simh-testsetgenerator/HP2100/hp2100_mux.c
Bob Supnik 2bcd1e7c4c Notes For V2.10-2
1. New Features in 2.10-2

The build procedures have changed.  There is only one UNIX makefile.
To compile without Ethernet support, simply type

	gmake {target|all}

To compile with Ethernet support, type

	gmake USE_NETWORK=1 {target|all}

The Mingw batch files require Mingw release 2 and invoke the Unix
makefile.  There are still separate batch files for compilation
with or without Ethernet support.

1.1 SCP and Libraries

- The EVAL command will evaluate a symbolic type-in and display
  it in numeric form.
- The ! command (with no arguments) will launch the host operating
  system command shell.  The ! command (with an argument) executes
  the argument as a host operating system command.  (Code from
  Mark Pizzolato)
- Telnet sessions now recognize BREAK.  How a BREAK is transmitted
  dependent on the particular Telnet client.  (Code from Mark
  Pizzolato)
- The sockets library includes code for active connections as
  well as listening connections.
- The RESTORE command will restore saved memory size, if the
  simulator supports dynamic memory resizing.

1.2 PDP-1

- The PDP-1 supports the Type 24 serial drum (based on recently
  discovered documents).

1.3 18b PDP's

- The PDP-4 supports the Type 24 serial drum (based on recently
  discovered documents).

1.4 PDP-11

- The PDP-11 implements a stub DEUNA/DELUA (XU).  The real XU
  module will be included in a later release.

1.5 PDP-10

- The PDP-10 implements a stub DEUNA/DELUA (XU).  The real XU
  module will be included in a later release.

1.6 HP 2100

- The IOP microinstruction set is supported for the 21MX as well
  as the 2100.
- The HP2100 supports the Access Interprocessor Link (IPL).

1.7 VAX

- If the VAX console is attached to a Telnet session, BREAK is
  interpreted as console halt.
- The SET/SHOW HISTORY commands enable and display a history of
  the most recently executed instructions.  (Code from Mark
  Pizzolato)

1.8 Terminals Multiplexors

- BREAK detection was added to the HP, DEC, and Interdata terminal
  multiplexors.

1.9 Interdata 16b and 32b

- First release.  UNIX is not yet working.

1.10 SDS 940

- First release.

2. Bugs Fixed in 2.10-2

- PDP-11 console must default to 7b for early UNIX compatibility.
- PDP-11/VAX TMSCP emulator was using the wrong packet length for
  read/write end packets.
- Telnet IAC+IAC processing was fixed, both for input and output
  (found by Mark Pizzolato).
- PDP-11/VAX Ethernet setting flag bits wrong for chained
  descriptors (found by Mark Pizzolato).

3. New Features in 2.10 vs prior releases

3.1 SCP and Libraries

- The VT emulation package has been replaced by the capability
  to remote the console to a Telnet session.  Telnet clients
  typically have more complete and robust VT100 emulation.
- Simulated devices may now have statically allocated buffers,
  in addition to dynamically allocated buffers or disk-based
  data stores.
- The DO command now takes substitutable arguments (max 9).
  In command files, %n represents substitutable argument n.
- The initial command line is now interpreted as the command
  name and substitutable arguments for a DO command.  This is
  backward compatible to prior versions.
- The initial command line parses switches.  -Q is interpreted
  as quiet mode; informational messages are suppressed.
- The HELP command now takes an optional argument.  HELP <cmd>
  types help on the specified command.
- Hooks have been added for implementing GUI-based consoles,
  as well as simulator-specific command extensions.  A few
  internal data structures and definitions have changed.
- Two new routines (tmxr_open_master, tmxr_close_master) have
  been added to sim_tmxr.c.  The calling sequence for
  sim_accept_conn has been changed in sim_sock.c.
- The calling sequence for the VM boot routine has been modified
  to add an additional parameter.
- SAVE now saves, and GET now restores, controller and unit flags.
- Library sim_ether.c has been added for Ethernet support.

3.2 VAX

- Non-volatile RAM (NVR) can behave either like a memory or like
  a disk-based peripheral.  If unattached, it behaves like memory
  and is saved and restored by SAVE and RESTORE, respectively.
  If attached, its contents are loaded from disk by ATTACH and
  written back to disk at DETACH and EXIT.
- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape) has been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from vax_stddev.c and
  now references a common implementation file, dec_pt.h.
- Examine and deposit switches now work on all devices, not just
  the CPU.
- Device address conflicts are not detected until simulation starts.

3.3 PDP-11

- SHOW <device> VECTOR displays the device's interrupt vector.
  Most devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk),
  RX211 (double density floppy), and KW11P programmable clock
  have been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from pdp11_stddev.c and
  now references a common implementation file, dec_pt.h.
- Device bootstraps now use the actual CSR specified by the
  SET ADDRESS command, rather than just the default CSR.  Note
  that PDP-11 operating systems may NOT support booting with
  non-standard addresses.
- Specifying more than 256KB of memory, or changing the bus
  configuration, causes all peripherals that are not compatible
  with the current bus configuration to be disabled.
- Device address conflicts are not detected until simulation starts.

3.4 PDP-10

- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The RX211 (double density floppy) has been added; it is off
  by default.
- The paper tape now references a common implementation file,
  dec_pt.h.
- Device address conflicts are not detected until simulation starts.

3.5 PDP-1

- DECtape (then known as MicroTape) support has been added.
- The line printer and DECtape can be disabled and enabled.

3.6 PDP-8

- The RX28 (double density floppy) has been added as an option to
  the existing RX8E controller.
- SHOW <device> DEVNO displays the device's device number.  Most
  devices allow the device number to be changed with SET <device>
  DEVNO=nnn.
- Device number conflicts are not detected until simulation starts.

3.7 IBM 1620

- The IBM 1620 simulator has been released.

3.8 AltairZ80

- A hard drive has been added for increased storage.
- Several bugs have been fixed.

3.9 HP 2100

- The 12845A has been added and made the default line printer (LPT).
  The 12653A has been renamed LPS and is off by default.  It also
  supports the diagnostic functions needed to run the DCPC and DMS
  diagnostics.
- The 12557A/13210A disk defaults to the 13210A (7900/7901).
- The 12559A magtape is off by default.
- New CPU options (EAU/NOEAU) enable/disable the extended arithmetic
  instructions for the 2116.  These instructions are standard on
  the 2100 and 21MX.
- New CPU options (MPR/NOMPR) enable/disable memory protect for the
  2100 and 21MX.
- New CPU options (DMS/NODMS) enable/disable the dynamic mapping
  instructions for the 21MX.
- The 12539 timebase generator autocalibrates.

3.10 Simulated Magtapes

- Simulated magtapes recognize end of file and the marker
  0xFFFFFFFF as end of medium.  Only the TMSCP tape simulator
  can generate an end of medium marker.
- The error handling in simulated magtapes was overhauled to be
  consistent through all simulators.

3.11 Simulated DECtapes

- Added support for RT11 image file format (256 x 16b) to DECtapes.

4. Bugs Fixed in 2.10 vs prior releases

- TS11/TSV05 was not simulating the XS0_MOT bit, causing failures
  under VMS.  In addition, two of the CTL options were coded
  interchanged.
- IBM 1401 tape was not setting a word mark under group mark for
  load mode reads.  This caused the diagnostics to crash.
- SCP bugs in ssh_break and set_logon were fixed (found by Dave
  Hittner).
- Numerous bugs in the HP 2100 extended arithmetic, floating point,
  21MX, DMS, and IOP instructions were fixed.  Bugs were also fixed
  in the memory protect and DMS functions.  The moving head disks
  (DP, DQ) were revised to simulate the hardware more accurately.
  Missing functions in DQ (address skip, read address) were added.
- PDP-10 tape wouldn't boot, and then wouldn't read (reported by
  Michael Thompson and Harris Newman, respectively)
- PDP-1 typewriter is half duplex, with only one shift state for
  both input and output (found by Derek Peschel)

5. General Notes

WARNING: V2.10 has reorganized and renamed some of the definition
files for the PDP-10, PDP-11, and VAX.  Be sure to delete all
previous source files before you unpack the Zip archive, or
unpack it into a new directory structure.

WARNING: V2.10 has a new, more comprehensive save file format.
Restoring save files from previous releases will cause 'invalid
register' errors and loss of CPU option flags, device enable/
disable flags, unit online/offline flags, and unit writelock
flags.

WARNING: If you are using Visual Studio .NET through the IDE,
be sure to turn off the /Wp64 flag in the project settings, or
dozens of spurious errors will be generated.

WARNING: Compiling Ethernet support under Windows requires
extra steps; see the Ethernet readme file.  Ethernet support is
currently available only for Windows, Linux, NetBSD, and OpenBSD.
2011-04-15 08:33:56 -07:00

703 lines
23 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* hp2100_mux.c: HP 2100 12920A terminal multiplexor simulator
Copyright (c) 2002, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
mux,muxl,muxc 12920A terminal multiplexor
01-Nov-02 RMS Added 7B/8B support
22-Aug-02 RMS Updated for changes to sim_tmxr
The 12920A consists of three separate devices
mux scanner (upper data card)
muxl lines (lower data card)
muxm modem control (control card)
The lower data card has no CMD flop; the control card has no CMD flop.
The upper data card has none of the usual flops.
*/
#include "hp2100_defs.h"
#include "sim_sock.h"
#include "sim_tmxr.h"
#include <ctype.h>
#define MUX_LINES 16 /* user lines */
#define MUX_ILINES 5 /* diag rcv only */
#define UNIT_V_8B (UNIT_V_UF + 0) /* 8B */
#define UNIT_V_UC (UNIT_V_UF + 1) /* UC only */
#define UNIT_V_MDM (UNIT_V_UF + 2) /* modem control */
#define UNIT_8B (1 << UNIT_V_8B)
#define UNIT_UC (1 << UNIT_V_UC)
#define UNIT_MDM (1 << UNIT_V_MDM)
#define MUXU_INIT_POLL 8000
#define MUXL_WAIT 500
/* Channel number (OTA upper, LIA lower or upper) */
#define MUX_V_CHAN 10 /* channel num */
#define MUX_M_CHAN 037
#define MUX_CHAN(x) (((x) >> MUX_V_CHAN) & MUX_M_CHAN)
/* OTA, lower = parameters or data */
#define OTL_P 0100000 /* parameter */
#define OTL_TX 0040000 /* transmit */
#define OTL_ENB 0020000 /* enable */
#define OTL_TPAR 0010000 /* xmt parity */
#define OTL_ECHO 0010000 /* rcv echo */
#define OTL_DIAG 0004000 /* diagnose */
#define OTL_SYNC 0004000 /* sync */
#define OTL_V_LNT 8 /* char length */
#define OTL_M_LNT 07
#define OTL_LNT(x) (((x) >> OTL_V_LNT) & OTL_M_LNT)
#define OTL_V_BAUD 0 /* baud rate */
#define OTL_M_BAUD 0377
#define OTL_BAUD(x) (((x) >> OTL_V_BAUD) & OTL_M_BAUD)
#define OTL_CHAR 01777 /* char mask */
/* LIA, lower = received data */
#define LIL_PAR 0100000 /* parity */
#define PUT_DCH(x) (((x) & MUX_M_CHAN) << MUX_V_CHAN)
#define LIL_CHAR 01777 /* character */
/* LIA, upper = status */
#define LIU_SEEK 0100000 /* seeking NI */
#define LIU_DG 0000010 /* diagnose */
#define LIU_BRK 0000004 /* break */
#define LIU_LOST 0000002 /* char lost */
#define LIU_TR 0000001 /* trans/rcv */
/* OTA, control */
#define OTC_SCAN 0100000 /* scan */
#define OTC_UPD 0040000 /* update */
#define OTC_V_CHAN 10 /* channel */
#define OTC_M_CHAN 017
#define OTC_CHAN(x) (((x) >> OTC_V_CHAN) & OTC_M_CHAN)
#define OTC_EC2 0000200 /* enable Cn upd */
#define OTC_EC1 0000100
#define OTC_C2 0000040 /* Cn flops */
#define OTC_C1 0000020
#define OTC_ES2 0000010 /* enb comparison */
#define OTC_ES1 0000004
#define OTC_V_ES 2
#define OTC_SS2 0000002 /* SSn flops */
#define OTC_SS1 0000001
#define OTC_RW (OTC_ES2|OTC_ES1|OTC_SS2|OTC_SS1)
#define RTS OCT_C2 /* C2 = rts */
#define DTR OTC_C1 /* C1 = dtr */
/* LIA, control */
#define LIC_MBO 0140000 /* always set */
#define LIC_V_CHAN 10 /* channel */
#define LIC_M_CHAN 017
#define PUT_CCH(x) (((x) & OTC_M_CHAN) << OTC_V_CHAN)
#define LIC_I2 0001000 /* change flags */
#define LIC_I1 0000400
#define LIC_S2 0000002 /* Sn flops */
#define LIC_S1 0000001
#define LIC_V_I 8 /* S1 to I1 */
#define CDET LIC_S2 /* S2 = cdet */
#define DSR LIC_S1 /* S1 = dsr */
#define LIC_TSTI(ch) (((muxc_lia[ch] ^ muxc_ota[ch]) & \
((muxc_ota[ch] & (OTC_ES2|OTC_ES1)) >> OTC_V_ES)) \
<< LIC_V_I)
extern uint32 PC;
extern uint32 dev_cmd[2], dev_ctl[2], dev_flg[2], dev_fbf[2];
uint16 mux_sta[MUX_LINES]; /* line status */
uint16 mux_rpar[MUX_LINES + MUX_ILINES]; /* rcv param */
uint16 mux_xpar[MUX_LINES]; /* xmt param */
uint8 mux_rbuf[MUX_LINES + MUX_ILINES]; /* rcv buf */
uint8 mux_xbuf[MUX_LINES]; /* xmt buf */
uint8 mux_rchp[MUX_LINES + MUX_ILINES]; /* rcv chr pend */
uint8 mux_xdon[MUX_LINES]; /* xmt done */
uint8 muxc_ota[MUX_LINES]; /* ctrl: Cn,ESn,SSn */
uint8 muxc_lia[MUX_LINES]; /* ctrl: Sn */
uint32 mux_tps = 100; /* polls/second */
uint32 muxl_ibuf = 0; /* low in: rcv data */
uint32 muxl_obuf = 0; /* low out: param */
uint32 muxu_ibuf = 0; /* upr in: status */
uint32 muxu_obuf = 0; /* upr out: chan */
uint32 muxc_chan = 0; /* ctrl chan */
uint32 muxc_scan = 0; /* ctrl scan */
TMLN mux_ldsc[MUX_LINES] = { 0 }; /* line descriptors */
TMXR mux_desc = { MUX_LINES, 0, 0, NULL }; /* mux descriptor */
DEVICE muxl_dev, muxu_dev, muxc_dev;
int32 muxlio (int32 inst, int32 IR, int32 dat);
int32 muxuio (int32 inst, int32 IR, int32 dat);
int32 muxcio (int32 inst, int32 IR, int32 dat);
t_stat muxi_svc (UNIT *uptr);
t_stat muxo_svc (UNIT *uptr);
t_stat mux_reset (DEVICE *dptr);
t_stat mux_attach (UNIT *uptr, char *cptr);
t_stat mux_detach (UNIT *uptr);
t_stat mux_summ (FILE *st, UNIT *uptr, int32 val, void *desc);
t_stat mux_show (FILE *st, UNIT *uptr, int32 val, void *desc);
void mux_data_int (void);
void mux_ctrl_int (void);
void mux_diag (int32 c);
static uint8 odd_par[256] = {
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, /* 000-017 */
0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, /* 020-037 */
0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, /* 040-067 */
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, /* 060-077 */
0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, /* 100-117 */
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, /* 120-137 */
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, /* 140-157 */
0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, /* 160-177 */
0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, /* 200-217 */
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, /* 220-237 */
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, /* 240-257 */
0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, /* 260-277 */
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, /* 300-317 */
0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, /* 320-337 */
0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, /* 340-367 */
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 }; /* 360-377 */
#define RCV_PAR(x) (odd_par[(x) & 0377]? LIL_PAR: 0)
DIB mux_dib[] = {
{ MUXL, 0, 0, 0, 0, &muxlio },
{ MUXU, 0, 0, 0, 0, &muxuio } };
#define muxl_dib mux_dib[0]
#define muxu_dib mux_dib[1]
/* MUX data structures
muxu_dev MUX device descriptor
muxu_unit MUX unit descriptor
muxu_reg MUX register list
muxu_mod MUX modifiers list
*/
UNIT muxu_unit = { UDATA (&muxi_svc, UNIT_ATTABLE, 0), MUXU_INIT_POLL };
REG muxu_reg[] = {
{ ORDATA (IBUF, muxu_ibuf, 16) },
{ ORDATA (OBUF, muxu_obuf, 16) },
{ FLDATA (CMD, muxu_dib.cmd, 0), REG_HRO },
{ FLDATA (CTL, muxu_dib.ctl, 0), REG_HRO },
{ FLDATA (FLG, muxu_dib.flg, 0), REG_HRO },
{ FLDATA (FBF, muxu_dib.fbf, 0), REG_HRO },
{ ORDATA (DEVNO, muxu_dib.devno, 6), REG_HRO },
{ NULL } };
MTAB muxu_mod[] = {
{ UNIT_ATT, UNIT_ATT, "connections", NULL, NULL, &mux_summ },
{ MTAB_XTD | MTAB_VDV | MTAB_NMO, 1, "CONNECTIONS", NULL,
NULL, &mux_show, NULL },
{ MTAB_XTD | MTAB_VDV | MTAB_NMO, 0, "STATISTICS", NULL,
NULL, &mux_show, NULL },
{ MTAB_XTD|MTAB_VDV, 1, "DEVNO", "DEVNO",
&hp_setdev, &hp_showdev, &muxl_dev },
{ MTAB_XTD | MTAB_VDV, 1, NULL, "DISCONNECT",
&tmxr_dscln, NULL, &mux_desc },
{ 0 } };
DEVICE muxu_dev = {
"MUX", &muxu_unit, muxu_reg, muxu_mod,
1, 10, 31, 1, 8, 8,
&tmxr_ex, &tmxr_dep, &mux_reset,
NULL, &mux_attach, &mux_detach,
&muxu_dib, DEV_DISABLE };
/* MUXL data structures
muxl_dev MUXL device descriptor
muxl_unit MUXL unit descriptor
muxl_reg MUXL register list
muxl_mod MUXL modifiers list
*/
UNIT muxl_unit[] = {
{ UDATA (&muxo_svc, UNIT_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, UNIT_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, UNIT_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, UNIT_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, UNIT_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, UNIT_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, UNIT_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, UNIT_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, UNIT_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, UNIT_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, UNIT_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, UNIT_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, UNIT_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, UNIT_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, UNIT_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, UNIT_UC, 0), MUXL_WAIT },
{ UDATA (&muxo_svc, UNIT_UC, 0), MUXL_WAIT } };
MTAB muxl_mod[] = {
{ UNIT_UC+UNIT_8B, UNIT_UC, "UC", "UC", NULL },
{ UNIT_UC+UNIT_8B, 0 , "7b", "7B", NULL },
{ UNIT_UC+UNIT_8B, UNIT_8B, "8b", "8B", NULL },
{ UNIT_MDM, 0, "no dataset", "NODATASET", NULL },
{ UNIT_MDM, UNIT_MDM, "dataset", "DATASET", NULL },
{ MTAB_XTD|MTAB_VDV, 1, "DEVNO", "DEVNO",
&hp_setdev, &hp_showdev, &muxl_dev },
{ 0 } };
REG muxl_reg[] = {
{ FLDATA (CMD, muxl_dib.cmd, 0), REG_HRO },
{ FLDATA (CTL, muxl_dib.ctl, 0) },
{ FLDATA (FLG, muxl_dib.flg, 0) },
{ FLDATA (FBF, muxl_dib.fbf, 0) },
{ BRDATA (STA, mux_sta, 8, 16, MUX_LINES) },
{ BRDATA (RPAR, mux_rpar, 8, 16, MUX_LINES + MUX_ILINES) },
{ BRDATA (XPAR, mux_xpar, 8, 16, MUX_LINES) },
{ BRDATA (RBUF, mux_rbuf, 8, 8, MUX_LINES + MUX_ILINES) },
{ BRDATA (XBUF, mux_xbuf, 8, 8, MUX_LINES) },
{ BRDATA (RCHP, mux_rchp, 8, 1, MUX_LINES + MUX_ILINES) },
{ BRDATA (XDON, mux_xdon, 8, 1, MUX_LINES) },
{ URDATA (TIME, muxl_unit[0].wait, 10, 24, 0,
MUX_LINES, REG_NZ + PV_LEFT) },
{ ORDATA (DEVNO, muxl_dib.devno, 6), REG_HRO },
{ NULL } };
DEVICE muxl_dev = {
"MUXL", muxl_unit, muxl_reg, muxl_mod,
MUX_LINES, 10, 31, 1, 8, 8,
NULL, NULL, &mux_reset,
NULL, NULL, NULL,
&muxl_dib, 0 };
/* MUXM data structures
muxc_dev MUXM device descriptor
muxc_unit MUXM unit descriptor
muxc_reg MUXM register list
muxc_mod MUXM modifiers list
*/
DIB muxc_dib = { MUXC, 0, 0, 0, 0, &muxcio };
UNIT muxc_unit = { UDATA (NULL, 0, 0) };
REG muxc_reg[] = {
{ FLDATA (CMD, muxc_dib.cmd, 0), REG_HRO },
{ FLDATA (CTL, muxc_dib.ctl, 0) },
{ FLDATA (FLG, muxc_dib.flg, 0) },
{ FLDATA (FBF, muxc_dib.fbf, 0) },
{ FLDATA (SCAN, muxc_scan, 0) },
{ ORDATA (CHAN, muxc_chan, 4) },
{ BRDATA (DSO, muxc_ota, 8, 6, MUX_LINES) },
{ BRDATA (DSI, muxc_lia, 8, 2, MUX_LINES) },
{ ORDATA (DEVNO, muxc_dib.devno, 6), REG_HRO },
{ NULL } };
MTAB muxc_mod[] = {
{ MTAB_XTD|MTAB_VDV, 0, "DEVNO", "DEVNO",
&hp_setdev, &hp_showdev, &muxc_dev },
{ 0 } };
DEVICE muxc_dev = {
"MUXM", &muxc_unit, muxc_reg, muxc_mod,
1, 10, 31, 1, 8, 8,
NULL, NULL, &mux_reset,
NULL, NULL, NULL,
&muxc_dib, 0 };
/* IOT routines: data cards */
int32 muxlio (int32 inst, int32 IR, int32 dat)
{
int32 dev, ln;
dev = IR & I_DEVMASK; /* get device no */
switch (inst) { /* case on opcode */
case ioFLG: /* flag clear/set */
if ((IR & I_HC) == 0) { setFLG (dev); } /* STF */
break;
case ioSFC: /* skip flag clear */
if (FLG (dev) == 0) PC = (PC + 1) & VAMASK;
return dat;
case ioSFS: /* skip flag set */
if (FLG (dev) != 0) PC = (PC + 1) & VAMASK;
return dat;
case ioOTX: /* output */
muxl_obuf = dat; /* store data */
break;
case ioMIX: /* merge */
dat = dat | muxl_ibuf;
break;
case ioLIX: /* load */
dat = muxl_ibuf;
break;
case ioCTL: /* control clear/set */
if (IR & I_CTL) { clrCTL (dev); } /* CLC */
else { /* STC */
setCTL (dev); /* set ctl */
ln = MUX_CHAN (muxu_obuf); /* get chan # */
if (muxl_obuf & OTL_P) { /* parameter set? */
if (muxl_obuf & OTL_TX) { /* transmit? */
if (ln < MUX_LINES) /* to valid line? */
mux_xpar[ln] = muxl_obuf; }
else if (ln < (MUX_LINES + MUX_ILINES)) /* rcv, valid line? */
mux_rpar[ln] = muxl_obuf; }
else if ((muxl_obuf & OTL_TX) && /* xmit data? */
(ln < MUX_LINES)) { /* to valid line? */
if (sim_is_active (&muxl_unit[ln])) /* still working? */
mux_sta[ln] = mux_sta[ln] | LIU_LOST;
else sim_activate (&muxl_unit[ln], muxl_unit[ln].wait);
mux_xbuf[ln] = muxl_obuf & OTL_CHAR; } /* load buffer */
} /* end STC */
break;
default:
break; }
if (IR & I_HC) { /* H/C option */
clrFLG (dev); /* clear flag */
mux_data_int (); } /* look for new int */
return dat;
}
int32 muxuio (int32 inst, int32 IR, int32 dat)
{
switch (inst) { /* case on opcode */
case ioOTX: /* output */
muxu_obuf = dat; /* store data */
break;
case ioMIX: /* merge */
dat = dat | muxu_ibuf;
break;
case ioLIX: /* load */
dat = muxu_ibuf;
break;
default:
break; }
return dat;
}
/* IOT routine: control card */
int32 muxcio (int32 inst, int32 IR, int32 dat)
{
int32 dev, ln, t, old;
dev = IR & I_DEVMASK; /* get device no */
switch (inst) { /* case on opcode */
case ioFLG: /* flag clear/set */
if ((IR & I_HC) == 0) { setFLG (dev); } /* STF */
break;
case ioSFC: /* skip flag clear */
if (FLG (dev) == 0) PC = (PC + 1) & VAMASK;
return dat;
case ioSFS: /* skip flag set */
if (FLG (dev) != 0) PC = (PC + 1) & VAMASK;
return dat;
case ioOTX: /* output */
if (dat & OTC_SCAN) muxc_scan = 1; /* set scan flag */
else muxc_scan = 0;
if (dat & OTC_UPD) { /* update? */
ln = OTC_CHAN (dat); /* get channel */
old = muxc_ota[ln]; /* save prior val */
muxc_ota[ln] = (muxc_ota[ln] & ~OTC_RW) | /* save ESn,SSn */
(dat & OTC_RW);
if (dat & OTC_EC2) muxc_ota[ln] = /* if EC2, upd C2 */
(muxc_ota[ln] & ~OTC_C2) | (dat & OTC_C2);
if (dat & OTC_EC1) muxc_ota[ln] = /* if EC1, upd C1 */
(muxc_ota[ln] & ~OTC_C1) | (dat & OTC_C1);
if ((muxl_unit[ln].flags & UNIT_MDM) && /* modem ctrl? */
(old & DTR) && !(muxc_ota[ln] & DTR)) { /* DTR drop? */
tmxr_msg (mux_ldsc[ln].conn, "\r\nLine hangup\r\n");
tmxr_reset_ln (&mux_ldsc[ln]); /* reset line */
muxc_lia[ln] = 0; } /* dataset off */
} /* end update */
break;
case ioLIX: /* load */
dat = 0;
case ioMIX: /* merge */
t = LIC_MBO | PUT_CCH (muxc_chan) | /* mbo, chan num */
LIC_TSTI (muxc_chan) | /* I2, I1 */
(muxc_ota[muxc_chan] & (OTC_ES2 | OTC_ES1)) | /* ES2, ES1 */
(muxc_lia[muxc_chan] & (LIC_S2 | LIC_S1)); /* S2, S1 */
dat = dat | t; /* return status */
muxc_chan = (muxc_chan + 1) & LIC_M_CHAN; /* incr channel */
break;
case ioCTL: /* ctrl clear/set */
if (IR & I_CTL) { clrCTL (dev); } /* CLC */
else { setCTL (dev); } /* STC */
break;
default:
break; }
if (IR & I_HC) { /* H/C option */
clrFLG (dev); /* clear flag */
mux_ctrl_int (); } /* look for new int */
return dat;
}
/* Unit service - receive side
Poll for new connections
Poll all active lines for input
*/
t_stat muxi_svc (UNIT *uptr)
{
int32 ln, c, t;
if ((uptr->flags & UNIT_ATT) == 0) return SCPE_OK; /* attached? */
t = sim_rtcn_calb (mux_tps, TMR_MUX); /* calibrate */
sim_activate (uptr, t); /* continue poll */
ln = tmxr_poll_conn (&mux_desc); /* look for connect */
if (ln >= 0) { /* got one? */
if ((muxl_unit[ln].flags & UNIT_MDM) && /* modem ctrl? */
(muxc_ota[ln] & DTR)) /* DTR? */
muxc_lia[ln] = muxc_lia[ln] | CDET; /* set cdet */
muxc_lia[ln] = muxc_lia[ln] | DSR; /* set dsr */
mux_ldsc[ln].rcve = 1; } /* rcv enabled */
tmxr_poll_rx (&mux_desc); /* poll for input */
for (ln = 0; ln < MUX_LINES; ln++) { /* loop thru lines */
if (mux_ldsc[ln].conn) { /* connected? */
if (c = tmxr_getc_ln (&mux_ldsc[ln])) { /* get char */
if (c & SCPE_BREAK) { /* break? */
mux_sta[ln] = mux_sta[ln] | LIU_BRK;
mux_rbuf[ln] = 0; } /* no char */
else { /* normal */
if (mux_rchp[ln]) mux_sta[ln] = mux_sta[ln] | LIU_LOST;
if (muxl_unit[ln].flags & UNIT_UC) { /* cvt to UC? */
c = c & 0177;
if (islower (c)) c = toupper (c); }
else c = c & ((muxl_unit[ln].flags & UNIT_8B)? 0377: 0177);
if (mux_rpar[ln] & OTL_ECHO) { /* echo? */
TMLN *lp = &mux_ldsc[ln]; /* get line */
tmxr_putc_ln (lp, c); /* output char */
tmxr_poll_tx (&mux_desc); } /* poll xmt */
mux_rbuf[ln] = c; /* save char */
mux_rchp[ln] = 1; } /* char pending */
if (mux_rpar[ln] & OTL_DIAG) mux_diag (c); /* rcv diag? */
} /* end if char */
} /* end if connected */
else muxc_lia[ln] = 0; /* disconnected */
} /* end for */
if (!FLG (muxl_dib.devno)) mux_data_int (); /* scan for data int */
if (!FLG (muxc_dib.devno)) mux_ctrl_int (); /* scan modem */
return SCPE_OK;
}
/* Unit service - transmit side */
t_stat muxo_svc (UNIT *uptr)
{
int32 c, ln = uptr - muxl_unit; /* line # */
if (mux_ldsc[ln].conn) { /* connected? */
if (mux_ldsc[ln].xmte) { /* xmt enabled? */
if ((mux_xbuf[ln] & OTL_SYNC) == 0) { /* start bit 0? */
TMLN *lp = &mux_ldsc[ln]; /* get line */
c = mux_xbuf[ln]; /* get char */
if (muxl_unit[ln].flags & UNIT_UC) { /* cvt to UC? */
c = c & 0177;
if (islower (c)) c = toupper (c); }
else c = c & ((muxl_unit[ln].flags & UNIT_8B)? 0377: 0177);
if (mux_xpar[ln] & OTL_DIAG) /* xmt diag? */
mux_diag (mux_xbuf[ln]); /* before munge */
mux_xdon[ln] = 1; /* set done */
tmxr_putc_ln (lp, c); /* output char */
tmxr_poll_tx (&mux_desc); } } /* poll xmt */
else { /* buf full */
tmxr_poll_tx (&mux_desc); /* poll xmt */
sim_activate (uptr, muxl_unit[ln].wait); /* wait */
return SCPE_OK; } }
if (!FLG (muxl_dib.devno)) mux_data_int (); /* scan for int */
return SCPE_OK;
}
/* Look for data interrupt */
void mux_data_int (void)
{
int32 i;
for (i = 0; i < MUX_LINES; i++) { /* rcv lines */
if ((mux_rpar[i] & OTL_ENB) && mux_rchp[i]) { /* enabled, char? */
muxl_ibuf = PUT_CCH (i) | mux_rbuf[i] | /* lo buf = char */
RCV_PAR (mux_rbuf[i]);
muxu_ibuf = PUT_CCH (i) | mux_sta[i]; /* hi buf = stat */
mux_rchp[i] = 0; /* clr char, stat */
mux_sta[i] = 0;
setFLG (muxl_dib.devno); /* interrupt */
return; } }
for (i = 0; i < MUX_LINES; i++) { /* xmt lines */
if ((mux_xpar[i] & OTL_ENB) && mux_xdon[i]) { /* enabled, done? */
muxu_ibuf = PUT_CCH (i) | mux_sta[i] | LIU_TR; /* hi buf = stat */
mux_xdon[i] = 0; /* clr done, stat */
mux_sta[i] = 0;
setFLG (muxl_dib.devno); /* interrupt */
return; } }
for (i = MUX_LINES; i < (MUX_LINES + MUX_ILINES); i++) { /* diag lines */
if ((mux_rpar[i] & OTL_ENB) && mux_rchp[i]) { /* enabled, char? */
muxl_ibuf = PUT_CCH (i) | mux_rbuf[i] | /* lo buf = char */
RCV_PAR (mux_rbuf[i]);
muxu_ibuf = PUT_CCH (i) | mux_sta[i] | LIU_DG; /* hi buf = stat */
mux_rchp[i] = 0; /* clr char, stat */
mux_sta[i] = 0;
setFLG (muxl_dib.devno);
return; } }
return;
}
/* Look for control interrupt */
void mux_ctrl_int (void)
{
int32 i;
if (muxc_scan == 0) return;
for (i = 0; i < MUX_LINES; i++) {
muxc_chan = (muxc_chan + 1) & LIC_M_CHAN; /* step channel */
if (LIC_TSTI (muxc_chan)) { /* status change? */
setFLG (muxc_dib.devno); /* set flag */
break; } }
return;
}
/* Set diagnostic lines for given character */
void mux_diag (int32 c)
{
int32 i;
for (i = MUX_LINES; i < (MUX_LINES + MUX_ILINES); i++) {
if (c & SCPE_BREAK) { /* break? */
mux_sta[i] = mux_sta[i] | LIU_BRK;
mux_rbuf[i] = 0; } /* no char */
else {
if (mux_rchp[i]) mux_sta[i] = mux_sta[i] | LIU_LOST;
mux_rchp[i] = 1;
mux_rbuf[i] = c; } }
return;
}
/* Reset an individual line */
void mux_reset_ln (int32 i)
{
mux_rbuf[i] = mux_xbuf[i] = 0; /* clear state */
mux_rpar[i] = mux_xpar[i] = 0;
mux_rchp[i] = mux_xdon[i] = 0;
mux_sta[i] = 0;
muxc_ota[i] = muxc_lia[i] = 0; /* clear modem */
if (mux_ldsc[i].conn) /* connected? */
muxc_lia[i] = muxc_lia[i] | DSR | /* cdet, dsr */
(muxl_unit[i].flags & UNIT_MDM? CDET: 0);
sim_cancel (&muxl_unit[i]);
return;
}
/* Reset routine */
t_stat mux_reset (DEVICE *dptr)
{
int32 i, t;
if (muxu_dev.flags & DEV_DIS) { /* enb/dis dev */
muxl_dev.flags = muxu_dev.flags | DEV_DIS;
muxc_dev.flags = muxc_dev.flags | DEV_DIS; }
else { muxl_dev.flags = muxl_dev.flags & ~DEV_DIS;
muxc_dev.flags = muxc_dev.flags & ~DEV_DIS; }
muxl_dib.cmd = muxl_dib.ctl = 0; /* init lower */
muxl_dib.flg = muxl_dib.fbf = 1;
muxu_dib.cmd = muxu_dib.ctl = 0; /* upper not */
muxu_dib.flg = muxu_dib.fbf = 0; /* implemented */
muxc_dib.cmd = muxc_dib.ctl = 0; /* init ctrl */
muxc_dib.flg = muxc_dib.fbf = 1;
muxc_chan = muxc_scan = 0; /* init modem scan */
if (muxu_unit.flags & UNIT_ATT) { /* master att? */
if (!sim_is_active (&muxu_unit)) {
t = sim_rtcn_init (muxu_unit.wait, TMR_MUX);
sim_activate (&muxu_unit, t); } } /* activate */
else sim_cancel (&muxu_unit); /* else stop */
for (i = 0; i < MUX_LINES; i++) {
mux_desc.ldsc[i] = &mux_ldsc[i];
mux_reset_ln (i); }
return SCPE_OK;
}
/* Attach master unit */
t_stat mux_attach (UNIT *uptr, char *cptr)
{
t_stat r;
int32 t;
r = tmxr_attach (&mux_desc, uptr, cptr); /* attach */
if (r != SCPE_OK) return r; /* error */
t = sim_rtcn_init (muxu_unit.wait, TMR_MUX);
sim_activate (uptr, t); /* start poll */
return SCPE_OK;
}
/* Detach master unit */
t_stat mux_detach (UNIT *uptr)
{
int32 i;
t_stat r;
r = tmxr_detach (&mux_desc, uptr); /* detach */
for (i = 0; i < MUX_LINES; i++) mux_ldsc[i].rcve = 0; /* disable rcv */
sim_cancel (uptr); /* stop poll */
return r;
}
/* Show summary processor */
t_stat mux_summ (FILE *st, UNIT *uptr, int32 val, void *desc)
{
int32 i, t;
for (i = t = 0; i < MUX_LINES; i++) t = t + (mux_ldsc[i].conn != 0);
if (t == 1) fprintf (st, "1 connection");
else fprintf (st, "%d connections", t);
return SCPE_OK;
}
/* SHOW CONN/STAT processor */
t_stat mux_show (FILE *st, UNIT *uptr, int32 val, void *desc)
{
int32 i;
for (i = 0; (i < MUX_LINES) && (mux_ldsc[i].conn == 0); i++) ;
if (i < MUX_LINES) {
for (i = 0; i < MUX_LINES; i++) {
if (mux_ldsc[i].conn) {
if (val) tmxr_fconns (st, &mux_ldsc[i], i);
else tmxr_fstats (st, &mux_ldsc[i], i); } } }
else fprintf (st, "all disconnected\n");
return SCPE_OK;
}