simh-testsetgenerator/SDS/sds_doc.txt
Bob Supnik 2bcd1e7c4c Notes For V2.10-2
1. New Features in 2.10-2

The build procedures have changed.  There is only one UNIX makefile.
To compile without Ethernet support, simply type

	gmake {target|all}

To compile with Ethernet support, type

	gmake USE_NETWORK=1 {target|all}

The Mingw batch files require Mingw release 2 and invoke the Unix
makefile.  There are still separate batch files for compilation
with or without Ethernet support.

1.1 SCP and Libraries

- The EVAL command will evaluate a symbolic type-in and display
  it in numeric form.
- The ! command (with no arguments) will launch the host operating
  system command shell.  The ! command (with an argument) executes
  the argument as a host operating system command.  (Code from
  Mark Pizzolato)
- Telnet sessions now recognize BREAK.  How a BREAK is transmitted
  dependent on the particular Telnet client.  (Code from Mark
  Pizzolato)
- The sockets library includes code for active connections as
  well as listening connections.
- The RESTORE command will restore saved memory size, if the
  simulator supports dynamic memory resizing.

1.2 PDP-1

- The PDP-1 supports the Type 24 serial drum (based on recently
  discovered documents).

1.3 18b PDP's

- The PDP-4 supports the Type 24 serial drum (based on recently
  discovered documents).

1.4 PDP-11

- The PDP-11 implements a stub DEUNA/DELUA (XU).  The real XU
  module will be included in a later release.

1.5 PDP-10

- The PDP-10 implements a stub DEUNA/DELUA (XU).  The real XU
  module will be included in a later release.

1.6 HP 2100

- The IOP microinstruction set is supported for the 21MX as well
  as the 2100.
- The HP2100 supports the Access Interprocessor Link (IPL).

1.7 VAX

- If the VAX console is attached to a Telnet session, BREAK is
  interpreted as console halt.
- The SET/SHOW HISTORY commands enable and display a history of
  the most recently executed instructions.  (Code from Mark
  Pizzolato)

1.8 Terminals Multiplexors

- BREAK detection was added to the HP, DEC, and Interdata terminal
  multiplexors.

1.9 Interdata 16b and 32b

- First release.  UNIX is not yet working.

1.10 SDS 940

- First release.

2. Bugs Fixed in 2.10-2

- PDP-11 console must default to 7b for early UNIX compatibility.
- PDP-11/VAX TMSCP emulator was using the wrong packet length for
  read/write end packets.
- Telnet IAC+IAC processing was fixed, both for input and output
  (found by Mark Pizzolato).
- PDP-11/VAX Ethernet setting flag bits wrong for chained
  descriptors (found by Mark Pizzolato).

3. New Features in 2.10 vs prior releases

3.1 SCP and Libraries

- The VT emulation package has been replaced by the capability
  to remote the console to a Telnet session.  Telnet clients
  typically have more complete and robust VT100 emulation.
- Simulated devices may now have statically allocated buffers,
  in addition to dynamically allocated buffers or disk-based
  data stores.
- The DO command now takes substitutable arguments (max 9).
  In command files, %n represents substitutable argument n.
- The initial command line is now interpreted as the command
  name and substitutable arguments for a DO command.  This is
  backward compatible to prior versions.
- The initial command line parses switches.  -Q is interpreted
  as quiet mode; informational messages are suppressed.
- The HELP command now takes an optional argument.  HELP <cmd>
  types help on the specified command.
- Hooks have been added for implementing GUI-based consoles,
  as well as simulator-specific command extensions.  A few
  internal data structures and definitions have changed.
- Two new routines (tmxr_open_master, tmxr_close_master) have
  been added to sim_tmxr.c.  The calling sequence for
  sim_accept_conn has been changed in sim_sock.c.
- The calling sequence for the VM boot routine has been modified
  to add an additional parameter.
- SAVE now saves, and GET now restores, controller and unit flags.
- Library sim_ether.c has been added for Ethernet support.

3.2 VAX

- Non-volatile RAM (NVR) can behave either like a memory or like
  a disk-based peripheral.  If unattached, it behaves like memory
  and is saved and restored by SAVE and RESTORE, respectively.
  If attached, its contents are loaded from disk by ATTACH and
  written back to disk at DETACH and EXIT.
- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape) has been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from vax_stddev.c and
  now references a common implementation file, dec_pt.h.
- Examine and deposit switches now work on all devices, not just
  the CPU.
- Device address conflicts are not detected until simulation starts.

3.3 PDP-11

- SHOW <device> VECTOR displays the device's interrupt vector.
  Most devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk),
  RX211 (double density floppy), and KW11P programmable clock
  have been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from pdp11_stddev.c and
  now references a common implementation file, dec_pt.h.
- Device bootstraps now use the actual CSR specified by the
  SET ADDRESS command, rather than just the default CSR.  Note
  that PDP-11 operating systems may NOT support booting with
  non-standard addresses.
- Specifying more than 256KB of memory, or changing the bus
  configuration, causes all peripherals that are not compatible
  with the current bus configuration to be disabled.
- Device address conflicts are not detected until simulation starts.

3.4 PDP-10

- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The RX211 (double density floppy) has been added; it is off
  by default.
- The paper tape now references a common implementation file,
  dec_pt.h.
- Device address conflicts are not detected until simulation starts.

3.5 PDP-1

- DECtape (then known as MicroTape) support has been added.
- The line printer and DECtape can be disabled and enabled.

3.6 PDP-8

- The RX28 (double density floppy) has been added as an option to
  the existing RX8E controller.
- SHOW <device> DEVNO displays the device's device number.  Most
  devices allow the device number to be changed with SET <device>
  DEVNO=nnn.
- Device number conflicts are not detected until simulation starts.

3.7 IBM 1620

- The IBM 1620 simulator has been released.

3.8 AltairZ80

- A hard drive has been added for increased storage.
- Several bugs have been fixed.

3.9 HP 2100

- The 12845A has been added and made the default line printer (LPT).
  The 12653A has been renamed LPS and is off by default.  It also
  supports the diagnostic functions needed to run the DCPC and DMS
  diagnostics.
- The 12557A/13210A disk defaults to the 13210A (7900/7901).
- The 12559A magtape is off by default.
- New CPU options (EAU/NOEAU) enable/disable the extended arithmetic
  instructions for the 2116.  These instructions are standard on
  the 2100 and 21MX.
- New CPU options (MPR/NOMPR) enable/disable memory protect for the
  2100 and 21MX.
- New CPU options (DMS/NODMS) enable/disable the dynamic mapping
  instructions for the 21MX.
- The 12539 timebase generator autocalibrates.

3.10 Simulated Magtapes

- Simulated magtapes recognize end of file and the marker
  0xFFFFFFFF as end of medium.  Only the TMSCP tape simulator
  can generate an end of medium marker.
- The error handling in simulated magtapes was overhauled to be
  consistent through all simulators.

3.11 Simulated DECtapes

- Added support for RT11 image file format (256 x 16b) to DECtapes.

4. Bugs Fixed in 2.10 vs prior releases

- TS11/TSV05 was not simulating the XS0_MOT bit, causing failures
  under VMS.  In addition, two of the CTL options were coded
  interchanged.
- IBM 1401 tape was not setting a word mark under group mark for
  load mode reads.  This caused the diagnostics to crash.
- SCP bugs in ssh_break and set_logon were fixed (found by Dave
  Hittner).
- Numerous bugs in the HP 2100 extended arithmetic, floating point,
  21MX, DMS, and IOP instructions were fixed.  Bugs were also fixed
  in the memory protect and DMS functions.  The moving head disks
  (DP, DQ) were revised to simulate the hardware more accurately.
  Missing functions in DQ (address skip, read address) were added.
- PDP-10 tape wouldn't boot, and then wouldn't read (reported by
  Michael Thompson and Harris Newman, respectively)
- PDP-1 typewriter is half duplex, with only one shift state for
  both input and output (found by Derek Peschel)

5. General Notes

WARNING: V2.10 has reorganized and renamed some of the definition
files for the PDP-10, PDP-11, and VAX.  Be sure to delete all
previous source files before you unpack the Zip archive, or
unpack it into a new directory structure.

WARNING: V2.10 has a new, more comprehensive save file format.
Restoring save files from previous releases will cause 'invalid
register' errors and loss of CPU option flags, device enable/
disable flags, unit online/offline flags, and unit writelock
flags.

WARNING: If you are using Visual Studio .NET through the IDE,
be sure to turn off the /Wp64 flag in the project settings, or
dozens of spurious errors will be generated.

WARNING: Compiling Ethernet support under Windows requires
extra steps; see the Ethernet readme file.  Ethernet support is
currently available only for Windows, Linux, NetBSD, and OpenBSD.
2011-04-15 08:33:56 -07:00

527 lines
15 KiB
Text

To: Users
From: Bob Supnik
Subj: SDS 940 Simulator Usage
Date: 15-Nov-2002
COPYRIGHT NOTICE
The following copyright notice applies to both the SIMH source and binary:
Original code published in 1993-2002, written by Robert M Supnik
Copyright (c) 1993-2002, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
This memorandum documents the SDS 940 simulator.
1. Simulator Files
sim/ sim_defs.h
sim_rev.h
sim_sock.h
sim_tmxr.h
scp.c
scp_tty.c
sim_sock.c
sim_tmxr.c
sim/sds/ sds_defs.h
sds_cpu.c
sds_drm.c
sds_dsk.c
sds_io.c
sds_lp.c
sds_mt.c
sds_mux.c
sds_rad.c
sds_stddev.c
sds_sys.c
2. SDS 940 Features
The SDS-940 simulator is configured as follows:
device simulates
name(s)
CPU SDS-940 CPU with 16KW to 64KW of memory
CHAN I/O channels
PTR paper tape reader
PTP paper tape punch
TTI console input
TTO console output
LPT line printer
RTC real-time clock
MUX terminal multiplexor
DRM Project Genie drum
RAD fixed head disk
DSK 9164/9165 rapid access (moving head) disk
MT magnetic tape
Most devices can be disabled or enabled with the SET <dev> DISABLED and
SET <dev> ENABLED commands, respectively.
2.1 CPU
The CPU options set the size of main memory and the configuration of
peripherals.
SET CPU 16K set memory size = 16KW
SET CPU 32K set memory size = 32KW
SET CPU 48K set memory size = 48KW
SET CPU 64K set memory size = 64KW
SET CPU GENIE enable DRM, set terminal mux
to GENIE mode
SET CPU SDS disable DRM, set terminal mux
to SDS mode
If memory size is being reduced, and the memory being truncated contains
non-zero data, the simulator asks for confirmation. Data in the truncated
portion of memory is lost. Initial memory size is 64KW.
CPU registers include the visible state of the processor as well as the
control registers for the interrupt system.
name size comments
P 14 program counter
A 24 accumulator A
B 24 accumulator B
X 24 index register
OV 1 overflow indicator
EM2 3 memory extension, quadrant 2
EM3 3 memory extension, quadrant 3
RL1 24 user relocation register 1
RL2 24 user relocation register 2
RL4 12 kernel relocation register
NML 1 normal mode flag
USR 1 user mode flag
MONUSR 1 monitor-to-user trap enable
ION 1 interrupt enable
INTDEF 1 interrupt defer
INTREQ 32 interrupt request flags
APIACT 5 highest active API level
APIREQ 5 highest requesting API level
XFRREQ 32 device transfer request flags
BPT 4 breakpoint switches
ALERT 6 outstanding alert number
STOP_INVINS 1 stop on invalid instruction
STOP_INVDEV 1 stop on invalid device number
STOP_INVIOP 1 stop on invalid I/O operation
INDLIM 8 maximum indirect nesting depth
EXULIM 8 maximum execute nesting depth
PCQ[0:63] 14 P prior to last branch or interrupt;
most recent P change first
WRU 8 interrupt character
2.2 Channels (CHAN)
The SDS 940 has up to eight I/O channels, designated W, Y, C, D, E, F, G,
and H. W, Y, C, and D are time-multiplexed communications channels (TMCC);
E, F, G, and H are direct access communications channels (DACC). Unlike
real SDS 940 channels, the simulated channels handle 6b, 12b, and 24b transfers
simultaneously. The association between a device and a channel is displayed
by the SHOW <dev> CHAN command:
SIM> SHOW LPT CHAN
channel=W
The user can change the association with the SET <dev> CHAN=<chan> command,
where <chan> is a channel letter:
SIM> SET LPT CHAN=E
SIM> SHOW LPT CHAN
channel=E
Each channel has nine registers. The registers are arrays, with entry [0]
for channel W, entry [1] for channel Y, etc.
name size comments
UAR[0:7] 6 unit address register
WCR[0:7] 15 word count register
MAR[0:7] 16 memory address register
DCR[0:7] 6 data chaining register
WAR[0:7] 24 word assembly register
CPW[0:7] 2 characters per word
CNT[0:7] 3 character count
MODE[0:7] 12 channel mode (from EOM instruction)
FLAG[0:7] 9 channel flags
The user can display all the registers in a channel with the command SHOW
CHAN <chan>.
2.3 Console Input (TTI)
The console input (TTI) polls the console keyboard for input. It
implements these registers:
name size comments
BUF 6 data buffer
XFR 1 transfer ready flag
POS 32 number of characters input
TIME 24 polling interval
By default, the console input is assigned to channel W.
2.4 Console Output (TTO)
The console output (TTO) writes to the simulator console window. It
implements these registers:
name size comments
BUF 6 data buffer
XFR 1 transfer ready flag
POS 32 number of characters input
TIME 24 time from I/O initiation to interrupt
By default, the console output is assigned to channel W.
2.5 Paper Tape Reader (PTR)
The paper tape reader (PTR) reads data from a disk file. The POS
register specifies the number of the next data item to be read. Thus,
by changing POS, the user can backspace or advance the reader.
The paper tape reader implements these registers:
name size comments
BUF 6 data buffer
XFR 1 transfer ready flag
SOR 1 start of record flag
CHAN 4 active channel
POS 32 number of characters input
TIME 24 time from I/O initiation to interrupt
STOP_IOE 1 stop on I/O error
Error handling is as follows:
error STOP_IOE processed as
not attached 1 report error and stop
0 out of tape
end of file 1 report error and stop
0 out of tape
OS I/O error x report error and stop
By default, the paper tape reader is assigned to channel W.
2.6 Paper Tape Punch (PTP)
The paper tape punch (PTP) writes data to a disk file. The POS
register specifies the number of the next data item to be written.
Thus, by by changing POS, the user can backspace or advance the punch.
The paper tape punch implements these registers:
name size comments
BUF 6 data buffer
XFR 1 transfer ready flag
LDR 1 punch leader flag
CHAN 4 active channel
POS 32 number of characters input
TIME 24 time from I/O initiation to interrupt
STOP_IOE 1 stop on I/O error
Error handling is as follows:
error STOP_IOE processed as
not attached 1 report error and stop
0 out of tape
OS I/O error x report error and stop
By default, the paper tape punch is assigned to channel W.
2.7 Line Printer (LPT)
The line printer (LPT) writes data to a disk file. The POS register
specifies the number of the next data item to be written. Thus,
by changing POS, the user can backspace or advance the printer.
The line printer implements these registers:
name size comments
BUF[0:131] 8 data buffer
BPTR 8 buffer pointer
XFR 1 transfer ready flag
ERR 1 error flag
CHAN 4 active channel
CCT[0:131] 8 carriage control tape
CCTP 8 pointer into carriage control tape
CCTL 8 length of carriage control tape
SPCINST 24 spacing instruction
POS 32 number of characters input
CTIME 24 intercharacter time
PTIME 24 print time
STIME 24 space time
STOP_IOE 1 stop on I/O error
Error handling is as follows:
error STOP_IOE processed as
not attached 1 report error and stop
0 out of paper
OS I/O error x report error and stop
By default, the line printer is assigned to channel W.
2.8 Real Time Clock (RTC)
The real time clock (RTC) implements these registers:
name size comments
PIE 1 interrupt enable
TIME 24 tick interval
TPS 8 ticks per second
The real-time clock autocalibrates; the clock interval is adjusted up or
down so that the clock tracks actual elapsed time.
2.9 Terminal Multiplexor (MUX)
The terminal multiplexor provides 32 asynchronous interfaces. In Genie
mode, the interfaces are hard-wired; in SDS mode, they implement modem
control. The multiplexor has two controllers: MUX for the scanner, and
MUXL for the individual lines. The terminal multiplexor performs input
and output through Telnet sessions connected to a user-specified port.
The ATTACH command specifies the port to be used:
ATTACH MUX <port> set up listening port
where port is a decimal number between 1 and 65535 that is not being used
for other TCP/IP activities.
Each line (each unit of MUXL) supports one option: UC, when set, causes
lower case input characters to be automatically converted to upper case.
Once MUX is attached and the simulator is running, the multiplexor listens
for connections on the specified port. It assumes that the incoming
connections are Telnet connections. The connections remain open until
disconnected either by the Telnet client, a SET MUX DISCONNECT command,
or a DETACH MUX command.
The SHOW MUX CONNECTIONS command displays the current connections to the
extra terminals. The SHOW MUX STATISTICS command displays statistics for
active connections. The SET MUX DISCONNECT=linenumber disconnects the
specified line.
The controller (MUX) implements these registers:
name size comments
STA[0:31] 6 status, lines 0 to 31
RBUF[0:31] 8 receive buffer, lines 0 to 31
XBUF[0:31] 8 transmit buffer, lines 0 to 31
FLAGS[0:127] 1 line flags, 0 to 3 for line 0,
4 to 7 for line 1, etc
SCAN 7 scanner current flag number
SLCK 1 scanner locked flag
TPS 8 character polls per second
The lines (MUXL) implements these registers:
name size comments
TIME[0:31] 24 transmit time, lines 0 to 31
The additional terminals do not support save and restore. All open
connections are lost when the simulator shuts down or MUX is detached.
2.10 Project Genie Drum (DRM)
The Project Genie drum (DRM) implements these registers:
name size comments
DA 19 drum address
CA 16 core address
WC 14 word count
PAR 12 cumulative sector parity
RW 1 read/write flag
ERR 1 error flag
STA 2 drum state
FTIME 24 channel program fetch time
XTIME 24 interword transfer time
STOP_IOE 1 stop on I/O error
Error handling is as follows:
error STOP_IOE processed as
not attached 1 report error and stop
0 drum not ready
Drum data files are buffered in memory; therefore, end of file and OS
I/O errors cannot occur. Unlike conventional SDS 940 devices, the Project
Genie drum does not use a channel.
2.11 Rapid Access (fixed head) Disk (RAD)
The rapid access disk (RAD) implements these registers:
name size comments
DA 15 disk address
SA 6 sector word address
BP 1 sector byte pointer
XFR 1 data transfer flag
NOBD 1 inhibit increment across track
ERR 1 error flag
CHAN 4 active channel
PROT 8 write protect switches
TIME 24 interval between halfword transfers
STOP_IOE 1 stop on I/O error
Error handling is as follows:
error STOP_IOE processed as
not attached 1 report error and stop
0 disk not ready
end of file x assume rest of disk is zero
OS I/O error x report error and stop
By default, the rapid access disk is assigned to channel E.
2.12 Moving Head Disk (DSK)
DSK options include the ability to make the drive write enabled or write
locked:
SET RAD LOCKED set write locked
SET RAD WRITEENABLED set write enabled
The moving head disk implements these registers:
name size comments
BUF[0:63] 8 transfer buffer
BPTR 9 buffer pointer
BLNT 9 buffer length
DA 21 disk address
INST 24 disk instruction
XFR 1 data transfer flag
ERR 1 error flag
CHAN 4 active channel
WTIME 24 interval between character transfers
STIME 24 seek interval
STOP_IOE 1 stop on I/O error
Error handling is as follows:
error STOP_IOE processed as
not attached 1 report error and stop
0 disk not ready
Rapid access disk data files are buffered in memory; therefore, end of file
and OS I/O errors cannot occur. By default, the rapid access disk is
assigned to channel F.
2.13 Magnetic Tape (MT)
MT options include the ability to make units write enabled or write locked.
SET MTn LOCKED set unit n write locked
SET MTn WRITEENABLED set unit n write enabled
Units can also be set ONLINE or OFFLINE.
The magnetic tape implements these registers:
name size comments
BUF[0:131071] 8 transfer buffer
BPTR 18 buffer pointer
BLNT 18 buffer length
XFR 1 data transfer flag
CHAN 4 active channel
INST 24 magtape instruction
EOF 1 end-of-file flag
GAP 1 inter-record gap flag
SKIP 1 skip data flag
CTIME 24 interval between character transfers
GTIME 24 gap interval
POS[0:7] 32 position, drives 0:7
STOP_IOE 1 stop on I/O error
Error handling is as follows:
error processed as
not attached tape not ready; if STOP_IOE, stop
end of file end of tape
OS I/O error end of tape; if STOP_IOE, stop
By default, the magnetic tape is assigned to channel W.
2.13 Symbolic Display and Input
The SDS 940 simulator implements symbolic display and input. Display is
controlled by command line switches:
-a display as ASCII character
-c display as four character SDS string
-m display instruction mnemonics
Input parsing is controlled by the first character typed in or by command
line switches:
' or -a ASCII character
" or -c four character SDS string
alphabetic instruction mnemonic
numeric octal number
Instruction input uses (more or less) standard SDS 940 assembler syntax.
There are eight instruction classes:
class operands examples comments
no operand none EIR
POP (prog op) op,addr{,tag} POP 66,100
I/O addr{,tag} EOM 1266
mem reference addr{,tag} LDA 400,2
STA* 300 indirect addr
reg change op op op... CLA CLB opcodes OR
shift cnt{,tag} LSH 10
chan command chan ALC W
chan test chan CAT Y
All numbers are octal. Channel designators can be alphabetic (W, Y, C, D, E,
F, G, H) or numeric (0-7). Tags must be 0-7, with 2 indicating indexing.