simh-testsetgenerator/Interdata/id_dp.c
Bob Supnik 2bcd1e7c4c Notes For V2.10-2
1. New Features in 2.10-2

The build procedures have changed.  There is only one UNIX makefile.
To compile without Ethernet support, simply type

	gmake {target|all}

To compile with Ethernet support, type

	gmake USE_NETWORK=1 {target|all}

The Mingw batch files require Mingw release 2 and invoke the Unix
makefile.  There are still separate batch files for compilation
with or without Ethernet support.

1.1 SCP and Libraries

- The EVAL command will evaluate a symbolic type-in and display
  it in numeric form.
- The ! command (with no arguments) will launch the host operating
  system command shell.  The ! command (with an argument) executes
  the argument as a host operating system command.  (Code from
  Mark Pizzolato)
- Telnet sessions now recognize BREAK.  How a BREAK is transmitted
  dependent on the particular Telnet client.  (Code from Mark
  Pizzolato)
- The sockets library includes code for active connections as
  well as listening connections.
- The RESTORE command will restore saved memory size, if the
  simulator supports dynamic memory resizing.

1.2 PDP-1

- The PDP-1 supports the Type 24 serial drum (based on recently
  discovered documents).

1.3 18b PDP's

- The PDP-4 supports the Type 24 serial drum (based on recently
  discovered documents).

1.4 PDP-11

- The PDP-11 implements a stub DEUNA/DELUA (XU).  The real XU
  module will be included in a later release.

1.5 PDP-10

- The PDP-10 implements a stub DEUNA/DELUA (XU).  The real XU
  module will be included in a later release.

1.6 HP 2100

- The IOP microinstruction set is supported for the 21MX as well
  as the 2100.
- The HP2100 supports the Access Interprocessor Link (IPL).

1.7 VAX

- If the VAX console is attached to a Telnet session, BREAK is
  interpreted as console halt.
- The SET/SHOW HISTORY commands enable and display a history of
  the most recently executed instructions.  (Code from Mark
  Pizzolato)

1.8 Terminals Multiplexors

- BREAK detection was added to the HP, DEC, and Interdata terminal
  multiplexors.

1.9 Interdata 16b and 32b

- First release.  UNIX is not yet working.

1.10 SDS 940

- First release.

2. Bugs Fixed in 2.10-2

- PDP-11 console must default to 7b for early UNIX compatibility.
- PDP-11/VAX TMSCP emulator was using the wrong packet length for
  read/write end packets.
- Telnet IAC+IAC processing was fixed, both for input and output
  (found by Mark Pizzolato).
- PDP-11/VAX Ethernet setting flag bits wrong for chained
  descriptors (found by Mark Pizzolato).

3. New Features in 2.10 vs prior releases

3.1 SCP and Libraries

- The VT emulation package has been replaced by the capability
  to remote the console to a Telnet session.  Telnet clients
  typically have more complete and robust VT100 emulation.
- Simulated devices may now have statically allocated buffers,
  in addition to dynamically allocated buffers or disk-based
  data stores.
- The DO command now takes substitutable arguments (max 9).
  In command files, %n represents substitutable argument n.
- The initial command line is now interpreted as the command
  name and substitutable arguments for a DO command.  This is
  backward compatible to prior versions.
- The initial command line parses switches.  -Q is interpreted
  as quiet mode; informational messages are suppressed.
- The HELP command now takes an optional argument.  HELP <cmd>
  types help on the specified command.
- Hooks have been added for implementing GUI-based consoles,
  as well as simulator-specific command extensions.  A few
  internal data structures and definitions have changed.
- Two new routines (tmxr_open_master, tmxr_close_master) have
  been added to sim_tmxr.c.  The calling sequence for
  sim_accept_conn has been changed in sim_sock.c.
- The calling sequence for the VM boot routine has been modified
  to add an additional parameter.
- SAVE now saves, and GET now restores, controller and unit flags.
- Library sim_ether.c has been added for Ethernet support.

3.2 VAX

- Non-volatile RAM (NVR) can behave either like a memory or like
  a disk-based peripheral.  If unattached, it behaves like memory
  and is saved and restored by SAVE and RESTORE, respectively.
  If attached, its contents are loaded from disk by ATTACH and
  written back to disk at DETACH and EXIT.
- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape) has been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from vax_stddev.c and
  now references a common implementation file, dec_pt.h.
- Examine and deposit switches now work on all devices, not just
  the CPU.
- Device address conflicts are not detected until simulation starts.

3.3 PDP-11

- SHOW <device> VECTOR displays the device's interrupt vector.
  Most devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk),
  RX211 (double density floppy), and KW11P programmable clock
  have been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from pdp11_stddev.c and
  now references a common implementation file, dec_pt.h.
- Device bootstraps now use the actual CSR specified by the
  SET ADDRESS command, rather than just the default CSR.  Note
  that PDP-11 operating systems may NOT support booting with
  non-standard addresses.
- Specifying more than 256KB of memory, or changing the bus
  configuration, causes all peripherals that are not compatible
  with the current bus configuration to be disabled.
- Device address conflicts are not detected until simulation starts.

3.4 PDP-10

- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The RX211 (double density floppy) has been added; it is off
  by default.
- The paper tape now references a common implementation file,
  dec_pt.h.
- Device address conflicts are not detected until simulation starts.

3.5 PDP-1

- DECtape (then known as MicroTape) support has been added.
- The line printer and DECtape can be disabled and enabled.

3.6 PDP-8

- The RX28 (double density floppy) has been added as an option to
  the existing RX8E controller.
- SHOW <device> DEVNO displays the device's device number.  Most
  devices allow the device number to be changed with SET <device>
  DEVNO=nnn.
- Device number conflicts are not detected until simulation starts.

3.7 IBM 1620

- The IBM 1620 simulator has been released.

3.8 AltairZ80

- A hard drive has been added for increased storage.
- Several bugs have been fixed.

3.9 HP 2100

- The 12845A has been added and made the default line printer (LPT).
  The 12653A has been renamed LPS and is off by default.  It also
  supports the diagnostic functions needed to run the DCPC and DMS
  diagnostics.
- The 12557A/13210A disk defaults to the 13210A (7900/7901).
- The 12559A magtape is off by default.
- New CPU options (EAU/NOEAU) enable/disable the extended arithmetic
  instructions for the 2116.  These instructions are standard on
  the 2100 and 21MX.
- New CPU options (MPR/NOMPR) enable/disable memory protect for the
  2100 and 21MX.
- New CPU options (DMS/NODMS) enable/disable the dynamic mapping
  instructions for the 21MX.
- The 12539 timebase generator autocalibrates.

3.10 Simulated Magtapes

- Simulated magtapes recognize end of file and the marker
  0xFFFFFFFF as end of medium.  Only the TMSCP tape simulator
  can generate an end of medium marker.
- The error handling in simulated magtapes was overhauled to be
  consistent through all simulators.

3.11 Simulated DECtapes

- Added support for RT11 image file format (256 x 16b) to DECtapes.

4. Bugs Fixed in 2.10 vs prior releases

- TS11/TSV05 was not simulating the XS0_MOT bit, causing failures
  under VMS.  In addition, two of the CTL options were coded
  interchanged.
- IBM 1401 tape was not setting a word mark under group mark for
  load mode reads.  This caused the diagnostics to crash.
- SCP bugs in ssh_break and set_logon were fixed (found by Dave
  Hittner).
- Numerous bugs in the HP 2100 extended arithmetic, floating point,
  21MX, DMS, and IOP instructions were fixed.  Bugs were also fixed
  in the memory protect and DMS functions.  The moving head disks
  (DP, DQ) were revised to simulate the hardware more accurately.
  Missing functions in DQ (address skip, read address) were added.
- PDP-10 tape wouldn't boot, and then wouldn't read (reported by
  Michael Thompson and Harris Newman, respectively)
- PDP-1 typewriter is half duplex, with only one shift state for
  both input and output (found by Derek Peschel)

5. General Notes

WARNING: V2.10 has reorganized and renamed some of the definition
files for the PDP-10, PDP-11, and VAX.  Be sure to delete all
previous source files before you unpack the Zip archive, or
unpack it into a new directory structure.

WARNING: V2.10 has a new, more comprehensive save file format.
Restoring save files from previous releases will cause 'invalid
register' errors and loss of CPU option flags, device enable/
disable flags, unit online/offline flags, and unit writelock
flags.

WARNING: If you are using Visual Studio .NET through the IDE,
be sure to turn off the /Wp64 flag in the project settings, or
dozens of spurious errors will be generated.

WARNING: Compiling Ethernet support under Windows requires
extra steps; see the Ethernet readme file.  Ethernet support is
currently available only for Windows, Linux, NetBSD, and OpenBSD.
2011-04-15 08:33:56 -07:00

547 lines
18 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* id_dp.c: Interdata 2.5MB/10MB cartridge disk simulator
Copyright (c) 2001-2002, Robert M. Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
dp M46-421 2.5MB/10MB cartridge disk
*/
#include "id_defs.h"
#include <math.h>
#define DP_NUMBY 256 /* bytes/sector */
#define DP_NUMSC 24 /* sectors/track */
#define UNIT_V_WLK (UNIT_V_UF + 0) /* write locked */
#define UNIT_V_DTYPE (UNIT_V_UF + 1) /* disk type */
#define UNIT_M_DTYPE 0x1
#define UNIT_V_AUTO (UNIT_V_UF + 2) /* autosize */
#define UNIT_WLK (1 << UNIT_V_WLK)
#define UNIT_DTYPE (UNIT_M_DTYPE << UNIT_V_DTYPE)
#define UNIT_AUTO (1 << UNIT_V_AUTO)
#define GET_DTYPE(x) (((x) >> UNIT_V_DTYPE) & UNIT_M_DTYPE)
#define CYL u3 /* current cylinder */
#define STD u4 /* drive status */
#define UNIT_WPRT (UNIT_WLK | UNIT_RO) /* write protect */
/* Controller status */
#define STC_OVR 0x80 /* overrun */
#define STC_ACF 0x40 /* addr cmp fail */
#define STC_DEF 0x20 /* def track NI */
#define STC_CYO 0x10 /* cylinder ovflo */
#define STC_IDL 0x02 /* ctrl idle */
#define STC_DTE 0x01 /* xfer error */
#define SETC_EX (STC_OVR|STC_ACF|STC_DEF|STC_CYO)
#define STC_MASK (STC_OVR|STC_ACF|STC_DEF|STC_CYO|STA_BSY|STC_IDL|STC_DTE)
/* Controller command */
#define CMC_MASK 0xF
#define CMC_CLR 0x8 /* reset */
#define CMC_RD 0x1 /* read */
#define CMC_WR 0x2 /* write */
#define CMC_RCHK 0x3 /* read check */
#define CMC_RFMT 0x5 /* read fmt NI */
#define CMC_WFMT 0x6 /* write fmt NI */
/* Drive status, ^ = dynamic, * = in unit status */
#define STD_WRP 0x80 /* ^write prot */
#define STD_WCK 0x40 /* write check NI */
#define STD_ILA 0x20 /* *illegal addr */
#define STD_ILK 0x10 /* ^addr interlock */
#define STD_MOV 0x08 /* *heads in motion */
#define STD_INC 0x02 /* seek incomplete NI */
#define STD_NRDY 0x01 /* ^not ready */
#define STD_UST (STD_ILA | STD_MOV) /* set from unit */
#define SETD_EX (STD_WCK | STD_ILA | STD_ILK) /* set examine */
/* Drive command */
#define CMD_SK 0x02 /* seek */
#define CMD_RST 0x01 /* restore */
/* Head/sector register */
#define HS_SMASK 0x1F /* sector mask */
#define HS_V_SRF 5 /* surface */
#define HS_HMASK 0x20 /* head mask */
#define HS_MASK (HS_HMASK | HS_SMASK)
#define GET_SEC(x) ((x) & HS_SMASK)
#define GET_SRF(x) (((x) & HS_HMASK) >> HS_V_SRF)
#define GET_SA(p,cy,sf,sc,t) (((((((p)*drv_tab[t].cyl)+(cy))*drv_tab[t].surf)+(sf))* \
DP_NUMSC)+(sc))
#define GET_ROTATE(x) ((int) fmod (sim_gtime() / ((double) (x)), \
((double) DP_NUMSC)))
/* This controller supports two different disk drive types:
type #sectors/ #surfaces/ #cylinders/
surface cylinder drive
2315 24 2 203
5440 24 4 408
In theory, each drive can be a different type. The size field in
each unit selects the drive capacity for each drive and thus the
drive type. DISKS MUST BE DECLARED IN ASCENDING SIZE AND MUST HAVE
THE SAME SECTORS/TRACK.
*/
#define TYPE_2315 0
#define CYL_2315 203
#define SURF_2315 2
#define SIZE_2315 (DP_NUMSC * SURF_2315 * CYL_2315 * DP_NUMBY)
#define TYPE_5440 1
#define CYL_5440 408
#define SURF_5440 2
#define SIZE_5440 (2 * DP_NUMSC * SURF_5440 * CYL_5440 * DP_NUMBY)
struct drvtyp {
int32 cyl; /* cylinders */
uint32 surf; /* surfaces */
uint32 size; /* #blocks */
};
static struct drvtyp drv_tab[] = {
{ CYL_2315, SURF_2315, SIZE_2315 },
{ CYL_5440, SURF_5440, SIZE_5440 },
{ 0 } };
extern uint32 int_req[INTSZ], int_enb[INTSZ];
uint8 dpxb[DP_NUMBY]; /* xfer buffer */
uint32 dp_bptr = 0; /* buffer ptr */
uint32 dp_db = 0; /* ctrl buffer */
uint32 dp_cyl = 0; /* drive buffer */
uint32 dp_sta = 0; /* ctrl status */
uint32 dp_cmd = 0; /* ctrl command */
uint32 dp_plat = 0; /* platter */
uint32 dp_hdsc = 0; /* head/sector */
uint32 dp_svun = 0; /* most recent unit */
uint32 dp_1st = 0; /* first byte */
uint32 dpd_arm[DP_NUMDR] = { 0 }; /* drives armed */
int32 dp_stime = 100; /* seek latency */
int32 dp_rtime = 100; /* rotate latency */
int32 dp_wtime = 1; /* word time */
uint8 dp_tplte[(2 * DP_NUMDR) + 2]; /* fix/rmv + ctrl + end */
DEVICE dp_dev;
uint32 dp (uint32 dev, uint32 op, uint32 dat);
void dp_ini (t_bool dtpl);
t_stat dp_svc (UNIT *uptr);
t_stat dp_reset (DEVICE *dptr);
t_stat dp_attach (UNIT *uptr, char *cptr);
t_stat dp_detach (UNIT *uptr);
t_stat dp_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat dp_rds (UNIT *uptr);
t_stat dp_wds (UNIT *uptr);
t_bool dp_dter (UNIT *uptr, uint32 first);
void dp_done (uint32 flg);
extern t_stat id_dboot (int32 u, DEVICE *dptr);
/* DP data structures
dp_dev DP device descriptor
dp_unit DP unit list
dp_reg DP register list
dp_mod DP modifier list
*/
DIB dp_dib = { d_DPC, 0, v_DPC, dp_tplte, &dp, &dp_ini };
UNIT dp_unit[] = {
{ UDATA (&dp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE+(TYPE_5440 << UNIT_V_DTYPE), SIZE_5440) },
{ UDATA (&dp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE+(TYPE_5440 << UNIT_V_DTYPE), SIZE_5440) },
{ UDATA (&dp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE+(TYPE_5440 << UNIT_V_DTYPE), SIZE_5440) },
{ UDATA (&dp_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+
UNIT_ROABLE+(TYPE_5440 << UNIT_V_DTYPE), SIZE_5440) } };
REG dp_reg[] = {
{ HRDATA (CMD, dp_cmd, 3) },
{ HRDATA (STA, dp_sta, 8) },
{ HRDATA (BUF, dp_db, 8) },
{ HRDATA (PLAT, dp_plat, 1) },
{ HRDATA (HDSC, dp_hdsc, 6) },
{ HRDATA (CYL, dp_cyl, 9) },
{ HRDATA (SVUN, dp_svun, 8), REG_HIDDEN },
{ BRDATA (DBUF, dpxb, 16, 8, DP_NUMBY) },
{ HRDATA (DBPTR, dp_bptr, 9), REG_RO },
{ FLDATA (FIRST, dp_1st, 0) },
{ GRDATA (IREQ, int_req[l_DPC], 16, DP_NUMDR + 1, i_DPC) },
{ GRDATA (IENB, int_enb[l_DPC], 16, DP_NUMDR + 1, i_DPC) },
{ BRDATA (IARM, dpd_arm, 16, 1, DP_NUMDR) },
{ DRDATA (RTIME, dp_rtime, 0), PV_LEFT | REG_NZ },
{ DRDATA (STIME, dp_stime, 0), PV_LEFT | REG_NZ },
{ DRDATA (WTIME, dp_wtime, 0), PV_LEFT | REG_NZ },
{ URDATA (UCYL, dp_unit[0].CYL, 16, 9, 0,
DP_NUMDR, REG_RO) },
{ URDATA (UST, dp_unit[0].STD, 16, 8, 0,
DP_NUMDR, REG_RO) },
{ URDATA (CAPAC, dp_unit[0].capac, 10, 31, 0,
DP_NUMDR, PV_LEFT | REG_HRO) },
{ HRDATA (DEVNO, dp_dib.dno, 8), REG_HRO },
{ HRDATA (SELCH, dp_dib.sch, 2), REG_HRO },
{ NULL } };
MTAB dp_mod[] = {
{ UNIT_WLK, 0, "write enabled", "WRITEENABLED", NULL },
{ UNIT_WLK, UNIT_WLK, "write locked", "LOCKED", NULL },
{ (UNIT_DTYPE+UNIT_ATT), (TYPE_2315 << UNIT_V_DTYPE) + UNIT_ATT,
"2315", NULL, NULL },
{ (UNIT_DTYPE+UNIT_ATT), (TYPE_5440 << UNIT_V_DTYPE) + UNIT_ATT,
"5440", NULL, NULL },
{ (UNIT_AUTO+UNIT_DTYPE+UNIT_ATT), (TYPE_2315 << UNIT_V_DTYPE),
"2315", NULL, NULL },
{ (UNIT_AUTO+UNIT_DTYPE+UNIT_ATT), (TYPE_5440 << UNIT_V_DTYPE),
"5440", NULL, NULL },
{ (UNIT_AUTO+UNIT_ATT), UNIT_AUTO, "autosize", NULL, NULL },
{ UNIT_AUTO, UNIT_AUTO, NULL, "AUTOSIZE", NULL },
{ (UNIT_AUTO+UNIT_DTYPE), (TYPE_2315 << UNIT_V_DTYPE),
NULL, "2315", &dp_set_size },
{ (UNIT_AUTO+UNIT_DTYPE), (TYPE_5440 << UNIT_V_DTYPE),
NULL, "5440", &dp_set_size },
{ MTAB_XTD|MTAB_VDV, 0, "DEVNO", "DEVNO",
&set_dev, &show_dev, NULL },
{ MTAB_XTD|MTAB_VDV, 0, "SELCH", "SELCH",
&set_sch, &show_sch, NULL },
{ 0 } };
DEVICE dp_dev = {
"DP", dp_unit, dp_reg, dp_mod,
DP_NUMDR, 16, 24, 1, 16, 8,
NULL, NULL, &dp_reset,
&id_dboot, &dp_attach, &dp_detach,
&dp_dib, DEV_DISABLE };
/* Controller: IO routine */
uint32 dpc (uint32 dev, uint32 op, uint32 dat)
{
uint32 f, t, u;
UNIT *uptr;
static uint8 good_cmd[8] = { 0, 1, 1, 1, 0, 0, 0, 0 };
switch (op) { /* case IO op */
case IO_ADR: /* select */
sch_adr (dp_dib.sch, dev); /* inform sel ch */
return BY; /* byte only */
case IO_RD: /* read data */
if (dp_sta & STC_IDL) /* if idle */
return GET_ROTATE (dp_rtime); /* return sector */
else dp_sta = dp_sta | STA_BSY; /* xfr? set busy */
return dp_db; /* return data */
case IO_WD: /* write data */
if (dp_sta & STC_IDL) dp_hdsc = dat & HS_MASK; /* idle? hdsc */
else { /* data xfer */
dp_sta = dp_sta | STA_BSY; /* set busy */
dp_db = dat & 0xFF; } /* store data */
break;
case IO_SS: /* status */
t = dp_sta & STC_MASK; /* get status */
if (t & SETC_EX) t = t | STA_EX; /* test for EX */
return t;
case IO_OC: /* command */
f = dat & CMC_MASK; /* get cmd */
if (f & CMC_CLR) { /* clear? */
dp_reset (&dp_dev); /* reset world */
break; }
u = (dp_svun - dp_dib.dno - o_DP0) / o_DP0; /* get unit */
uptr = dp_dev.units + u; /* ignore if busy */
if (!(dp_sta & STC_IDL) || sim_is_active (uptr)) break;
dp_cmd = f; /* save cmd */
if (dp_cmd == CMC_WR) dp_sta = 0; /* write: bsy=0 else */
else dp_sta = STA_BSY; /* bsy=1,idl,err=0 */
dp_1st = 1; /* xfr not started */
dp_bptr = 0; /* buffer empty */
if (dp_svun & o_DPF) dp_plat = 1; /* upper platter? */
else dp_plat = 0; /* no, lower */
if (good_cmd[f]) sim_activate (uptr, dp_rtime); /* legal? sched */
break; }
return 0;
}
/* Drives: IO routine */
uint32 dp (uint32 dev, uint32 op, uint32 dat)
{
int32 diff;
uint32 t, u;
UNIT *uptr;
if (dev == dp_dib.dno) return dpc (dev, op, dat); /* controller? */
u = (dev - dp_dib.dno - o_DP0) / o_DP0; /* get unit num */
uptr = dp_dev.units + u; /* get unit ptr */
switch (op) { /* case IO op */
case IO_ADR: /* select */
if (dp_sta & STC_IDL) dp_svun = dev; /* idle? save unit */
return BY; /* byte only */
case IO_WD: /* write data */
if (GET_DTYPE (uptr->flags) == TYPE_2315) /* 2.5MB drive? */
dp_cyl = dat & 0xFF; /* cyl is 8b */
else dp_cyl = ((dp_cyl << 8) | dat) & DMASK16; /* insert byte */
break;
case IO_SS: /* status */
if (uptr->flags & UNIT_ATT) t = /* onl? */
((uptr->flags & UNIT_WPRT)? STD_WRP: 0) |
((dp_sta & STC_IDL)? 0: STD_ILK) |
(uptr->STD & STD_UST);
else t = STD_MOV | STD_NRDY; /* off = X'09' */
if (t & SETD_EX) t = t | STA_EX; /* test for ex */
return t;
case IO_OC: /* command */
dpd_arm[u] = int_chg (v_DPC + u + 1, dat, dpd_arm[u]);
if (dat & CMD_SK) t = dp_cyl; /* seek? get cyl */
else if (dat & CMD_RST) t = 0; /* rest? cyl 0 */
else break; /* no action */
diff = t - uptr->CYL;
if (diff < 0) diff = -diff; /* ABS cyl diff */
else if (diff == 0) diff = 1; /* must be nz */
uptr->STD = STD_MOV; /* stat = moving */
uptr->CYL = t; /* put on cyl */
sim_activate (uptr, diff * dp_stime); /* schedule */
break; }
return 0;
}
/* Unit service
If seek done, on cylinder;
if read check, signal completion;
else, do read or write
*/
t_stat dp_svc (UNIT *uptr)
{
uint32 u = uptr - dp_dev.units; /* get unit number */
int32 cyl = uptr->CYL; /* get cylinder */
uint32 dtype = GET_DTYPE (uptr->flags); /* get drive type */
uint32 t;
t_stat r;
if (uptr->STD & STD_MOV) { /* seek? */
uptr->STD = 0; /* clr seek in prog */
if ((uptr->flags & UNIT_ATT) == 0) return SCPE_OK; /* offl? hangs */
if (cyl >= drv_tab[dtype].cyl) { /* bad cylinder? */
uptr->STD = STD_ILA; /* error */
uptr->CYL = drv_tab[dtype].cyl - 1; } /* put at edge */
if (dpd_arm[u]) SET_INT (v_DPC + u + 1); /* req intr */
return SCPE_OK; }
switch (dp_cmd & 0x7) { /* case on func */
case CMC_RCHK: /* read check */
dp_dter (uptr, 1); /* check xfr err */
break;
case CMC_RD: /* read */
if (sch_actv (dp_dib.sch, dp_dib.dno)) { /* sch transfer? */
if (dp_dter (uptr, dp_1st)) return SCPE_OK; /* check xfr err */
if (r = dp_rds (uptr)) return r; /* read sec, err? */
dp_1st = 0;
t = sch_wrmem (dp_dib.sch, dpxb, DP_NUMBY); /* write to memory */
if (sch_actv (dp_dib.sch, dp_dib.dno)) { /* more to do? */
sim_activate (uptr, dp_rtime); /* reschedule */
return SCPE_OK; }
break; } /* no, set done */
dp_sta = dp_sta | STC_DTE; /* can't work */
break;
case CMC_WR: /* write */
if (sch_actv (dp_dib.sch, dp_dib.dno)) { /* sch transfer? */
dp_bptr = sch_rdmem (dp_dib.sch, dpxb, DP_NUMBY); /* read from mem */
dp_db = dpxb[dp_bptr - 1]; /* last byte */
if (dp_dter (uptr, dp_1st)) return SCPE_OK; /* check xfr err */
if (r = dp_wds (uptr)) return r; /* write sec, err? */
dp_1st = 0;
if (sch_actv (dp_dib.sch, dp_dib.dno)) { /* more to do? */
sim_activate (uptr, dp_rtime); /* reschedule */
return SCPE_OK; }
break; } /* no, set done */
dp_sta = dp_sta | STC_DTE; /* can't work */
break; }
dp_done (0); /* done */
return SCPE_OK;
}
/* Read data sector */
t_stat dp_rds (UNIT *uptr)
{
uint32 i;
i = fxread (dpxb, sizeof (uint8), DP_NUMBY, uptr->fileref);
for ( ; i < DP_NUMBY; i++) dpxb[i] = 0; /* fill with 0's */
if (ferror (uptr->fileref)) { /* error? */
perror ("DP I/O error");
clearerr (uptr->fileref);
dp_done (STC_DTE);
return SCPE_IOERR; }
return SCPE_OK;
}
/* Write data sector */
t_stat dp_wds (UNIT *uptr)
{
for ( ; dp_bptr < DP_NUMBY; dp_bptr++)
dpxb[dp_bptr] = dp_db; /* fill with last */
fxwrite (dpxb, sizeof (uint8), DP_NUMBY, uptr->fileref);
if (ferror (uptr->fileref)) { /* error? */
perror ("DP I/O error");
clearerr (uptr->fileref);
dp_done (STC_DTE);
return SCPE_IOERR; }
return SCPE_OK;
}
/* Data transfer error test routine */
t_bool dp_dter (UNIT *uptr, uint32 first)
{
uint32 hd, sc, sa;
uint32 dtype = GET_DTYPE (uptr->flags); /* get drive type */
if (((uptr->flags & UNIT_ATT) == 0) || /* not attached? */
((uptr->flags & UNIT_WPRT) && (dp_cmd == CMC_WR))) {
dp_done (STC_DTE); /* error, done */
return TRUE; }
hd = GET_SRF (dp_hdsc); /* get head */
sc = GET_SEC (dp_hdsc); /* get sector */
if (dp_cyl != (uint32) uptr->CYL) { /* wrong cylinder? */
dp_done (STC_ACF); /* error, done */
return TRUE; }
if (sc >= DP_NUMSC) { /* bad sector? */
dp_done (STC_OVR); /* error, done */
return TRUE; }
if (!first && (sc == 0) && (hd == 0)) { /* cyl overflow? */
dp_done (STC_CYO); /* error, done */
return TRUE; }
sa = GET_SA (dp_plat, uptr->CYL, hd, sc, dtype); /* curr disk addr */
fseek (uptr->fileref, sa * DP_NUMBY, SEEK_SET);
if ((sc + 1) < DP_NUMSC) dp_hdsc = dp_hdsc + 1; /* end of track? */
else dp_hdsc = (dp_hdsc ^ HS_HMASK) & HS_HMASK; /* sec 0, nxt srf */
return FALSE;
}
/* Data transfer done routine */
void dp_done (uint32 flg)
{
dp_sta = (dp_sta | STC_IDL | flg) & ~STA_BSY; /* set flag, idle */
SET_INT (v_DPC); /* unmaskable intr */
if (flg) sch_stop (dp_dib.sch); /* if err, stop ch */
return;
}
/* Reset routine */
t_stat dp_reset (DEVICE *dptr)
{
uint32 u;
UNIT *uptr;
dp_cmd = 0; /* clear cmd */
dp_sta = STA_BSY | STC_IDL; /* idle, busy */
dp_1st = 0; /* clear flag */
dp_svun = dp_db = 0; /* clear unit, buf */
dp_plat = 0;
dp_hdsc = 0; /* clear addr */
CLR_INT (v_DPC); /* clear ctrl int */
SET_ENB (v_DPC); /* always enabled */
for (u = 0; u < DP_NUMDR; u++) { /* loop thru units */
uptr = dp_dev.units + u;
uptr->CYL = uptr->STD = 0;
CLR_INT (v_DPC + u + 1); /* clear intr */
CLR_ENB (v_DPC + u + 1); /* clear enable */
dpd_arm[u] = 0; /* clear arm */
sim_cancel (uptr); } /* cancel activity */
return SCPE_OK;
}
/* Attach routine (with optional autosizing) */
t_stat dp_attach (UNIT *uptr, char *cptr)
{
uint32 i, p;
t_stat r;
uptr->capac = drv_tab[GET_DTYPE (uptr->flags)].size;
r = attach_unit (uptr, cptr);
uptr->CYL = 0;
if ((r != SCPE_OK) || ((uptr->flags & UNIT_AUTO) == 0)) return r;
if (fseek (uptr->fileref, 0, SEEK_END)) return SCPE_OK;
if ((p = ftell (uptr->fileref)) == 0) return SCPE_OK;
for (i = 0; drv_tab[i].surf != 0; i++) {
if (p <= drv_tab[i].size) {
uptr->flags = (uptr->flags & ~UNIT_DTYPE) | (i << UNIT_V_DTYPE);
uptr->capac = drv_tab[i].size;
return SCPE_OK; } }
return SCPE_OK;
}
/* Detach routine (generates an interrupt) */
t_stat dp_detach (UNIT *uptr)
{
uint32 u = uptr - dp_dev.units;
if (dpd_arm[u]) SET_INT (v_DPC + u + 1); /* if arm, intr */
return detach_unit (uptr);
}
/* Set size command validation routine */
t_stat dp_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
{
if (uptr->flags & UNIT_ATT) return SCPE_ALATT;
uptr->capac = drv_tab[GET_DTYPE (val)].size;
return SCPE_OK;
}
/* Create device number (T) or interrupt (F) template */
void dp_ini (t_bool dtpl)
{
int32 u, j, dev;
dp_tplte[0] = 0; /* controller */
for (u = 0, j = 1; u < DP_NUMDR; u++) { /* loop thru units */
dev = (u + 1) * o_DP0; /* drive dev # */
dp_tplte[j++] = dev;
if (dtpl && (GET_DTYPE (dp_unit[u].flags) == TYPE_5440))
dp_tplte[j++] = dev + o_DPF; } /* if fixed */
dp_tplte[j] = TPL_END; /* end marker */
return;
}