int parity;
if (rhc->dev_read(dptr, rhc, rhc->reg, &drdat))
rhc->status |= RH20_DR_RESP;
*data = (uint64)(drdat & 0177777);
parity = (int)((*data >> 8) ^ *data);
parity = (parity >> 4) ^ parity;
parity = (parity >> 2) ^ parity;
parity = ((parity >> 1) ^ parity) & 1;
*data |= ((uint64)(!parity)) << 16;
*data |= ((uint64)(rhc->drive)) << 18;
*data |= BIT10;
} else if ((rhc->reg & 070) != 070) {
rhc->rae = 1;
break;
} else {
switch(rhc->reg & 07) {
case 0: *data = rhc->sbar; break;
case 1: *data = rhc->stcr; break;
case 2: *data = rhc->pbar; break;
case 3: *data = rhc->ptcr; break;
case 4: *data = rhc->ivect; break;
case 5:
case 6: break;
case 7: *data = 0; break;
}
}
*data |= ((uint64)(rhc->reg)) << 30;
sim_debug(DEBUG_DATAIO, dptr, "%s %03o DATI %012llo %d PC=%06o\n",
dptr->name, dev, *data, rhc->drive, PC);
return SCPE_OK;
case DATAO:
sim_debug(DEBUG_DATAIO, dptr, "%s %03o DATO %012llo PC=%06o %06o\n",
dptr->name, dev, *data, PC, rhc->status);
rhc->reg = ((int)(*data >> 30)) & 077;
rhc->imode |= 2;
if (rhc->reg < 040)
rhc->drive = (int)(*data >> 18) & 07;
if (*data & LOAD_REG) {
if (rhc->reg < 040) {
clr_interrupt(dev);
/* Check if access error */
if (rhc->rae & (1 << rhc->drive) && (*data & BIT9) == 0) {
set_interrupt(rhc->devnum, rhc->status);
return SCPE_OK;
}
if (rhc->dev_write(dptr, rhc, rhc->reg & 037, (int)(*data & 0777777)))
rhc->status |= RH20_DR_RESP;
if (((rhc->status & IADR_ATTN) != 0 && rhc->attn != 0)
|| (rhc->status & PI_ENABLE))
set_interrupt(rhc->devnum, rhc->status);
/* Check if access error */
if (rhc->rae & (1 << rhc->drive) && (*data & BIT9) == 0)
set_interrupt(rhc->devnum, rhc->status);
else
rhc->rae &= ~(1 << rhc->drive);
} else if ((rhc->reg & 070) != 070) {
if ((*data & BIT9) == 0) {
rhc->rae |= 1 << rhc->drive;
set_interrupt(rhc->devnum, rhc->status);
}
} else {
switch(rhc->reg & 07) {
case 0:
rhc->sbar = (*data) & (CR_DRIVE|RMASK);
rhc->status |= RH20_SBAR;
break;
case 1:
rhc->stcr = (*data) & (BIT10|BIT7|CR_DRIVE|RMASK);
rhc->status |= RH20_SCR_FULL;
break;
case 4:
rhc->ivect = (*data & IRQ_VECT);
break;
case 2:
case 3:
case 5:
case 6:
case 7:
break;
}
}
}
}
if ((rhc->status & (RH20_SCR_FULL|RH20_PCR_FULL)) == (RH20_SCR_FULL))
rh20_setup(rhc);
return SCPE_OK;
}
#endif
switch(dev & 3) {
case CONI:
*data = rhc->status & ~(IADR_ATTN|IARD_RAE);
if (rhc->attn != 0 && (rhc->status & IADR_ATTN))
*data |= IADR_ATTN;
if (rhc->rae != 0 && (rhc->status & IARD_RAE)) {
*data |= IARD_RAE;
if (rhc->rae & (1 << rhc->drive))
*data |= CXR_SD_RAE;
}
#if KI_22BIT
*data |= B22_FLAG;
#endif
sim_debug(DEBUG_CONI, dptr, "%s %03o CONI %06o PC=%o %o\n",
dptr->name, dev, (uint32)*data, PC, rhc->attn);
return SCPE_OK;
case CONO:
clr_interrupt(dev);
rhc->status &= ~(07LL|IADR_ATTN|IARD_RAE);
rhc->status |= *data & (07LL|IADR_ATTN|IARD_RAE);
/* Clear flags */
if (*data & CONT_RESET && rhc->dev_reset != NULL) {
rhc->dev_reset(dptr);
rhc->status &= (07LL|IADR_ATTN|IARD_RAE);
}
if (*data & (DBPE_CLR|DR_EXC_CLR|CHN_CLR))
rhc->status &= ~(*data & (DBPE_CLR|DR_EXC_CLR|CHN_CLR));
if (*data & OVER_CLR)
rhc->status &= ~(DTC_OVER);
if (*data & CBOV_CLR)
rhc->status &= ~(DIB_CBOV);
if (*data & CXR_ILC)
rhc->status &= ~(CXR_ILFC|CXR_SD_RAE);
if (*data & DRE_CLR)
rhc->status &= ~(CR_DRE);
if (*data & WRT_CW) {
rh_writecw(rhc, 0);
rhc->status |= (CCW_COMP_1);
}
if (*data & PI_ENABLE)
rhc->status &= ~PI_ENABLE;
if (rhc->status & PI_ENABLE)
set_interrupt(dev, rhc->status);
if ((rhc->status & IADR_ATTN) != 0 && rhc->attn != 0)
set_interrupt(dev, rhc->status);
sim_debug(DEBUG_CONO, dptr, "%s %03o CONO %06o PC=%06o %06o\n",
dptr->name, dev, (uint32)*data, PC, rhc->status);
return SCPE_OK;
case DATAI:
*data = 0;
if (rhc->reg == 040) {
if (rhc->dev_read(dptr, rhc, 0, &drdat))
rhc->status |= CR_DRE;
*data = (uint64)(drdat & 077);
*data |= ((uint64)(rhc->cia)) << 6;
*data |= ((uint64)(rhc->xfer_drive)) << 18;
} else if (rhc->reg == 044) {
*data = (uint64)rhc->ivect;
if (rhc->imode)
*data |= IRQ_KI10;
else
*data |= IRQ_KA10;
} else if (rhc->reg == 054) {
*data = (uint64)(rhc->rae);
} else if ((rhc->reg & 040) == 0) {
int parity;
if (rhc->dev_read(dptr, rhc, rhc->reg, &drdat)) {
rhc->rae |= 1 << rhc->drive;
rhc->status |= CR_DRE;
}
*data = (uint64)(drdat & 0177777);
parity = (int)((*data >> 8) ^ *data);
parity = (parity >> 4) ^ parity;
parity = (parity >> 2) ^ parity;
parity = ((parity >> 1) ^ parity) & 1;
*data |= ((uint64)(parity ^ 1)) << 17;
*data |= ((uint64)(rhc->drive)) << 18;
}
*data |= ((uint64)(rhc->reg)) << 30;
sim_debug(DEBUG_DATAIO, dptr, "%s %03o DATI %012llo %d PC=%06o\n",
dptr->name, dev, *data, rhc->drive, PC);
return SCPE_OK;
case DATAO:
sim_debug(DEBUG_DATAIO, dptr, "%s %03o DATO %012llo PC=%06o %06o\n",
dptr->name, dev, *data, PC, rhc->status);
rhc->reg = ((int)(*data >> 30)) & 077;
rhc->imode &= ~2;
if (rhc->reg < 040 && rhc->reg != 04) {
rhc->drive = (int)(*data >> 18) & 07;
}
if (*data & LOAD_REG) {
if (rhc->reg == 040) {
if ((*data & 1) == 0) {
return SCPE_OK;
}
if (rhc->status & BUSY) {
rhc->status |= CC_CHAN_ACT;
return SCPE_OK;
}
rhc->status &= ~(CCW_COMP_1|PI_ENABLE);
if (((*data >> 1) & 037) < FNC_XFER) {
rhc->status |= CXR_ILC;
rh_setirq(rhc);
sim_debug(DEBUG_DATAIO, dptr,
"%s %03o command abort %012llo, %d PC=%06o %06o\n",
dptr->name, dev, *data, rhc->drive, PC, rhc->status);
return SCPE_OK;
}
rhc->drive = (int)(*data >> 18) & 07;
/* Check if access error */
if (rhc->rae & (1 << rhc->drive))
return SCPE_OK;
/* Start command */
if (rhc->dev_write(dptr, rhc, 0, (uint32)(*data & 077))) {
rhc->status |= CR_DRE;
} else {
rh_setup(rhc, (uint32)(*data >> 6));
rhc->xfer_drive = rhc->drive;
}
sim_debug(DEBUG_DATAIO, dptr,
"%s %03o command %012llo, %d PC=%06o %06o\n",
dptr->name, dev, *data, rhc->drive, PC, rhc->status);
} else if (rhc->reg == 044) {
/* Set KI10 Irq vector */
rhc->ivect = (int)(*data & IRQ_VECT);
rhc->imode = (*data & IRQ_KI10) != 0;
} else if (rhc->reg == 050) {
; /* Diagnostic access to mass bus. */
} else if (rhc->reg == 054) {
/* clear flags */
rhc->rae &= ~(*data & 0377);
if (rhc->rae == 0)
clr_interrupt(dev);
} else if ((rhc->reg & 040) == 0) {
rhc->drive = (int)(*data >> 18) & 07;
/* Check if access error */
if (rhc->rae & (1 << rhc->drive)) {
return SCPE_OK;
}
if (rhc->dev_write(dptr, rhc, rhc->reg & 037, (uint32)(*data & 0777777)))
rhc->status |= CR_DRE;
}
}
clr_interrupt(dev);
if (((rhc->status & (IADR_ATTN|BUSY)) == IADR_ATTN && rhc->attn != 0)
|| (rhc->status & PI_ENABLE))
set_interrupt(rhc->devnum, rhc->status);
return SCPE_OK;
}
return SCPE_OK; /* Unreached */
}
/* Handle KI and KL style interrupt vectors */
t_addr
rh_devirq(uint32 dev, t_addr addr) {
struct rh_if *rhc = NULL;
int drive;
for (drive = 0; rh[drive].dev_num != 0; drive++) {
if (rh[drive].dev_num == (dev & 0774)) {
rhc = rh[drive].rh;
break;
}
}
if (rhc != NULL) {
if (rhc->imode == 1) /* KI10 Style */
addr = RSIGN | rhc->ivect;
else if (rhc->imode == 2) /* RH20 style */
addr = rhc->ivect;
} else {
sim_printf("Unable to find device %03o\r\n", dev);
}
return addr;
}
#endif
/* Reset the RH to a known clear condiguration */
void rh_reset(DEVICE *dptr, struct rh_if *rhc)
{
rhc->status = 0;
rhc->attn = 0;
rhc->rae = 0;
rhc->wcr = 0;
rhc->cda = 0;
rhc->drive = 0;
#if KS
rhc->dib = (DIB *)dptr->ctxt;
rhc->cs1 = 0;
rhc->cs2 = CS2_IR;
rhc->dba = 0;
rhc->dbb = 0;
rhc->error = 0;
uba_clr_irq(rhc->dib, rhc->dib->uba_vect);
#endif
}
/* Set the attention flag for a unit */
void rh_setattn(struct rh_if *rhc, int unit)
{
rhc->attn |= 1<<unit;
#if KS
if ((rhc->cs1 & CS1_IE) != 0)
uba_set_irq(rhc->dib, rhc->dib->uba_vect);
#else
if ((rhc->status & IADR_ATTN) != 0)
set_interrupt(rhc->devnum, rhc->status);
#endif
}
void rh_error(struct rh_if *rhc)
{
#if !KS
if (rhc->imode == 2)
rhc->status |= RH20_DR_EXC;
#endif
}
/* Decrement block count for RH20, nop for RH10 */
int rh_blkend(struct rh_if *rhc)
{
#if KL
if (rhc->imode == 2) {
rhc->cia = (rhc->cia + 1) & 01777;
if (rhc->cia == 0) {
rhc->status |= RH20_XEND;
return 1;
}
}
#endif
return 0;
}
/* Set an IRQ for a DF10 device */
void rh_setirq(struct rh_if *rhc) {
rhc->status |= PI_ENABLE;
#if KS
if ((rhc->status & BUSY) == 0 && (rhc->cs1 & CS1_IE) != 0)
uba_set_irq(rhc->dib, rhc->dib->uba_vect);
#else
set_interrupt(rhc->devnum, rhc->status);
#endif
}
/* Generate the DF10 complete word */
void rh_writecw(struct rh_if *rhc, int nxm) {
#if !KS
uint64 wrd1;
#if KL
if (rhc->imode == 2) {
uint32 chan = (rhc->devnum - 0540);
int wc = ((rhc->wcr ^ RH20_WMASK) + 1) & RH20_WMASK;
rhc->status |= RH20_CHAN_RDY;
rhc->status &= ~(RH20_PCR_FULL);
if (wc != 0 || (rhc->status & RH20_XEND) == 0 ||
(rhc->ptcr & BIT10) != 0 || nxm) {
uint64 wrd2;
wrd1 = SMASK|(uint64)(rhc->ccw);
if ((rhc->ptcr & BIT10) == 0 || (rhc->status & RH20_DR_EXC) != 0)
return;
if (nxm) {
wrd1 |= RH20_NXM_ERR;
rhc->status |= RH20_CHAN_ERR;
}
if (wc != 0) {
wrd1 |= RH20_NOT_WC0;
if (rhc->status & RH20_XEND) {
wrd1 |= RH20_LONG_STS;
if ((rhc->ptcr & 070) == 060) { /* Write command */
rhc->status |= RH20_LONG_WC|RH20_CHAN_ERR;
}
}
} else if ((rhc->status & RH20_XEND) == 0) {
wrd1 |= RH20_SHRT_STS;
if ((rhc->ptcr & 070) == 060) { /* Write command */
rhc->status |= RH20_SHRT_WC|RH20_CHAN_ERR;
}
}
/* No error and not storing */
if ((rhc->status & RH20_CHAN_ERR) == 0 && (rhc->ptcr & BIT10) == 0)
return;
wrd1 |= RH20_NADR_PAR;
wrd2 = ((uint64)rhc->cop << 33) | (((uint64)wc) << CSHIFT) |
((uint64)(rhc->cda) & AMASK);
(void)Mem_write_word(chan+1, &wrd1, 1);
(void)Mem_write_word(chan+2, &wrd2, 1);
}
return;
}
#endif
if (nxm)
rhc->status |= CXR_NXM;
if (rhc->wcr != 0)
rhc->cda++;
wrd1 = ((uint64)(rhc->ccw & WMASK) << CSHIFT) | ((uint64)(rhc->cda) & AMASK);
(void)Mem_write_word(rhc->cia|1, &wrd1, 0);
#endif
}
/* Finish off a DF10 transfer */
void rh_finish_op(struct rh_if *rhc, int nxm) {
#if KL
rhc->status &= ~(CC_CHAN_ACT);
if (rhc->imode != 2)
#endif
rhc->status &= ~(BUSY);
rh_writecw(rhc, nxm);
rh_setirq(rhc);
#if KL
if (rhc->imode == 2 &&
(rhc->status & (RH20_SCR_FULL|RH20_PCR_FULL)) == (RH20_SCR_FULL) &&
(rhc->status & (RH20_DR_EXC|RH20_CHAN_ERR)) == 0)
rh20_setup(rhc);
#endif
}
#if KL
/* Set up for a RH20 transfer */
void rh20_setup(struct rh_if *rhc)
{
DEVICE *dptr = NULL;
uint32 data;
int reg;
int drv;
for (reg = 0; rh[reg].dev_num != 0; reg++) {
if (rh[reg].rh == rhc) {
dptr = rh[reg].dev;
break;
}
}
if (dptr == 0)
return;
/* Check to see if drive currently doing something */
drv = rhc->drive;
rhc->drive = (rhc->stcr >> 18) & 07;
if (rhc->dev_read != NULL) {
(void)rhc->dev_read(dptr, rhc, 0, &data);
if (data & 1) {
rhc->drive = drv;
return;
}
}
rhc->ptcr = rhc->stcr;
rhc->pbar = rhc->sbar;
rhc->drive = (rhc->ptcr >> 18) & 07;
/* Read drive status */
rhc->status &= ~(RH20_DATA_OVR|RH20_CHAN_RDY|RH20_DR_RESP|RH20_CHAN_ERR|RH20_SHRT_WC|\
RH20_LONG_WC|RH20_DR_EXC|RH20_SCR_FULL|PI_ENABLE|RH20_XEND);
rhc->status |= RH20_PCR_FULL;
if (rhc->status & RH20_SBAR) {
if (rhc->dev_write != NULL)
(void)rhc->dev_write(dptr, rhc, 5, (rhc->pbar & 0177777));
rhc->status &= ~RH20_SBAR;
}
if (rhc->ptcr & BIT7) { /* If RCPL reset I/O pointers */
rhc->ccw = eb_ptr + (rhc->devnum - 0540);
rhc->wcr = 0;
}
/* Hold block count in cia */
rhc->cia = (rhc->ptcr >> 6) & 01777;
if (rhc->dev_write != NULL)
(void)rhc->dev_write(dptr, rhc, 0, (rhc->ptcr & 077));
rhc->cop = 0;
rhc->wcr = 0;
rhc->xfer_drive = rhc->drive;
rhc->status &= ~RH20_CHAN_RDY;
rhc->status |= BUSY;
rhc->drive = drv;
}
#endif
/* Setup for a DF10 transfer */
void rh_setup(struct rh_if *rhc, uint32 addr)
{
#if !KS
rhc->cia = addr & ICWA;
rhc->ccw = rhc->cia;
rhc->wcr = 0;
#endif
rhc->status |= BUSY;
}
/* Fetch the next IO control word */
int rh_fetch(struct rh_if *rhc) {
#if !KS
uint64 data;
int reg;
DEVICE *dptr = NULL;
for (reg = 0; rh[reg].dev_num != 0; reg++) {
if (rh[reg].rh == rhc) {
dptr = rh[reg].dev;
break;
}
}
#if KL
if (rhc->imode == 2 && (rhc->cop & 2) != 0) {
return 0;
}
#endif
if (Mem_read_word(rhc->ccw, &data, 0)) {
rh_finish_op(rhc, 1);
return 0;
}
sim_debug(DEBUG_EXP, dptr, "%s fetch %06o %012llo\n\r", dptr->name, rhc->ccw, data);
#if KL
if (rhc->imode == 2) {
while((data & RH20_XFER) == 0) {
rhc->ccw = (uint32)(data & AMASK);
if ((data & (BIT1|BIT2)) == 0) {
return 0;
}
if (Mem_read_word(rhc->ccw, &data, 0)) {
rh_finish_op(rhc, 1);
return 0;
}
sim_debug(DEBUG_EXP, dptr, "%s fetch2 %06o %012llo\n\r", dptr->name, rhc->ccw, data);
//fprintf(stderr, "RH20 fetch2 %06o %012llo\n\r", rhc->ccw, data);
}
rhc->wcr = (((data >> CSHIFT) & RH20_WMASK) ^ WMASK) + 1;
rhc->cda = (data & AMASK);
rhc->cop = (data >> 33) & 07;
rhc->ccw = (uint32)((rhc->ccw + 1) & AMASK);
return 1;
}
#endif
while((data & (WMASK << CSHIFT)) == 0) {
if ((data & AMASK) == 0 || (uint32)(data & AMASK) == rhc->ccw) {
rh_finish_op(rhc, 0);
return 0;
}
rhc->ccw = (uint32)(data & AMASK);
if (Mem_read_word(rhc->ccw, &data, 0)) {
rh_finish_op(rhc, 1);
return 0;
}
sim_debug(DEBUG_EXP, dptr, "%s fetch2 %06o %012llo\n\r", dptr->name, rhc->ccw, data);
}
rhc->wcr = (uint32)((data >> CSHIFT) & WMASK);
rhc->cda = (uint32)(data & AMASK);
rhc->ccw = (uint32)((rhc->ccw + 1) & AMASK);
#endif
return 1;
}
/* Read next word */
int rh_read(struct rh_if *rhc) {
#if KS
if ((rhc->status & BUSY) == 0)
return 0;
if (uba_read_npr(rhc->cda, rhc->dib->uba_ctl, &rhc->buf) == 0) {
rhc->cs2 |= CS2_NEM;
rhc->status &= ~BUSY;
return 0;
}
if ((rhc->cs2 & CS2_UAI) == 0)
rhc->cda += 4;
rhc->wcr = (rhc->wcr + 2) & 0177777;
if (rhc->wcr == 0) {
rhc->status &= ~BUSY;
return 0;
}
#else
uint64 data;
if (rhc->wcr == 0) {
if (!rh_fetch(rhc))
return 0;
}
rhc->wcr = (uint32)((rhc->wcr + 1) & WMASK);
if (rhc->cda != 0) {
if (rhc->cda > MEMSIZE) {
rh_finish_op(rhc, 1);
return 0;
}
#if KL
if (rhc->imode == 2) {
if (Mem_read_word(rhc->cda, &data, 0)) {
rh_finish_op(rhc, 1);
return 0;
}
if (rhc->cop & 01)
rhc->cda = (uint32)((rhc->cda - 1) & AMASK);
else
rhc->cda = (uint32)((rhc->cda + 1) & AMASK);
} else {
rhc->cda = (uint32)((rhc->cda + 1) & AMASK);
if (Mem_read_word(rhc->cda, &data, 0)) {
rh_finish_op(rhc, 1);
return 0;
}
}
#else
rhc->cda = (uint32)((rhc->cda + 1) & AMASK);
if (Mem_read_word(rhc->cda, &data, 0)) {
rh_finish_op(rhc, 1);
return 0;
}
#endif
} else {
data = 0;
}
rhc->buf = data;
if (rhc->wcr == 0) {
return rh_fetch(rhc);
}
#endif
return 1;
}
/* Write next word */
int rh_write(struct rh_if *rhc) {
#if KS
if ((rhc->status & BUSY) == 0)
return 0;
if (uba_write_npr(rhc->cda, rhc->dib->uba_ctl, rhc->buf) == 0) {
rhc->cs2 |= CS2_NEM;
rhc->status &= ~BUSY;
return 0;
}
if ((rhc->cs2 & CS2_UAI) == 0)
rhc->cda += 4;
rhc->wcr = (rhc->wcr + 2) & 0177777;
if (rhc->wcr == 0) {
rhc->status &= ~BUSY;
return 0;
}
#else
if (rhc->wcr == 0) {
if (!rh_fetch(rhc))
return 0;
}
rhc->wcr = (uint32)((rhc->wcr + 1) & WMASK);
if (rhc->cda != 0) {
if (rhc->cda > MEMSIZE) {
rh_finish_op(rhc, 1);
return 0;
}
#if KL
if (rhc->imode == 2) {
if (Mem_write_word(rhc->cda, &rhc->buf, 0)) {
rh_finish_op(rhc, 1);
return 0;
}
if (rhc->cop & 01)
rhc->cda = (uint32)((rhc->cda - 1) & AMASK);
else
rhc->cda = (uint32)((rhc->cda + 1) & AMASK);
} else {
rhc->cda = (uint32)((rhc->cda + 1) & AMASK);
if (Mem_write_word(rhc->cda, &rhc->buf, 0)) {
rh_finish_op(rhc, 1);
return 0;
}
}
#else
rhc->cda = (uint32)((rhc->cda + 1) & AMASK);
if (Mem_write_word(rhc->cda, &rhc->buf, 0)) {
rh_finish_op(rhc, 1);
return 0;
}
#endif
}
if (rhc->wcr == 0) {
return rh_fetch(rhc);
}
#endif
return 1;
}