simh-testsetgenerator/H316/h316_cpu.c
Bob Supnik 2bcd1e7c4c Notes For V2.10-2
1. New Features in 2.10-2

The build procedures have changed.  There is only one UNIX makefile.
To compile without Ethernet support, simply type

	gmake {target|all}

To compile with Ethernet support, type

	gmake USE_NETWORK=1 {target|all}

The Mingw batch files require Mingw release 2 and invoke the Unix
makefile.  There are still separate batch files for compilation
with or without Ethernet support.

1.1 SCP and Libraries

- The EVAL command will evaluate a symbolic type-in and display
  it in numeric form.
- The ! command (with no arguments) will launch the host operating
  system command shell.  The ! command (with an argument) executes
  the argument as a host operating system command.  (Code from
  Mark Pizzolato)
- Telnet sessions now recognize BREAK.  How a BREAK is transmitted
  dependent on the particular Telnet client.  (Code from Mark
  Pizzolato)
- The sockets library includes code for active connections as
  well as listening connections.
- The RESTORE command will restore saved memory size, if the
  simulator supports dynamic memory resizing.

1.2 PDP-1

- The PDP-1 supports the Type 24 serial drum (based on recently
  discovered documents).

1.3 18b PDP's

- The PDP-4 supports the Type 24 serial drum (based on recently
  discovered documents).

1.4 PDP-11

- The PDP-11 implements a stub DEUNA/DELUA (XU).  The real XU
  module will be included in a later release.

1.5 PDP-10

- The PDP-10 implements a stub DEUNA/DELUA (XU).  The real XU
  module will be included in a later release.

1.6 HP 2100

- The IOP microinstruction set is supported for the 21MX as well
  as the 2100.
- The HP2100 supports the Access Interprocessor Link (IPL).

1.7 VAX

- If the VAX console is attached to a Telnet session, BREAK is
  interpreted as console halt.
- The SET/SHOW HISTORY commands enable and display a history of
  the most recently executed instructions.  (Code from Mark
  Pizzolato)

1.8 Terminals Multiplexors

- BREAK detection was added to the HP, DEC, and Interdata terminal
  multiplexors.

1.9 Interdata 16b and 32b

- First release.  UNIX is not yet working.

1.10 SDS 940

- First release.

2. Bugs Fixed in 2.10-2

- PDP-11 console must default to 7b for early UNIX compatibility.
- PDP-11/VAX TMSCP emulator was using the wrong packet length for
  read/write end packets.
- Telnet IAC+IAC processing was fixed, both for input and output
  (found by Mark Pizzolato).
- PDP-11/VAX Ethernet setting flag bits wrong for chained
  descriptors (found by Mark Pizzolato).

3. New Features in 2.10 vs prior releases

3.1 SCP and Libraries

- The VT emulation package has been replaced by the capability
  to remote the console to a Telnet session.  Telnet clients
  typically have more complete and robust VT100 emulation.
- Simulated devices may now have statically allocated buffers,
  in addition to dynamically allocated buffers or disk-based
  data stores.
- The DO command now takes substitutable arguments (max 9).
  In command files, %n represents substitutable argument n.
- The initial command line is now interpreted as the command
  name and substitutable arguments for a DO command.  This is
  backward compatible to prior versions.
- The initial command line parses switches.  -Q is interpreted
  as quiet mode; informational messages are suppressed.
- The HELP command now takes an optional argument.  HELP <cmd>
  types help on the specified command.
- Hooks have been added for implementing GUI-based consoles,
  as well as simulator-specific command extensions.  A few
  internal data structures and definitions have changed.
- Two new routines (tmxr_open_master, tmxr_close_master) have
  been added to sim_tmxr.c.  The calling sequence for
  sim_accept_conn has been changed in sim_sock.c.
- The calling sequence for the VM boot routine has been modified
  to add an additional parameter.
- SAVE now saves, and GET now restores, controller and unit flags.
- Library sim_ether.c has been added for Ethernet support.

3.2 VAX

- Non-volatile RAM (NVR) can behave either like a memory or like
  a disk-based peripheral.  If unattached, it behaves like memory
  and is saved and restored by SAVE and RESTORE, respectively.
  If attached, its contents are loaded from disk by ATTACH and
  written back to disk at DETACH and EXIT.
- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape) has been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from vax_stddev.c and
  now references a common implementation file, dec_pt.h.
- Examine and deposit switches now work on all devices, not just
  the CPU.
- Device address conflicts are not detected until simulation starts.

3.3 PDP-11

- SHOW <device> VECTOR displays the device's interrupt vector.
  Most devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk),
  RX211 (double density floppy), and KW11P programmable clock
  have been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from pdp11_stddev.c and
  now references a common implementation file, dec_pt.h.
- Device bootstraps now use the actual CSR specified by the
  SET ADDRESS command, rather than just the default CSR.  Note
  that PDP-11 operating systems may NOT support booting with
  non-standard addresses.
- Specifying more than 256KB of memory, or changing the bus
  configuration, causes all peripherals that are not compatible
  with the current bus configuration to be disabled.
- Device address conflicts are not detected until simulation starts.

3.4 PDP-10

- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The RX211 (double density floppy) has been added; it is off
  by default.
- The paper tape now references a common implementation file,
  dec_pt.h.
- Device address conflicts are not detected until simulation starts.

3.5 PDP-1

- DECtape (then known as MicroTape) support has been added.
- The line printer and DECtape can be disabled and enabled.

3.6 PDP-8

- The RX28 (double density floppy) has been added as an option to
  the existing RX8E controller.
- SHOW <device> DEVNO displays the device's device number.  Most
  devices allow the device number to be changed with SET <device>
  DEVNO=nnn.
- Device number conflicts are not detected until simulation starts.

3.7 IBM 1620

- The IBM 1620 simulator has been released.

3.8 AltairZ80

- A hard drive has been added for increased storage.
- Several bugs have been fixed.

3.9 HP 2100

- The 12845A has been added and made the default line printer (LPT).
  The 12653A has been renamed LPS and is off by default.  It also
  supports the diagnostic functions needed to run the DCPC and DMS
  diagnostics.
- The 12557A/13210A disk defaults to the 13210A (7900/7901).
- The 12559A magtape is off by default.
- New CPU options (EAU/NOEAU) enable/disable the extended arithmetic
  instructions for the 2116.  These instructions are standard on
  the 2100 and 21MX.
- New CPU options (MPR/NOMPR) enable/disable memory protect for the
  2100 and 21MX.
- New CPU options (DMS/NODMS) enable/disable the dynamic mapping
  instructions for the 21MX.
- The 12539 timebase generator autocalibrates.

3.10 Simulated Magtapes

- Simulated magtapes recognize end of file and the marker
  0xFFFFFFFF as end of medium.  Only the TMSCP tape simulator
  can generate an end of medium marker.
- The error handling in simulated magtapes was overhauled to be
  consistent through all simulators.

3.11 Simulated DECtapes

- Added support for RT11 image file format (256 x 16b) to DECtapes.

4. Bugs Fixed in 2.10 vs prior releases

- TS11/TSV05 was not simulating the XS0_MOT bit, causing failures
  under VMS.  In addition, two of the CTL options were coded
  interchanged.
- IBM 1401 tape was not setting a word mark under group mark for
  load mode reads.  This caused the diagnostics to crash.
- SCP bugs in ssh_break and set_logon were fixed (found by Dave
  Hittner).
- Numerous bugs in the HP 2100 extended arithmetic, floating point,
  21MX, DMS, and IOP instructions were fixed.  Bugs were also fixed
  in the memory protect and DMS functions.  The moving head disks
  (DP, DQ) were revised to simulate the hardware more accurately.
  Missing functions in DQ (address skip, read address) were added.
- PDP-10 tape wouldn't boot, and then wouldn't read (reported by
  Michael Thompson and Harris Newman, respectively)
- PDP-1 typewriter is half duplex, with only one shift state for
  both input and output (found by Derek Peschel)

5. General Notes

WARNING: V2.10 has reorganized and renamed some of the definition
files for the PDP-10, PDP-11, and VAX.  Be sure to delete all
previous source files before you unpack the Zip archive, or
unpack it into a new directory structure.

WARNING: V2.10 has a new, more comprehensive save file format.
Restoring save files from previous releases will cause 'invalid
register' errors and loss of CPU option flags, device enable/
disable flags, unit online/offline flags, and unit writelock
flags.

WARNING: If you are using Visual Studio .NET through the IDE,
be sure to turn off the /Wp64 flag in the project settings, or
dozens of spurious errors will be generated.

WARNING: Compiling Ethernet support under Windows requires
extra steps; see the Ethernet readme file.  Ethernet support is
currently available only for Windows, Linux, NetBSD, and OpenBSD.
2011-04-15 08:33:56 -07:00

1051 lines
35 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* h316_cpu.c: Honeywell 316/516 CPU simulator
Copyright (c) 1999-2002, Robert M. Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
cpu H316/H516 CPU
30-Dec-01 RMS Added old PC queue
03-Nov-01 RMS Fixed NOHSA modifier
30-Nov-01 RMS Added extended SET/SHOW support
The register state for the Honeywell 316/516 CPU is:
AR<1:16> A register
BR<1:16> B register
XR<1:16> X register
PC<1:16> P register (program counter)
Y<1:16> memory address register
MB<1:16> memory data register
C overflow flag
EXT extend mode flag
DP double precision mode flag
SC<1:5> shift count
SR[1:4]<0> sense switches 1-4
The Honeywell 316/516 has six instruction formats: memory reference,
I/O, control, shift, skip, and operate.
The memory reference format is:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|in|xr| op |sc| offset | memory reference
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
<13:10> mnemonic action
0000 (other) see control, shift, skip, operate instructions
0001 JMP P = MA
0010 LDA A = M[MA]
0011 ANA A = A & M[MA]
0100 STA M[MA] = A
0101 ERA A = A ^ M[MA]
0110 ADD A = A + M[MA]
0111 SUB A = A - M[MA]
1000 JST M[MA] = P, P = MA + 1
1001 CAS skip if A == M[MA], double skip if A < M[MA]
1010 IRS M[MA] = M[MA] + 1, skip if M[MA] == 0
1011 IMA A <=> M[MA]
1100 (I/O) see I/O instructions
1101 LDX/STX X = M[MA] (xr = 1), M[MA] = x (xr = 0)
1110 MPY multiply
1111 DIV divide
In non-extend mode, memory reference instructions can access an address
space of 16K words. Multiple levels of indirection are supported, and
each indirect word supplies its own indirect and index bits.
<1,2,7> mode action
0,0,0 sector zero direct MA = IR<8:0>
0,0,1 current direct MA = P<13:9>'IR<8:0>
0,1,0 sector zero indexed MA = IR<8:0> + X
0,1,1 current direct MA = P<13:9>'IR<8:0> + X
1,0,0 sector zero indirect MA = M[IR<8:0>]
1,0,1 current indirect MA = M[P<13:9>'IR<8:0>]
1,1,0 sector zero indirect indexed MA = M[IR<8:0> + X]
1,1,1 current indirect indexed MA = M[MA = P<13:9>'IR<8:0> + X]
In extend mode, memory reference instructions can access an address
space of 32K words. Multiple levels of indirection are supported, but
only post-indexing, based on the original instruction word index flag,
is allowed.
*/
/* The control format is:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0 0 0 0 0 0| opcode | control
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The shift format is:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0 1 0 0 0 0|dr|sz|type | shift count | shift
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | \-+-/
| | |
| | +--------------------- type
| +------------------------- long/A only
+---------------------------- right/left
The skip format is:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 0 0 0 0 0|rv|po|pe|ev|ze|s1|s2|s3|s4|cz| skip
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| | | | | | | | | |
| | | | | | | | | +- skip if C = 0
| | | | | | | | +---- skip if ssw 4 = 0
| | | | | | | +------- skip if ssw 3 = 0
| | | | | | +---------- skip if ssw 2 = 0
| | | | | +------------- skip if ssw 1 = 0
| | | | +---------------- skip if A == 0
| | | +------------------- skip if A<0> == 0
| | +---------------------- skip if mem par err
| +------------------------- skip if A<15> = 0
+---------------------------- reverse skip sense
The operate format is:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 1 1 0 0 0 0| opcode | operate
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The I/O format is:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| op | 1 1 0 0| function | device | I/O transfer
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The IO transfer instruction controls the specified device.
Depending on the opcode, the instruction may set or clear
the device flag, start or stop I/O, or read or write data.
*/
/* This routine is the instruction decode routine for the Honeywell
316/516. It is called from the simulator control program to execute
instructions in simulated memory, starting at the simulated PC.
It runs until 'reason' is set non-zero.
General notes:
1. Reasons to stop. The simulator can be stopped by:
HALT instruction
breakpoint encountered
infinite indirection loop
unimplemented instruction and stop_inst flag set
unknown I/O device and stop_dev flag set
I/O error in I/O simulator
2. Interrupts. Interrupts are maintained by two parallel variables:
dev_ready device ready flags
dev_enable device interrupt enable flags
In addition, dev_ready contains the interrupt enable and interrupt no
defer flags. If interrupt enable and interrupt no defer are set, and
at least one interrupt request is pending, then an interrupt occurs.
The order of flags in these variables corresponds to the order
in the SMK instruction.
3. Non-existent memory. On the H316/516, reads to non-existent memory
return zero, and writes are ignored. In the simulator, the
largest possible memory is instantiated and initialized to zero.
Thus, only writes need be checked against actual memory size.
4. Adding I/O devices. These modules must be modified:
h316_defs.h add interrupt request definition
h316_cpu.c add device dispatch table entry
h316_sys.c add sim_devices table entry
*/
#include "h316_defs.h"
#define PCQ_SIZE 64 /* must be 2**n */
#define PCQ_MASK (PCQ_SIZE - 1)
#define PCQ_ENTRY pcq[pcq_p = (pcq_p - 1) & PCQ_MASK] = PC
#define PCQ_TOP pcq[pcq_p]
#define UNIT_V_MSIZE (UNIT_V_UF) /* dummy mask */
#define UNIT_MSIZE (1 << UNIT_V_MSIZE)
#define m7 0001000 /* for generics */
#define m8 0000400
#define m9 0000200
#define m10 0000100
#define m11 0000040
#define m12 0000020
#define m13 0000010
#define m14 0000004
#define m15 0000002
#define m16 0000001
uint16 M[MAXMEMSIZE] = { 0 }; /* memory */
int32 saved_AR = 0; /* A register */
int32 saved_BR = 0; /* B register */
int32 saved_XR = 0; /* X register */
int32 PC = 0; /* P register */
int32 C = 0; /* C register */
int32 ext = 0; /* extend mode */
int32 pme = 0; /* prev mode extend */
int32 extoff_pending = 0; /* extend off pending */
int32 dp = 0; /* double mode */
int32 sc = 0; /* shift count */
int32 ss[4]; /* sense switches */
int32 dev_ready = 0; /* dev ready */
int32 dev_enable = 0; /* dev enable */
int32 ind_max = 8; /* iadr nest limit */
int32 stop_inst = 1; /* stop on ill inst */
int32 stop_dev = 2; /* stop on ill dev */
uint16 pcq[PCQ_SIZE] = { 0 }; /* PC queue */
int32 pcq_p = 0; /* PC queue ptr */
REG *pcq_r = NULL; /* PC queue reg ptr */
int32 dlog = 0; /* debug log */
int32 turnoff = 0;
extern int32 sim_int_char;
extern int32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
extern FILE *sim_log;
extern t_stat fprint_sym (FILE *of, t_addr addr, t_value *val,
UNIT *uptr, int32 sw);
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_stat cpu_set_noext (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
/* CPU data structures
cpu_dev CPU device descriptor
cpu_unit CPU unit descriptor
cpu_reg CPU register list
cpu_mod CPU modifiers list
*/
UNIT cpu_unit = { UDATA (NULL, UNIT_FIX + UNIT_BINK + UNIT_EXT,
MAXMEMSIZE) };
REG cpu_reg[] = {
{ ORDATA (P, PC, 15) },
{ ORDATA (A, saved_AR, 16) },
{ ORDATA (B, saved_BR, 16) },
{ ORDATA (X, XR, 16) },
{ ORDATA (SC, sc, 16) },
{ FLDATA (C, C, 0) },
{ FLDATA (EXT, ext, 0) },
{ FLDATA (PME, pme, 0) },
{ FLDATA (EXT_OFF, extoff_pending, 0) },
{ FLDATA (DP, dp, 0) },
{ FLDATA (SS1, ss[0], 0) },
{ FLDATA (SS2, ss[1], 0) },
{ FLDATA (SS3, ss[2], 0) },
{ FLDATA (SS4, ss[3], 0) },
{ FLDATA (ION, dev_ready, INT_V_ON) },
{ FLDATA (INODEF, dev_ready, INT_V_NODEF) },
{ ORDATA (DEVRDY, dev_ready, 16), REG_RO },
{ ORDATA (DEVENB, dev_enable, 16), REG_RO },
{ FLDATA (MPERDY, dev_ready, INT_V_MPE) },
{ FLDATA (MPEENB, dev_enable, INT_V_MPE) },
{ FLDATA (STOP_INST, stop_inst, 0) },
{ FLDATA (STOP_DEV, stop_dev, 1) },
{ DRDATA (INDMAX, ind_max, 8), REG_NZ + PV_LEFT },
{ BRDATA (PCQ, pcq, 8, 15, PCQ_SIZE), REG_RO+REG_CIRC },
{ ORDATA (PCQP, pcq_p, 6), REG_HRO },
{ ORDATA (WRU, sim_int_char, 8) },
{ FLDATA (DLOG, dlog, 0), REG_HIDDEN },
{ NULL } };
MTAB cpu_mod[] = {
{ UNIT_EXT, 0, "no extend", "NOEXTEND", &cpu_set_noext },
{ UNIT_EXT, UNIT_EXT, "extend", "EXTEND", NULL },
{ UNIT_HSA, 0, "no HSA", "NOHSA", NULL },
{ UNIT_HSA, UNIT_HSA, "HSA", "HSA", NULL },
{ UNIT_MSIZE, 4096, NULL, "4K", &cpu_set_size },
{ UNIT_MSIZE, 8192, NULL, "8K", &cpu_set_size },
{ UNIT_MSIZE, 12288, NULL, "12K", &cpu_set_size },
{ UNIT_MSIZE, 16384, NULL, "16K", &cpu_set_size },
{ UNIT_MSIZE, 24576, NULL, "24K", &cpu_set_size },
{ UNIT_MSIZE, 32768, NULL, "32K", &cpu_set_size },
{ 0 } };
DEVICE cpu_dev = {
"CPU", &cpu_unit, cpu_reg, cpu_mod,
1, 8, 15, 1, 8, 16,
&cpu_ex, &cpu_dep, &cpu_reset,
NULL, NULL, NULL };
/* I/O dispatch */
int32 undio (int32 op, int32 func, int32 AR);
extern int32 ptrio (int32 op, int32 func, int32 AR);
extern int32 ptpio (int32 op, int32 func, int32 AR);
extern int32 lptio (int32 op, int32 func, int32 AR);
extern int32 ttyio (int32 op, int32 func, int32 AR);
extern int32 clkio (int32 op, int32 func, int32 AR);
int32 (*iotab[64])() = {
&undio, &ptrio, &ptpio, &lptio, &ttyio, &undio, &undio, &undio,
&undio, &undio, &undio, &undio, &undio, &undio, &undio, &undio,
&clkio, &undio, &undio, &undio, &undio, &undio, &undio, &undio,
&undio, &undio, &undio, &undio, &undio, &undio, &undio, &undio,
&undio, &undio, &undio, &undio, &undio, &undio, &undio, &undio,
&undio, &undio, &undio, &undio, &undio, &undio, &undio, &undio,
&undio, &undio, &undio, &undio, &undio, &undio, &undio, &undio,
&undio, &undio, &undio, &undio, &undio, &undio, &undio, &undio };
t_stat sim_instr (void)
{
extern int32 sim_interval;
extern UNIT clk_unit;
int32 AR, BR, MB, Y, t1, t2, t3, skip;
unsigned int32 ut;
t_stat reason;
t_stat Ea (int32 inst, int32 *addr);
void Write (int32 val, int32 addr);
int32 Add16 (int32 val1, int32 val2);
int32 Add31 (int32 val1, int32 val2);
int32 Operate (int32 MB, int32 AR);
#define Read(x) M[(x)]
#define GETDBL_S(h,l) (((h) << 15) | ((l) & MMASK))
#define GETDBL_U(h,l) (((h) << 16) | (l))
#define PUTDBL_S(x) AR = ((x) >> 15) & DMASK; \
BR = (BR & SIGN) | ((x) & MMASK)
#define PUTDBL_U(x) AR = ((x) >> 16) & DMASK; \
BR = (x) & DMASK
#define SEXT(x) (((x) & SIGN)? ((x) | ~DMASK): ((x) & DMASK))
#define NEWA(c,n) (ext? (((c) & ~X_AMASK) | ((n) & X_AMASK)): \
(((c) & ~NX_AMASK) | ((n) & NX_AMASK)))
/* Restore register state */
AR = saved_AR & DMASK; /* restore reg */
BR = saved_BR & DMASK;
XR = saved_XR & DMASK;
PC = PC & ((cpu_unit.flags & UNIT_EXT)? X_AMASK: NX_AMASK); /* mask PC */
reason = 0;
turnoff = 0;
sim_rtc_init (clk_unit.wait); /* init calibration */
/* Main instruction fetch/decode loop */
while (reason == 0) { /* loop until halted */
if (sim_interval <= 0) { /* check clock queue */
if (reason = sim_process_event ()) break; }
if ((dev_ready & (INT_PENDING | dev_enable)) > INT_PENDING) { /* int req? */
pme = ext; /* save extend */
if (cpu_unit.flags & UNIT_EXT) ext = 1; /* ext opt? extend on */
dev_ready = dev_ready & ~INT_ON; /* intr off */
turnoff = 0;
if (dlog && sim_log) fprintf (sim_log, "Interrupt\n");
MB = 0120000 | M_INT; } /* inst = JST* 63 */
else { if (sim_brk_summ &&
sim_brk_test (PC, SWMASK ('E'))) { /* breakpoint? */
reason = STOP_IBKPT; /* stop simulation */
break; }
Y = PC; /* set mem addr */
MB = Read (Y); /* fetch instr */
PC = NEWA (Y, Y + 1); /* incr PC */
dev_ready = dev_ready | INT_NODEF; }
sim_interval = sim_interval - 1;
if (dlog && sim_log && !turnoff) { /* cycle log? */
int32 op = I_GETOP (MB) & 017; /* core opcode */
t_value val = MB;
fprintf (sim_log, "A= %06o C= %1o P= %05o (", AR, C, PC);
fprint_sym (sim_log, Y, &val, &cpu_unit, SWMASK ('M'));
fprintf (sim_log, ")");
if ((op == 0) || (op == 014)) fprintf (sim_log, "\n"); }
/* Memory reference instructions */
switch (I_GETOP (MB)) { /* case on <1:6> */
case 001: case 021: case 041: case 061: /* JMP */
if (reason = Ea (MB, &Y)) break; /* eff addr */
PCQ_ENTRY; /* save PC */
PC = NEWA (PC, Y); /* set new PC */
if (dlog && sim_log) { /* logging? */
int32 op = I_GETOP (M[PC]) & 017; /* get target */
if ((op == 014) && (PC == (PCQ_TOP - 2))) { /* jmp .-1 to IO? */
turnoff = 1; /* yes, stop */
fprintf (sim_log, "Idle loop detected\n"); }
else turnoff = 0; } /* no, log */
if (extoff_pending) ext = extoff_pending = 0; /* cond ext off */
break;
case 002: case 022: case 042: case 062: /* LDA */
if (reason = Ea (MB, &Y)) break; /* eff addr */
if (dp) { /* double prec? */
AR = Read (Y & ~1); /* get doubleword */
BR = Read (Y | 1);
sc = 0; }
else AR = Read (Y); /* no, get word */
break;
case 003: case 023: case 043: case 063: /* ANA */
if (reason = Ea (MB, &Y)) break; /* eff addr */
AR = AR & Read (Y);
break;
case 004: case 024: case 044: case 064: /* STA */
if (reason = Ea (MB, &Y)) break; /* eff addr */
if (dp) { /* double prec? */
if ((Y & 1) == 0) Write (AR, Y); /* if even, store A */
Write (BR, Y | 1); /* store B */
sc = 0; }
else Write (AR, Y); /* no, store word */
break;
case 005: case 025: case 045: case 065: /* ERA */
if (reason = Ea (MB, &Y)) break; /* eff addr */
AR = AR ^ Read (Y);
break;
case 006: case 026: case 046: case 066: /* ADD */
if (reason = Ea (MB, &Y)) break; /* eff addr */
if (dp) { /* double prec? */
t1 = GETDBL_S (AR, BR); /* get A'B */
t2 = GETDBL_S (Read (Y & ~1), Read (Y | 1));
t1 = Add31 (t1, t2); /* 31b add */
PUTDBL_S (t1);
sc = 0; }
else AR = Add16 (AR, Read (Y)); /* no, 16b add */
break;
case 007: case 027: case 047: case 067: /* SUB */
if (reason = Ea (MB, &Y)) break; /* eff addr */
if (dp) { /* double prec? */
t1 = GETDBL_S (AR, BR); /* get A'B */
t2 = GETDBL_S (Read (Y & ~1), Read (Y | 1));
t1 = Add31 (t1, -t2); /* 31b sub */
PUTDBL_S (t1);
sc = 0; }
else AR = Add16 (AR, (-Read (Y)) & DMASK); /* no, 16b sub */
break;
/* Memory reference instructions */
case 010: case 030: case 050: case 070: /* JST */
if (reason = Ea (MB, &Y)) break; /* eff addr */
MB = NEWA (Read (Y), PC); /* merge old PC */
Write (MB, Y);
PCQ_ENTRY;
PC = NEWA (PC, Y + 1); /* set new PC */
break;
case 011: case 031: case 051: case 071: /* CAS */
if (reason = Ea (MB, &Y)) break; /* eff addr */
MB = Read (Y);
if (AR == MB) PC = NEWA (PC, PC + 1);
else if (SEXT (AR) < SEXT (MB)) PC = NEWA (PC, PC + 2);
break;
case 012: case 032: case 052: case 072: /* IRS */
if (reason = Ea (MB, &Y)) break; /* eff addr */
MB = (Read (Y) + 1) & DMASK; /* incr, rewrite */
Write (MB, Y);
if (MB == 0) PC = NEWA (PC, PC + 1); /* skip if zero */
break;
case 013: case 033: case 053: case 073: /* IMA */
if (reason = Ea (MB, &Y)) break; /* eff addr */
MB = Read (Y);
Write (AR, Y); /* A to mem */
AR = MB; /* mem to A */
break;
case 015: case 055: /* STX */
if (reason = Ea (MB & ~IDX, &Y)) break; /* eff addr */
Write (XR, Y); /* store XR */
break;
case 035: case 075: /* LDX */
if (reason = Ea (MB & ~IDX, &Y)) break; /* eff addr */
XR = Read (Y); /* load XR */
break;
case 016: case 036: case 056: case 076: /* MPY */
if (cpu_unit.flags & UNIT_HSA) { /* installed? */
if (reason = Ea (MB, &Y)) break; /* eff addr */
t1 = SEXT (AR) * SEXT (Read (Y));
PUTDBL_S (t1);
sc = 0; }
else reason = stop_inst;
break;
case 017: case 037: case 057: case 077: /* DIV */
if (cpu_unit.flags & UNIT_HSA) { /* installed? */
if (reason = Ea (MB, &Y)) break; /* eff addr */
t2 = SEXT (Read (Y)); /* divr */
if (t2) { /* divr != 0? */
t1 = GETDBL_S (AR, BR); /* get A'B */
BR = (t1 % t2) & DMASK; /* remainder */
t1 = t1 / t2; /* quotient */
AR = t1 & DMASK;
if ((t1 > MMASK) || (t1 < (-SIGN))) C = 1;
else C = 0;
sc = 0; }
else C = 1; }
else reason = stop_inst;
break;
/* I/O instructions */
case 014: /* OCP */
t2 = iotab[MB & DEVMASK] (ioOCP, I_GETFNC (MB), AR);
reason = t2 >> IOT_V_REASON;
turnoff = 0;
break;
case 034: /* SKS */
t2 = iotab[MB & DEVMASK] (ioSKS, I_GETFNC (MB), AR);
reason = t2 >> IOT_V_REASON;
if (t2 & IOT_SKIP) { /* skip? */
PC = NEWA (PC, PC + 1);
turnoff = 0; }
break;
case 054: /* INA */
if (MB & INCLRA) AR = 0;
t2 = iotab[MB & DEVMASK] (ioINA, I_GETFNC (MB), AR);
reason = t2 >> IOT_V_REASON;
if (t2 & IOT_SKIP) { /* skip? */
PC = NEWA (PC, PC + 1);
turnoff = 0; }
AR = t2 & DMASK; /* data */
break;
case 074: /* OTA */
t2 = iotab[MB & DEVMASK] (ioOTA, I_GETFNC (MB), AR);
reason = t2 >> IOT_V_REASON;
if (t2 & IOT_SKIP) { /* skip? */
PC = NEWA (PC, PC + 1);
turnoff = 0; }
break;
/* Control */
case 000:
if ((MB & 1) == 0) { /* HLT */
reason = STOP_HALT;
break; }
if (MB & m14) { /* SGL, DBL */
if (cpu_unit.flags & UNIT_HSA) dp = (MB & m15)? 1: 0;
else reason = stop_inst; }
if (MB & m13) { /* DXA, EXA */
if (!(cpu_unit.flags & UNIT_EXT)) reason = stop_inst;
else if (MB & m15) { /* EXA */
ext = 1;
extoff_pending = 0; } /* DXA */
else extoff_pending = 1; }
if (MB & m12) /* RMP */
dev_ready = dev_ready & ~INT_MPE;
if (MB & m11) { /* SCA, INK */
if (MB & m15) /* INK */
AR = (C << 15) | (dp << 14) | (pme << 13) | (sc & 037);
else if (cpu_unit.flags & UNIT_HSA) /* SCA */
AR = sc & 037;
else reason = stop_inst; }
else if (MB & m10) { /* NRM */
if (cpu_unit.flags & UNIT_HSA) {
for (sc = 0;
(sc <= 32) && ((AR & SIGN) != ((AR << 1) & SIGN));
sc++) {
AR = (AR & SIGN) | ((AR << 1) & MMASK) |
((BR >> 14) & 1);
BR = (BR & SIGN) | ((BR << 1) & MMASK); }
sc = sc & 037; }
else reason = stop_inst; }
else if (MB & m9) { /* IAB */
sc = BR;
BR = AR;
AR = sc; }
if (MB & m8) /* ENB */
dev_ready = (dev_ready | INT_ON) & ~INT_NODEF;
if (MB & m7) /* INH */
dev_ready = dev_ready & ~INT_ON;
break;
/* Shift
Shifts are microcoded as follows:
op<7> = right/left
op<8> = long/short
op<9> = shift/rotate (rotate bits "or" into new position)
op<10> = logical/arithmetic
If !op<7> && op<10> (right arithmetic), A<1> propagates rightward
If op<7> && op<10> (left arithmetic), C is set if A<1> changes state
If !op<8> && op<10> (long arithmetic), B<1> is skipped
This microcoding "explains" how the 4 undefined opcodes actually work
003 = long arith rotate right, skip B<1>, propagate A<1>,
bits rotated out "or" into A<1>
007 = short arith rotate right, propagate A<1>,
bits rotated out "or" into A<1>
013 = long arith rotate left, skip B<1>, C = overflow
017 = short arith rotate left, C = overflow
*/
case 020:
C = 0; /* clear C */
sc = 0; /* clear sc */
if ((t1 = (-MB) & SHFMASK) == 0) break; /* shift count */
switch (I_GETFNC (MB)) { /* case shift fnc */
case 000: /* LRL */
if (t1 > 32) ut = 0; /* >32? all 0 */
else {
ut = GETDBL_U (AR, BR); /* get A'B */
C = (ut >> (t1 - 1)) & 1; /* C = last out */
ut = ut >> t1; } /* log right */
PUTDBL_U (ut); /* store A,B */
break;
case 001: /* LRS */
if (t1 > 31) t1 = 31; /* limit to 31 */
t2 = GETDBL_S (SEXT (AR), BR); /* get A'B signed */
C = (t2 >> (t1 - 1)) & 1; /* C = last out */
t2 = t2 >> t1; /* arith right */
PUTDBL_S (t2); /* store A,B */
break;
case 002: /* LRR */
t2 = t1 % 32; /* mod 32 */
ut = GETDBL_U (AR, BR); /* get A'B */
ut = (ut >> t2) | (ut << (32 - t2)); /* rot right */
C = (ut >> 31) & 1; /* C = A<1> */
PUTDBL_U (ut); /* store A,B */
break;
case 003: /* "long right arot" */
if (reason = stop_inst) break; /* stop on undef? */
for (t2 = 0; t2 < t1; t2++) { /* bit by bit */
C = BR & 1; /* C = last out */
BR = (BR & SIGN) | ((AR & 1) << 14) |
((BR & MMASK) >> 1);
AR = ((AR & SIGN) | (C << 15)) | (AR >> 1); }
break;
case 004: /* LGR */
if (t1 > 16) AR = 0; /* > 16? all 0 */
else {
C = (AR >> (t1 - 1)) & 1; /* C = last out */
AR = (AR >> t1) & DMASK; } /* log right */
break;
case 005: /* ARS */
if (t1 > 16) t1 = 16; /* limit to 16 */
C = ((SEXT (AR)) >> (t1 - 1)) & 1; /* C = last out */
AR = ((SEXT (AR)) >> t1) & DMASK; /* arith right */
break;
case 006: /* ARR */
t2 = t1 % 16; /* mod 16 */
AR = ((AR >> t2) | (AR << (16 - t2))) & DMASK;
C = (AR >> 15) & 1; /* C = A<1> */
break;
case 007: /* "short right arot" */
if (reason = stop_inst) break; /* stop on undef? */
for (t2 = 0; t2 < t1; t2++) { /* bit by bit */
C = AR & 1; /* C = last out */
AR = ((AR & SIGN) | (C << 15)) | (AR >> 1); }
break;
/* Shift, continued */
case 010: /* LLL */
if (t1 > 32) ut = 0; /* > 32? all 0 */
else {
ut = GETDBL_U (AR, BR); /* get A'B */
C = (ut >> (32 - t1)) & 1; /* C = last out */
ut = ut << t1; } /* log left */
PUTDBL_U (ut); /* store A,B */
break;
case 011: /* LLS */
if (t1 > 31) t1 = 31; /* limit to 31 */
t2 = GETDBL_S (SEXT (AR), BR); /* get A'B */
t3 = t2 << t1; /* "arith" left */
PUTDBL_S (t3); /* store A'B */
if ((t2 >> (31 - t1)) != /* shf out = sgn? */
((AR & SIGN)? -1: 0)) C = 1;
break;
case 012: /* LLR */
t2 = t1 % 32; /* mod 32 */
ut = GETDBL_U (AR, BR); /* get A'B */
ut = (ut << t2) | (ut >> (32 - t2)); /* rot left */
C = ut & 1; /* C = B<16> */
PUTDBL_U (ut); /* store A,B */
break;
case 013: /* "long left arot" */
if (reason = stop_inst) break; /* stop on undef? */
for (t2 = 0; t2 < t1; t2++) { /* bit by bit */
AR = (AR << 1) | ((BR >> 14) & 1);
BR = (BR & SIGN) | ((BR << 1) & MMASK) |
((AR >> 16) & 1);
if ((AR & SIGN) != ((AR >> 1) & SIGN)) C = 1;
AR = AR & DMASK; }
break;
case 014: /* LGL */
if (t1 > 16) AR = 0; /* > 16? all 0 */
else {
C = (AR >> (16 - t1)) & 1; /* C = last out */
AR = (AR << t1) & DMASK; } /* log left */
break;
case 015: /* ALS */
if (t1 > 16) t1 = 16; /* limit to 16 */
t2 = SEXT (AR); /* save AR */
AR = (AR << t1) & DMASK; /* "arith" left */
if ((t2 >> (16 - t1)) != /* shf out + sgn */
((AR & SIGN)? -1: 0)) C = 1;
break;
case 016: /* ALR */
t2 = t1 % 16; /* mod 16 */
AR = ((AR << t2) | (AR >> (16 - t2))) & DMASK;
C = AR & 1; /* C = A<16> */
break;
case 017: /* "short left arot" */
if (reason = stop_inst) break; /* stop on undef? */
for (t2 = 0; t2 < t1; t2++) { /* bit by bit */
if ((AR & SIGN) != ((AR << 1) & SIGN)) C = 1;
AR = ((AR << 1) | (AR >> 15)) & DMASK; }
break; } /* end case fnc */
break;
/* Skip */
case 040:
skip = 0;
if (((MB & 000001) && C) || /* SSC */
((MB & 000002) && ss[3]) || /* SS4 */
((MB & 000004) && ss[2]) || /* SS3 */
((MB & 000010) && ss[1]) || /* SS2 */
((MB & 000020) && ss[0]) || /* SS1 */
((MB & 000040) && AR) || /* SNZ */
((MB & 000100) && (AR & 1)) || /* SLN */
((MB & 000200) && (TST_INTREQ (INT_MPE))) || /* SPS */
((MB & 000400) && (AR & SIGN))) skip = 1; /* SMI */
if ((MB & 001000) == 0) skip = skip ^ 1; /* reverse? */
PC = NEWA (PC, PC + skip);
break;
/* Operate */
case 060:
if (MB == 0140024) AR = AR ^ SIGN; /* CHS */
else if (MB == 0140040) AR = 0; /* CRA */
else if (MB == 0140100) AR = AR & ~SIGN; /* SSP */
else if (MB == 0140200) C = 0; /* RCB */
else if (MB == 0140320) { /* CSA */
C = (AR & SIGN) >> 15;
AR = AR & ~SIGN; }
else if (MB == 0140401) AR = AR ^ DMASK; /* CMA */
else if (MB == 0140407) { /* TCA */
AR = (-AR) & DMASK;
sc = 0; }
else if (MB == 0140500) AR = AR | SIGN; /* SSM */
else if (MB == 0140600) C = 1; /* SCB */
else if (MB == 0141044) AR = AR & 0177400; /* CAR */
else if (MB == 0141050) AR = AR & 0377; /* CAL */
else if (MB == 0141140) AR = AR >> 8; /* ICL */
else if (MB == 0141206) AR = Add16 (AR, 1); /* AOA */
else if (MB == 0141216) AR = Add16 (AR, C); /* ACA */
else if (MB == 0141240) AR = (AR << 8) & DMASK; /* ICR */
else if (MB == 0141340) /* ICA */
AR = ((AR << 8) | (AR >> 8)) & DMASK;
else if (reason = stop_inst) break;
else AR = Operate (MB, AR); /* undefined */
break;
} /* end case op */
} /* end while */
saved_AR = AR & DMASK;
saved_BR = BR & DMASK;
saved_XR = XR & DMASK;
pcq_r->qptr = pcq_p; /* update pc q ptr */
return reason;
}
/* Effective address
The effective address calculation consists of three phases:
- base address calculation: 0/pagenumber'displacement
- (extend): indirect address resolution
(non-extend): pre-indexing
- (extend): post-indexing
(non-extend): indirect address/post-indexing resolution
In extend mode, address calculations are carried out to 16b
and masked to 15b at exit. In non-extend mode, address bits
<1:2> are preserved by the NEWA macro; address bit <1> is
masked at exit.
*/
t_stat Ea (int32 IR, int32 *addr)
{
int32 i;
int32 Y = IR & (IA | DISP); /* ind + disp */
if (IR & SC) Y = ((PC - 1) & PAGENO) | Y; /* cur sec? + pageno */
if (ext) { /* extend mode? */
for (i = 0; (i < ind_max) && (Y & IA); i++) { /* resolve ind addr */
Y = Read (Y & X_AMASK); } /* get ind addr */
if (IR & IDX) Y = Y + XR; /* post-index */
} /* end if ext */
else { /* non-extend */
Y = NEWA (PC, Y + ((IR & IDX)? XR: 0)); /* pre-index */
for (i = 0; (i < ind_max) && (IR & IA); i++) { /* resolve ind addr */
IR = Read (Y & X_AMASK); /* get ind addr */
Y = NEWA (Y, IR + ((IR & IDX)? XR: 0)); } /* post-index */
} /* end else */
*addr = Y = Y & X_AMASK; /* return addr */
if (dlog && sim_log && !turnoff) /* cycle log? */
fprintf (sim_log, " EA= %06o [%06o]\n", Y, M[Y]);
if (i >= ind_max) return STOP_IND; /* too many ind? */
return SCPE_OK;
}
/* Write memory */
void Write (int32 val, int32 addr)
{
if (((addr == 0) || (addr >= 020)) && MEM_ADDR_OK (addr))
M[addr] = val;
return;
}
/* Add */
int32 Add16 (int32 v1, int32 v2)
{
int32 r = v1 + v2;
C = 0;
if (((v1 ^ ~v2) & (v1 ^ r)) & SIGN) C = 1;
return (r & DMASK);
}
int32 Add31 (int32 v1, int32 v2)
{
int32 r = v1 + v2;
C = 0;
if (((v1 ^ ~v2) & (v1 ^ r)) & (1u << 30)) C = 1;
return r;
}
/* Unimplemented I/O device */
int32 undio (int32 op, int32 fnc, int32 val)
{
return ((stop_dev << IOT_V_REASON) | val);
}
/* Undefined operate instruction. This code is reached when the
opcode does not correspond to a standard operate instruction.
It simulates the behavior of the actual logic.
An operate instruction executes in 4 or 6 phases. A 'normal'
instruction takes 4 phases:
t1 t1
t2/tlate t2/t2 extended into t3
t3/tlate t3
t4 t4
A '1.5 cycle' instruction takes 6 phases:
t1 t1
t2/tlate t2/t2 extended into t3
t3/tlate t3
t2/tlate 'special' t2/t2 extended into t3
t3/tlate t3
t4 t4
The key signals, by phase, are the following
tlate EASTL enable A to sum leg 1 (else 0)
(((m12+m16)x!azzzz)+(m9+m11+azzzz)
EASBM enable 0 to sum leg 2 (else 177777)
(m9+m11+azzzz)
JAMKN jam carry network to 0 = force XOR
((m12+m16)x!azzzz)
EIKI7 force carry into adder
((m15x(C+!m13))x!JAMKN)
t3 CLDTR set D to 177777 (always)
ESDTS enable adder sum to D (always)
SETAZ enable repeat cycle = set azzzz
(m8xm15)
if azzzz {
t2 CLATR clear A register (due to azzzz)
EDAHS enable D high to A high register (due to azzzz)
EDALS enable D low to A low register (due to azzzz)
tlate, t3 as above
}
t4 CLATR clear A register
(m11+m15+m16)
CLA1R clear A1 register
(m10+m14)
EDAHS enable D high to A high register
((m11xm14)+m15+m16)
EDALS enable D low to A low register
((m11xm13)+m15+m16)
ETAHS enable D transposed to A high register
(m9xm11)
ETALS enable D transposed to A low register
(m10xm11)
EDA1R enable D1 to A1 register
((m8xm10)+m14)
CBITL clear C, conditionally set C from adder output
(m9x!m11)
CBITG conditionally set C if D1
(m10xm12xD1)
CBITE unconditionally set C
(m8xm9)
*/
int32 Operate (int32 MB, int32 AR)
{
int32 D, jamkn, eiki7, easbm, eastl, setaz;
int32 clatr, cla1r, edahs, edals, etahs, etals, eda1r;
int32 cbitl, cbitg, cbite;
int32 aleg, bleg, ARx;
/* Phase tlate */
ARx = AR; /* default */
jamkn = (MB & (m12+m16)) != 0; /* m12+m16 */
easbm = (MB & (m9+m11)) != 0; /* m9+m11 */
eastl = jamkn || easbm; /* m9+m11+m12+m16 */
setaz = (MB & (m8+m15)) == (m8+m15); /* m8xm15*/
eiki7 = (MB & m15) && (C || !(MB & m13)); /* cin */
aleg = eastl? AR: 0; /* a input */
bleg = easbm? 0: DMASK; /* b input */
if (jamkn) D = aleg ^ bleg; /* jammin? xor */
else D = (aleg + bleg + eiki7) & DMASK; /* else add */
/* Possible repeat at end of tlate - special t2, repeat tlate */
if (setaz) {
ARx = D; /* forced: t2 */
aleg = ARx; /* forced: tlate */
bleg = 0; /* forced */
jamkn = 0; /* forced */
D = (aleg + bleg + eiki7) & DMASK; /* forced add */
sc = 0; } /* ends repeat */
/* Phase t4 */
clatr = (MB & (m11+m15+m16)) != 0; /* m11+m15+m16 */
cla1r = (MB & (m10+m14)) != 0; /* m10+m14 */
edahs = ((MB & (m11+m14)) == (m11+m14)) || /* (m11xm14)+m15+m16 */
(MB & (m15+m16));
edals = ((MB & (m11+m13)) == (m11+m13)) || /* (m11xm13)+m15+m16 */
(MB & (m15+m16));
etahs = (MB & (m9+m11)) == (m9+m11); /* m9xm11 */
etals = (MB & (m10+m11)) == (m10+m11); /* m10xm11 */
eda1r = ((MB & (m8+m10)) == (m8+m10)) || (MB & m14); /* (m8xm10)+m14 */
cbitl = (MB & (m9+m11)) == m9; /* m9x!m11 */
cbite = (MB & (m8+m9)) == (m8+m9); /* m8xm9 */
cbitg = (MB & (m10+m12)) == (m10+m12); /* m10xm12 */
if (clatr) ARx = 0; /* clear A */
if (cla1r) ARx = ARx & ~SIGN; /* clear A1 */
if (edahs) ARx = ARx | (D & 0177400); /* D hi to A hi */
if (edals) ARx = ARx | (D & 0000377); /* D lo to A lo */
if (etahs) ARx = ARx | ((D << 8) & 0177400); /* D lo to A hi */
if (etals) ARx = ARx | ((D >> 8) & 0000377); /* D hi to A lo */
if (eda1r) ARx = ARx | (D & SIGN); /* D1 to A1 */
if (cbitl) { /* ovflo to C */
/* Overflow calculation. Cases:
aleg bleg cin overflow
0 x x can't overflow
A 0 0 can't overflow
A -1 1 can't overflow
A 0 1 overflow if 77777->100000
A -1 0 overflow if 100000->77777
*/
if (!jamkn &&
((bleg && !eiki7 && (D == 0077777)) ||
(!bleg && eiki7 && (D == 0100000)))) C = 1;
else C = 0; }
if (cbite || (cbitg && (D & SIGN))) C = 1; /* C = 1 */
return ARx;
}
/* Reset routines */
t_stat cpu_reset (DEVICE *dptr)
{
saved_AR = saved_BR = saved_XR = 0;
C = 0;
dp = 0;
ext = pme = extoff_pending = 0;
dev_ready = dev_ready & ~INT_PENDING;
dev_enable = 0;
pcq_r = find_reg ("PCQ", NULL, dptr);
if (pcq_r) pcq_r->qptr = 0;
else return SCPE_IERR;
sim_brk_types = sim_brk_dflt = SWMASK ('E');
return SCPE_OK;
}
/* Memory examine */
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
int32 d;
if (addr >= MEMSIZE) return SCPE_NXM;
if (addr == 0) d = saved_XR;
else d = M[addr];
if (vptr != NULL) *vptr = d & DMASK;
return SCPE_OK;
}
/* Memory deposit */
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
if (addr >= MEMSIZE) return SCPE_NXM;
if (addr == 0) saved_XR = val & DMASK;
else M[addr] = val & DMASK;
return SCPE_OK;
}
/* Option processors */
t_stat cpu_set_noext (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (MEMSIZE > (NX_AMASK + 1)) return SCPE_ARG;
return SCPE_OK;
}
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 mc = 0;
t_addr i;
if ((val <= 0) || (val > MAXMEMSIZE) || ((val & 07777) != 0) ||
(((cpu_unit.flags & UNIT_EXT) == 0) && (val > (NX_AMASK + 1))))
return SCPE_ARG;
for (i = val; i < MEMSIZE; i++) mc = mc | M[i];
if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE)))
return SCPE_OK;
MEMSIZE = val;
for (i = MEMSIZE; i < MAXMEMSIZE; i++) M[i] = 0;
return SCPE_OK;
}