1. New Features in 2.10-2 The build procedures have changed. There is only one UNIX makefile. To compile without Ethernet support, simply type gmake {target|all} To compile with Ethernet support, type gmake USE_NETWORK=1 {target|all} The Mingw batch files require Mingw release 2 and invoke the Unix makefile. There are still separate batch files for compilation with or without Ethernet support. 1.1 SCP and Libraries - The EVAL command will evaluate a symbolic type-in and display it in numeric form. - The ! command (with no arguments) will launch the host operating system command shell. The ! command (with an argument) executes the argument as a host operating system command. (Code from Mark Pizzolato) - Telnet sessions now recognize BREAK. How a BREAK is transmitted dependent on the particular Telnet client. (Code from Mark Pizzolato) - The sockets library includes code for active connections as well as listening connections. - The RESTORE command will restore saved memory size, if the simulator supports dynamic memory resizing. 1.2 PDP-1 - The PDP-1 supports the Type 24 serial drum (based on recently discovered documents). 1.3 18b PDP's - The PDP-4 supports the Type 24 serial drum (based on recently discovered documents). 1.4 PDP-11 - The PDP-11 implements a stub DEUNA/DELUA (XU). The real XU module will be included in a later release. 1.5 PDP-10 - The PDP-10 implements a stub DEUNA/DELUA (XU). The real XU module will be included in a later release. 1.6 HP 2100 - The IOP microinstruction set is supported for the 21MX as well as the 2100. - The HP2100 supports the Access Interprocessor Link (IPL). 1.7 VAX - If the VAX console is attached to a Telnet session, BREAK is interpreted as console halt. - The SET/SHOW HISTORY commands enable and display a history of the most recently executed instructions. (Code from Mark Pizzolato) 1.8 Terminals Multiplexors - BREAK detection was added to the HP, DEC, and Interdata terminal multiplexors. 1.9 Interdata 16b and 32b - First release. UNIX is not yet working. 1.10 SDS 940 - First release. 2. Bugs Fixed in 2.10-2 - PDP-11 console must default to 7b for early UNIX compatibility. - PDP-11/VAX TMSCP emulator was using the wrong packet length for read/write end packets. - Telnet IAC+IAC processing was fixed, both for input and output (found by Mark Pizzolato). - PDP-11/VAX Ethernet setting flag bits wrong for chained descriptors (found by Mark Pizzolato). 3. New Features in 2.10 vs prior releases 3.1 SCP and Libraries - The VT emulation package has been replaced by the capability to remote the console to a Telnet session. Telnet clients typically have more complete and robust VT100 emulation. - Simulated devices may now have statically allocated buffers, in addition to dynamically allocated buffers or disk-based data stores. - The DO command now takes substitutable arguments (max 9). In command files, %n represents substitutable argument n. - The initial command line is now interpreted as the command name and substitutable arguments for a DO command. This is backward compatible to prior versions. - The initial command line parses switches. -Q is interpreted as quiet mode; informational messages are suppressed. - The HELP command now takes an optional argument. HELP <cmd> types help on the specified command. - Hooks have been added for implementing GUI-based consoles, as well as simulator-specific command extensions. A few internal data structures and definitions have changed. - Two new routines (tmxr_open_master, tmxr_close_master) have been added to sim_tmxr.c. The calling sequence for sim_accept_conn has been changed in sim_sock.c. - The calling sequence for the VM boot routine has been modified to add an additional parameter. - SAVE now saves, and GET now restores, controller and unit flags. - Library sim_ether.c has been added for Ethernet support. 3.2 VAX - Non-volatile RAM (NVR) can behave either like a memory or like a disk-based peripheral. If unattached, it behaves like memory and is saved and restored by SAVE and RESTORE, respectively. If attached, its contents are loaded from disk by ATTACH and written back to disk at DETACH and EXIT. - SHOW <device> VECTOR displays the device's interrupt vector. A few devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The TK50 (TMSCP tape) has been added. - The DEQNA/DELQA (Qbus Ethernet controllers) have been added. - Autoconfiguration support has been added. - The paper tape reader has been removed from vax_stddev.c and now references a common implementation file, dec_pt.h. - Examine and deposit switches now work on all devices, not just the CPU. - Device address conflicts are not detected until simulation starts. 3.3 PDP-11 - SHOW <device> VECTOR displays the device's interrupt vector. Most devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk), RX211 (double density floppy), and KW11P programmable clock have been added. - The DEQNA/DELQA (Qbus Ethernet controllers) have been added. - Autoconfiguration support has been added. - The paper tape reader has been removed from pdp11_stddev.c and now references a common implementation file, dec_pt.h. - Device bootstraps now use the actual CSR specified by the SET ADDRESS command, rather than just the default CSR. Note that PDP-11 operating systems may NOT support booting with non-standard addresses. - Specifying more than 256KB of memory, or changing the bus configuration, causes all peripherals that are not compatible with the current bus configuration to be disabled. - Device address conflicts are not detected until simulation starts. 3.4 PDP-10 - SHOW <device> VECTOR displays the device's interrupt vector. A few devices allow the vector to be changed with SET <device> VECTOR=nnn. - SHOW CPU IOSPACE displays the I/O space address map. - The RX211 (double density floppy) has been added; it is off by default. - The paper tape now references a common implementation file, dec_pt.h. - Device address conflicts are not detected until simulation starts. 3.5 PDP-1 - DECtape (then known as MicroTape) support has been added. - The line printer and DECtape can be disabled and enabled. 3.6 PDP-8 - The RX28 (double density floppy) has been added as an option to the existing RX8E controller. - SHOW <device> DEVNO displays the device's device number. Most devices allow the device number to be changed with SET <device> DEVNO=nnn. - Device number conflicts are not detected until simulation starts. 3.7 IBM 1620 - The IBM 1620 simulator has been released. 3.8 AltairZ80 - A hard drive has been added for increased storage. - Several bugs have been fixed. 3.9 HP 2100 - The 12845A has been added and made the default line printer (LPT). The 12653A has been renamed LPS and is off by default. It also supports the diagnostic functions needed to run the DCPC and DMS diagnostics. - The 12557A/13210A disk defaults to the 13210A (7900/7901). - The 12559A magtape is off by default. - New CPU options (EAU/NOEAU) enable/disable the extended arithmetic instructions for the 2116. These instructions are standard on the 2100 and 21MX. - New CPU options (MPR/NOMPR) enable/disable memory protect for the 2100 and 21MX. - New CPU options (DMS/NODMS) enable/disable the dynamic mapping instructions for the 21MX. - The 12539 timebase generator autocalibrates. 3.10 Simulated Magtapes - Simulated magtapes recognize end of file and the marker 0xFFFFFFFF as end of medium. Only the TMSCP tape simulator can generate an end of medium marker. - The error handling in simulated magtapes was overhauled to be consistent through all simulators. 3.11 Simulated DECtapes - Added support for RT11 image file format (256 x 16b) to DECtapes. 4. Bugs Fixed in 2.10 vs prior releases - TS11/TSV05 was not simulating the XS0_MOT bit, causing failures under VMS. In addition, two of the CTL options were coded interchanged. - IBM 1401 tape was not setting a word mark under group mark for load mode reads. This caused the diagnostics to crash. - SCP bugs in ssh_break and set_logon were fixed (found by Dave Hittner). - Numerous bugs in the HP 2100 extended arithmetic, floating point, 21MX, DMS, and IOP instructions were fixed. Bugs were also fixed in the memory protect and DMS functions. The moving head disks (DP, DQ) were revised to simulate the hardware more accurately. Missing functions in DQ (address skip, read address) were added. - PDP-10 tape wouldn't boot, and then wouldn't read (reported by Michael Thompson and Harris Newman, respectively) - PDP-1 typewriter is half duplex, with only one shift state for both input and output (found by Derek Peschel) 5. General Notes WARNING: V2.10 has reorganized and renamed some of the definition files for the PDP-10, PDP-11, and VAX. Be sure to delete all previous source files before you unpack the Zip archive, or unpack it into a new directory structure. WARNING: V2.10 has a new, more comprehensive save file format. Restoring save files from previous releases will cause 'invalid register' errors and loss of CPU option flags, device enable/ disable flags, unit online/offline flags, and unit writelock flags. WARNING: If you are using Visual Studio .NET through the IDE, be sure to turn off the /Wp64 flag in the project settings, or dozens of spurious errors will be generated. WARNING: Compiling Ethernet support under Windows requires extra steps; see the Ethernet readme file. Ethernet support is currently available only for Windows, Linux, NetBSD, and OpenBSD.
536 lines
16 KiB
C
536 lines
16 KiB
C
/* vax_mm.c - VAX memory management simulator
|
||
|
||
Copyright (c) 1998-2002, Robert M Supnik
|
||
|
||
Permission is hereby granted, free of charge, to any person obtaining a
|
||
copy of this software and associated documentation files (the "Software"),
|
||
to deal in the Software without restriction, including without limitation
|
||
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
and/or sell copies of the Software, and to permit persons to whom the
|
||
Software is furnished to do so, subject to the following conditions:
|
||
|
||
The above copyright notice and this permission notice shall be included in
|
||
all copies or substantial portions of the Software.
|
||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
||
Except as contained in this notice, the name of Robert M Supnik shall not
|
||
be used in advertising or otherwise to promote the sale, use or other dealings
|
||
in this Software without prior written authorization from Robert M Supnik.
|
||
|
||
This module contains the instruction simulators for
|
||
|
||
Read - read virtual
|
||
Write - write virtual
|
||
ReadL(P) - read aligned physical longword (physical context)
|
||
WriteL(P) - write aligned physical longword (physical context)
|
||
ReadB(W) - read aligned physical byte (word)
|
||
WriteB(W) - write aligned physical byte (word)
|
||
Test - test acccess
|
||
|
||
zap_tb - clear TB
|
||
zap_tb_ent - clear TB entry
|
||
chk_tb_ent - check TB entry
|
||
set_map_reg - set up working map registers
|
||
*/
|
||
|
||
#include "vax_defs.h"
|
||
#include <setjmp.h>
|
||
|
||
struct tlbent {
|
||
int32 tag; /* tag */
|
||
int32 pte; /* pte */
|
||
};
|
||
|
||
typedef struct tlbent TLBENT;
|
||
|
||
extern uint32 *M;
|
||
extern uint32 align[4];
|
||
extern int32 PSL;
|
||
extern int32 mapen;
|
||
extern int32 p1, p2;
|
||
extern int32 P0BR, P0LR;
|
||
extern int32 P1BR, P1LR;
|
||
extern int32 SBR, SLR;
|
||
extern int32 SISR;
|
||
extern jmp_buf save_env;
|
||
extern UNIT cpu_unit;
|
||
|
||
int32 p0br, p0lr; /* dynamic copies */
|
||
int32 p1br, p1lr; /* altered per ucode */
|
||
int32 sbr, slr;
|
||
extern int32 mchk_va, mchk_ref; /* for mcheck */
|
||
TLBENT stlb[VA_TBSIZE], ptlb[VA_TBSIZE];
|
||
static const int32 insert[4] = {
|
||
0x00000000, 0x000000FF, 0x0000FFFF, 0x00FFFFFF };
|
||
static const int32 cvtacc[16] = { 0, 0,
|
||
TLB_ACCW (KERN)+TLB_ACCR (KERN),
|
||
TLB_ACCR (KERN),
|
||
TLB_ACCW (KERN)+TLB_ACCW (EXEC)+TLB_ACCW (SUPV)+TLB_ACCW (USER)+
|
||
TLB_ACCR (KERN)+TLB_ACCR (EXEC)+TLB_ACCR (SUPV)+TLB_ACCR (USER),
|
||
TLB_ACCW (KERN)+TLB_ACCW (EXEC)+TLB_ACCR (KERN)+TLB_ACCR (EXEC),
|
||
TLB_ACCW (KERN)+TLB_ACCR (KERN)+TLB_ACCR (EXEC),
|
||
TLB_ACCR (KERN)+TLB_ACCR (EXEC),
|
||
TLB_ACCW (KERN)+TLB_ACCW (EXEC)+TLB_ACCW (SUPV)+
|
||
TLB_ACCR (KERN)+TLB_ACCR (EXEC)+TLB_ACCR (SUPV),
|
||
TLB_ACCW (KERN)+TLB_ACCW (EXEC)+
|
||
TLB_ACCR (KERN)+TLB_ACCR (EXEC)+TLB_ACCR (SUPV),
|
||
TLB_ACCW (KERN)+TLB_ACCR (KERN)+TLB_ACCR (EXEC)+TLB_ACCR (SUPV),
|
||
TLB_ACCR (KERN)+TLB_ACCR (EXEC)+TLB_ACCR (SUPV),
|
||
TLB_ACCW (KERN)+TLB_ACCW (EXEC)+TLB_ACCW (SUPV)+
|
||
TLB_ACCR (KERN)+TLB_ACCR (EXEC)+TLB_ACCR (SUPV)+TLB_ACCR (USER),
|
||
TLB_ACCW (KERN)+TLB_ACCW (EXEC)+
|
||
TLB_ACCR (KERN)+TLB_ACCR (EXEC)+TLB_ACCR (SUPV)+TLB_ACCR (USER),
|
||
TLB_ACCW (KERN)+
|
||
TLB_ACCR (KERN)+TLB_ACCR (EXEC)+TLB_ACCR (SUPV)+TLB_ACCR (USER),
|
||
TLB_ACCR (KERN)+TLB_ACCR (EXEC)+TLB_ACCR (SUPV)+TLB_ACCR (USER)
|
||
};
|
||
|
||
t_stat tlb_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
|
||
t_stat tlb_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
|
||
t_stat tlb_reset (DEVICE *dptr);
|
||
|
||
TLBENT fill (t_addr va, int32 lnt, int32 acc, int32 *stat);
|
||
int32 ReadB (t_addr pa);
|
||
void WriteB (t_addr pa, int32 val);
|
||
int32 ReadW (t_addr pa);
|
||
void WriteW (t_addr pa, int32 val);
|
||
int32 ReadL (t_addr pa);
|
||
void WriteL (t_addr pa, int32 val);
|
||
int32 ReadLP (t_addr pa);
|
||
void WriteLP (t_addr pa, int32 val);
|
||
extern int32 ReadIO (t_addr pa, int32 lnt);
|
||
extern void WriteIO (t_addr pa, int32 val, int32 lnt);
|
||
extern int32 ReadReg (t_addr pa, int32 lnt);
|
||
extern void WriteReg (t_addr pa, int32 val, int32 lnt);
|
||
|
||
/* TLB data structures
|
||
|
||
tlb_dev pager device descriptor
|
||
tlb_unit pager units
|
||
pager_reg pager register list
|
||
*/
|
||
|
||
UNIT tlb_unit[] = {
|
||
{ UDATA (NULL, UNIT_FIX, VA_TBSIZE * 2) },
|
||
{ UDATA (NULL, UNIT_FIX, VA_TBSIZE * 2) } };
|
||
|
||
REG tlb_reg[] = {
|
||
{ NULL } };
|
||
|
||
DEVICE tlb_dev = {
|
||
"TLB", tlb_unit, tlb_reg, NULL,
|
||
2, 16, VA_N_TBI * 2, 1, 16, 32,
|
||
&tlb_ex, &tlb_dep, &tlb_reset,
|
||
NULL, NULL, NULL };
|
||
|
||
/* Read and write virtual
|
||
|
||
These routines logically fall into three phases:
|
||
|
||
1. Look up the virtual address in the translation buffer, calling
|
||
the fill routine on a tag mismatch or access mismatch (invalid
|
||
tlb entries have access = 0 and thus always mismatch). The
|
||
fill routine handles all errors. If the resulting physical
|
||
address is aligned, do an aligned physical read or write.
|
||
2. Test for unaligned across page boundaries. If cross page, look
|
||
up the physical address of the second page. If not cross page,
|
||
the second physical address is the same as the first.
|
||
3. Using the two physical addresses, do an unaligned read or
|
||
write, with three cases: unaligned long, unaligned word within
|
||
a longword, unaligned word crossing a longword boundary.
|
||
*/
|
||
|
||
/* Read virtual
|
||
|
||
Inputs:
|
||
va = virtual address
|
||
lnt = length code (BWLQ)
|
||
acc = access code (KESU)
|
||
Output:
|
||
returned data, right justified in 32b longword
|
||
*/
|
||
|
||
int32 Read (t_addr va, int32 lnt, int32 acc)
|
||
{
|
||
int32 vpn, off, tbi, pa;
|
||
int32 pa1, bo, sc, wl, wh;
|
||
TLBENT xpte;
|
||
|
||
mchk_va = va;
|
||
if (mapen) { /* mapping on? */
|
||
vpn = VA_GETVPN (va); /* get vpn, offset */
|
||
off = VA_GETOFF (va);
|
||
tbi = VA_GETTBI (vpn);
|
||
xpte = (va & VA_S0)? stlb[tbi]: ptlb[tbi]; /* access tlb */
|
||
if (((xpte.pte & acc) == 0) || (xpte.tag != vpn) ||
|
||
((acc & TLB_WACC) && ((xpte.pte & TLB_M) == 0)))
|
||
xpte = fill (va, lnt, acc, NULL); /* fill if needed */
|
||
pa = (xpte.pte & TLB_PFN) | off; } /* get phys addr */
|
||
else pa = va & PAMASK;
|
||
if ((pa & (lnt - 1)) == 0) { /* aligned? */
|
||
if (lnt >= L_LONG) return ReadL (pa); /* long, quad? */
|
||
if (lnt == L_WORD) return ReadW (pa); /* word? */
|
||
return ReadB (pa); } /* byte */
|
||
if (mapen && ((off + lnt) > VA_PAGSIZE)) { /* cross page? */
|
||
vpn = VA_GETVPN (va + lnt); /* vpn 2nd page */
|
||
tbi = VA_GETTBI (vpn);
|
||
xpte = (va & VA_S0)? stlb[tbi]: ptlb[tbi]; /* access tlb */
|
||
if (((xpte.pte & acc) == 0) || (xpte.tag != vpn) ||
|
||
((acc & TLB_WACC) && ((xpte.pte & TLB_M) == 0)))
|
||
xpte = fill (va + lnt, lnt, acc, NULL); /* fill if needed */
|
||
pa1 = (xpte.pte & TLB_PFN) | VA_GETOFF (va + 4); }
|
||
else pa1 = (pa + 4) & PAMASK; /* not cross page */
|
||
bo = pa & 3;
|
||
if (lnt >= L_LONG) { /* lw unaligned? */
|
||
sc = bo << 3;
|
||
wl = ReadL (pa); /* read both lw */
|
||
wh = ReadL (pa1); /* extract */
|
||
return (((wl >> sc) & align[bo]) | (wh << (32 - sc))); }
|
||
else if (bo == 1) return ((ReadL (pa) >> 8) & WMASK);
|
||
else { wl = ReadL (pa); /* word cross lw */
|
||
wh = ReadL (pa1); /* read, extract */
|
||
return (((wl >> 24) & 0xFF) | ((wh & 0xFF) << 8)); }
|
||
}
|
||
|
||
/* Write virtual
|
||
|
||
Inputs:
|
||
va = virtual address
|
||
val = data to be written, right justified in 32b lw
|
||
lnt = length code (BWLQ)
|
||
acc = access code (KESU)
|
||
Output:
|
||
none
|
||
*/
|
||
|
||
void Write (t_addr va, int32 val, int32 lnt, int32 acc)
|
||
{
|
||
int32 vpn, off, tbi, pa;
|
||
int32 pa1, bo, sc, wl, wh;
|
||
TLBENT xpte;
|
||
|
||
mchk_va = va;
|
||
if (mapen) {
|
||
vpn = VA_GETVPN (va);
|
||
off = VA_GETOFF (va);
|
||
tbi = VA_GETTBI (vpn);
|
||
xpte = (va & VA_S0)? stlb[tbi]: ptlb[tbi]; /* access tlb */
|
||
if (((xpte.pte & acc) == 0) || (xpte.tag != vpn) ||
|
||
((xpte.pte & TLB_M) == 0))
|
||
xpte = fill (va, lnt, acc, NULL);
|
||
pa = (xpte.pte & TLB_PFN) | off; }
|
||
else pa = va & PAMASK;
|
||
if ((pa & (lnt - 1)) == 0) { /* aligned? */
|
||
if (lnt >= L_LONG) WriteL (pa, val); /* long, quad? */
|
||
else if (lnt == L_WORD) WriteW (pa, val); /* word? */
|
||
else WriteB (pa, val); /* byte */
|
||
return; }
|
||
if (mapen && ((off + lnt) > VA_PAGSIZE)) {
|
||
vpn = VA_GETVPN (va + 4);
|
||
tbi = VA_GETTBI (vpn);
|
||
xpte = (va & VA_S0)? stlb[tbi]: ptlb[tbi]; /* access tlb */
|
||
if (((xpte.pte & acc) == 0) || (xpte.tag != vpn) ||
|
||
((xpte.pte & TLB_M) == 0))
|
||
xpte = fill (va + lnt, lnt, acc, NULL);
|
||
pa1 = (xpte.pte & TLB_PFN) | VA_GETOFF (va + 4); }
|
||
else pa1 = (pa + 4) & PAMASK;
|
||
bo = pa & 3;
|
||
wl = ReadL (pa);
|
||
if (lnt >= L_LONG) {
|
||
sc = bo << 3;
|
||
wh = ReadL (pa1);
|
||
wl = (wl & insert[bo]) | (val << sc);
|
||
wh = (wh & ~insert[bo]) | ((val >> (32 - sc)) & insert[bo]);
|
||
WriteL (pa, wl);
|
||
WriteL (pa1, wh); }
|
||
else if (bo == 1) {
|
||
wl = (wl & 0xFF0000FF) | (val << 8);
|
||
WriteL (pa, wl); }
|
||
else { wh = ReadL (pa1);
|
||
wl = (wl & 0x00FFFFFF) | (val << 24);
|
||
wh = (wh & 0xFFFFFF00) | ((val >> 8) & 0xFF);
|
||
WriteL (pa, wl);
|
||
WriteL (pa1, wh); }
|
||
return;
|
||
}
|
||
|
||
/* Test access to a byte (VAX PROBEx) */
|
||
|
||
int32 Test (int32 va, int32 acc, int32 *status)
|
||
{
|
||
int32 vpn, off, tbi;
|
||
TLBENT xpte;
|
||
|
||
*status = PR_OK; /* assume ok */
|
||
if (mapen) { /* mapping on? */
|
||
vpn = VA_GETVPN (va); /* get vpn, off */
|
||
off = VA_GETOFF (va);
|
||
tbi = VA_GETTBI (vpn);
|
||
xpte = (va & VA_S0)? stlb[tbi]: ptlb[tbi]; /* access tlb */
|
||
if ((xpte.pte & acc) && (xpte.tag == vpn)) /* TB hit, acc ok? */
|
||
return (xpte.pte & TLB_PFN) | off;
|
||
xpte = fill (va, L_BYTE, acc, status); /* fill TB */
|
||
if (*status == PR_OK) return (xpte.pte & TLB_PFN) | off;
|
||
else return -1; }
|
||
return va & PAMASK; /* ret phys addr */
|
||
}
|
||
|
||
/* Read aligned physical (in virtual context, unless indicated)
|
||
|
||
Inputs:
|
||
pa = physical address, naturally aligned
|
||
Output:
|
||
returned data, right justified in 32b longword
|
||
*/
|
||
|
||
int32 ReadB (t_addr pa)
|
||
{
|
||
int32 dat;
|
||
|
||
if (ADDR_IS_MEM (pa)) dat = M[pa >> 2];
|
||
else { mchk_ref = REF_V;
|
||
if (ADDR_IS_IO (pa)) dat = ReadIO (pa, L_BYTE);
|
||
else dat = ReadReg (pa, L_BYTE); }
|
||
return ((dat >> ((pa & 3) << 3)) & BMASK);
|
||
}
|
||
|
||
int32 ReadW (t_addr pa)
|
||
{
|
||
int32 dat;
|
||
|
||
if (ADDR_IS_MEM (pa)) dat = M[pa >> 2];
|
||
else { mchk_ref = REF_V;
|
||
if (ADDR_IS_IO (pa)) dat = ReadIO (pa, L_WORD);
|
||
else dat = ReadReg (pa, L_WORD); }
|
||
return ((dat >> ((pa & 2)? 16: 0)) & WMASK);
|
||
}
|
||
|
||
int32 ReadL (t_addr pa)
|
||
{
|
||
if (ADDR_IS_MEM (pa)) return M[pa >> 2];
|
||
mchk_ref = REF_V;
|
||
if (ADDR_IS_IO (pa)) return ReadIO (pa, L_LONG);
|
||
return ReadReg (pa, L_LONG);
|
||
}
|
||
|
||
int32 ReadLP (t_addr pa)
|
||
{
|
||
if (ADDR_IS_MEM (pa)) return M[pa >> 2];
|
||
mchk_va = pa;
|
||
mchk_ref = REF_P;
|
||
if (ADDR_IS_IO (pa)) return ReadIO (pa, L_LONG);
|
||
return ReadReg (pa, L_LONG);
|
||
}
|
||
|
||
/* Write aligned physical (in virtual context, unless indicated)
|
||
|
||
Inputs:
|
||
pa = physical address, naturally aligned
|
||
val = data to be written, right justified in 32b longword
|
||
Output:
|
||
none
|
||
*/
|
||
|
||
void WriteB (t_addr pa, int32 val)
|
||
{
|
||
if (ADDR_IS_MEM (pa)) {
|
||
int32 id = pa >> 2;
|
||
int32 sc = (pa & 3) << 3;
|
||
int32 mask = 0xFF << sc;
|
||
M[id] = (M[id] & ~mask) | (val << sc); }
|
||
else { mchk_ref = REF_V;
|
||
if (ADDR_IS_IO (pa)) WriteIO (pa, val, L_BYTE);
|
||
else WriteReg (pa, val, L_BYTE); }
|
||
return;
|
||
}
|
||
|
||
void WriteW (t_addr pa, int32 val)
|
||
{
|
||
if (ADDR_IS_MEM (pa)) {
|
||
int32 id = pa >> 2;
|
||
M[id] = (pa & 2)? (M[id] & 0xFFFF) | (val << 16):
|
||
(M[id] & ~0xFFFF) | val; }
|
||
else { mchk_ref = REF_V;
|
||
if (ADDR_IS_IO (pa)) WriteIO (pa, val, L_WORD);
|
||
else WriteReg (pa, val, L_WORD); }
|
||
return;
|
||
}
|
||
|
||
void WriteL (t_addr pa, int32 val)
|
||
{
|
||
if (ADDR_IS_MEM (pa)) M[pa >> 2] = val;
|
||
else { mchk_ref = REF_V;
|
||
if (ADDR_IS_IO (pa)) WriteIO (pa, val, L_LONG);
|
||
else WriteReg (pa, val, L_LONG); }
|
||
return;
|
||
}
|
||
|
||
void WriteLP (t_addr pa, int32 val)
|
||
{
|
||
if (ADDR_IS_MEM (pa)) M[pa >> 2] = val;
|
||
else { mchk_va = pa;
|
||
mchk_ref = REF_P;
|
||
if (ADDR_IS_IO (pa)) WriteIO (pa, val, L_LONG);
|
||
else WriteReg (pa, val, L_LONG); }
|
||
return;
|
||
}
|
||
|
||
/* TLB fill
|
||
|
||
This routine fills the TLB after a tag or access mismatch, or
|
||
on a write if pte<m> = 0. It fills the TLB and returns the
|
||
pte to the caller. On an error, it aborts directly to the
|
||
fault handler in the CPU.
|
||
|
||
If called from map (VAX PROBEx), the error status is returned
|
||
to the caller, and no fault occurs.
|
||
*/
|
||
|
||
#define MM_ERR(param) { \
|
||
if (stat) { *stat = param; return zero_pte; } \
|
||
p1 = MM_PARAM (acc & TLB_WACC, param); \
|
||
p2 = va; \
|
||
ABORT ((param & PR_TNV)? ABORT_TNV: ABORT_ACV); }
|
||
|
||
TLBENT fill (t_addr va, int32 lnt, int32 acc, int32 *stat)
|
||
{
|
||
int32 ptidx = (((uint32) va) >> 7) & ~03;
|
||
int32 tlbpte, ptead, pte, tbi, vpn;
|
||
static TLBENT zero_pte = { 0, 0 };
|
||
|
||
if (va & VA_S0) { /* system space? */
|
||
if (ptidx >= slr) MM_ERR (PR_LNV); /* system */
|
||
ptead = sbr + ptidx; }
|
||
else { if (va & VA_P1) { /* P1? */
|
||
if (ptidx < p1lr) MM_ERR (PR_LNV);
|
||
ptead = p1br + ptidx; }
|
||
else { /* P0 */
|
||
if (ptidx >= p0lr)
|
||
MM_ERR (PR_LNV);
|
||
ptead = p0br + ptidx; }
|
||
if ((ptead & VA_S0) == 0)
|
||
ABORT (STOP_PPTE); /* ppte must be sys */
|
||
vpn = VA_GETVPN (ptead); /* get vpn, tbi */
|
||
tbi = VA_GETTBI (vpn);
|
||
if (stlb[tbi].tag != vpn) { /* in sys tlb? */
|
||
ptidx = ((uint32) ptead) >> 7; /* xlate like sys */
|
||
if (ptidx >= slr) MM_ERR (PR_PLNV);
|
||
pte = ReadLP (sbr + ptidx); /* get system pte */
|
||
if ((pte & PTE_V) == 0) MM_ERR (PR_PTNV); /* spte TNV? */
|
||
stlb[tbi].tag = vpn; /* set stlb tag */
|
||
stlb[tbi].pte = cvtacc[PTE_GETACC (pte)] |
|
||
((pte << VA_N_OFF) & TLB_PFN); } /* set stlb data */
|
||
ptead = (stlb[tbi].pte & TLB_PFN) | VA_GETOFF (ptead); }
|
||
pte = ReadL (ptead); /* read pte */
|
||
tlbpte = cvtacc[PTE_GETACC (pte)] | /* cvt access */
|
||
((pte << VA_N_OFF) & TLB_PFN); /* set addr */
|
||
if ((tlbpte & acc) == 0) MM_ERR (PR_ACV); /* chk access */
|
||
if ((pte & PTE_V) == 0) MM_ERR (PR_TNV); /* check valid */
|
||
if (acc & TLB_WACC) { /* write? */
|
||
if ((pte & PTE_M) == 0) WriteL (ptead, pte | PTE_M);
|
||
tlbpte = tlbpte | TLB_M; } /* set M */
|
||
vpn = VA_GETVPN (va);
|
||
tbi = VA_GETTBI (vpn);
|
||
if ((va & VA_S0) == 0) { /* process space? */
|
||
ptlb[tbi].tag = vpn; /* store tlb ent */
|
||
ptlb[tbi].pte = tlbpte;
|
||
return ptlb[tbi]; }
|
||
stlb[tbi].tag = vpn; /* system space */
|
||
stlb[tbi].pte = tlbpte; /* store tlb ent */
|
||
return stlb[tbi];
|
||
}
|
||
|
||
/* Utility routines */
|
||
|
||
extern void set_map_reg (void)
|
||
{
|
||
p0br = P0BR & ~03;
|
||
p1br = (P1BR - 0x800000) & ~03; /* VA<30> >> 7 */
|
||
sbr = (SBR - 0x1000000) & ~03; /* VA<31> >> 7 */
|
||
p0lr = (P0LR << 2);
|
||
p1lr = (P1LR << 2) + 0x800000; /* VA<30> >> 7 */
|
||
slr = (SLR << 2) + 0x1000000; /* VA<31> >> 7 */
|
||
return;
|
||
}
|
||
|
||
/* Zap process (0) or whole (1) tb */
|
||
|
||
void zap_tb (int stb)
|
||
{
|
||
int32 i;
|
||
|
||
for (i = 0; i < VA_TBSIZE; i++) {
|
||
ptlb[i].tag = ptlb[i].pte = -1;
|
||
if (stb) stlb[i].tag = stlb[i].pte = -1; }
|
||
return;
|
||
}
|
||
|
||
/* Zap single tb entry corresponding to va */
|
||
|
||
void zap_tb_ent (int32 va)
|
||
{
|
||
int32 tbi = VA_GETTBI (VA_GETVPN (va));
|
||
|
||
if (va & VA_S0) stlb[tbi].tag = stlb[tbi].pte = -1;
|
||
else ptlb[tbi].tag = ptlb[tbi].pte = -1;
|
||
return;
|
||
}
|
||
|
||
/* Check for tlb entry corresponding to va */
|
||
|
||
t_bool chk_tb_ent (int32 va)
|
||
{
|
||
int32 vpn = VA_GETVPN (va);
|
||
int32 tbi = VA_GETTBI (vpn);
|
||
TLBENT xpte;
|
||
|
||
xpte = (va & VA_S0)? stlb[tbi]: ptlb[tbi];
|
||
if (xpte.tag == vpn) return TRUE;
|
||
return FALSE;
|
||
}
|
||
|
||
/* TLB examine */
|
||
|
||
t_stat tlb_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
|
||
{
|
||
int32 tlbn = uptr - tlb_unit;
|
||
int32 idx = addr >> 1;
|
||
|
||
if (idx >= VA_TBSIZE) return SCPE_NXM;
|
||
if (addr & 1) *vptr = ((uint32) (tlbn? stlb[idx].pte: ptlb[idx].pte));
|
||
else *vptr = ((uint32) (tlbn? stlb[idx].tag: ptlb[idx].tag));
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* TLB deposit */
|
||
|
||
t_stat tlb_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
|
||
{
|
||
int32 tlbn = uptr - tlb_unit;
|
||
int32 idx = addr >> 1;
|
||
|
||
if (idx >= VA_TBSIZE) return SCPE_NXM;
|
||
if (addr & 1) {
|
||
if (tlbn) stlb[idx].pte = (int32) val;
|
||
else ptlb[idx].pte = (int32) val; }
|
||
else { if (tlbn) stlb[idx].tag = (int32) val;
|
||
else ptlb[idx].tag = (int32) val; }
|
||
return SCPE_OK;
|
||
}
|
||
|
||
/* TLB reset */
|
||
|
||
t_stat tlb_reset (DEVICE *dptr)
|
||
{
|
||
int32 i;
|
||
|
||
for (i = 0; i < VA_TBSIZE; i++)
|
||
stlb[i].tag = ptlb[i].tag = stlb[i].pte = ptlb[i].pte = -1;
|
||
return SCPE_OK;
|
||
}
|