776 lines
34 KiB
C
776 lines
34 KiB
C
/* alpha_fpi.c - Alpha IEEE floating point simulator
|
|
|
|
Copyright (c) 2003-2006, Robert M Supnik
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a
|
|
copy of this software and associated documentation files (the "Software"),
|
|
to deal in the Software without restriction, including without limitation
|
|
the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
and/or sell copies of the Software, and to permit persons to whom the
|
|
Software is furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
Except as contained in this notice, the name of Robert M Supnik shall not be
|
|
used in advertising or otherwise to promote the sale, use or other dealings
|
|
in this Software without prior written authorization from Robert M Supnik.
|
|
|
|
This module contains the instruction simulators for
|
|
|
|
- single precision floating point, S
|
|
- double precision floating point, T
|
|
|
|
Portions of this module (specifically, the convert floating to integer
|
|
routine and the square root routine) are a derivative work from SoftFloat,
|
|
written by John Hauser. SoftFloat includes the following license terms:
|
|
|
|
Written by John R. Hauser. This work was made possible in part by the
|
|
International Computer Science Institute, located at Suite 600, 1947 Center
|
|
Street, Berkeley, California 94704. Funding was partially provided by the
|
|
National Science Foundation under grant MIP-9311980. The original version
|
|
of this code was written as part of a project to build a fixed-point vector
|
|
processor in collaboration with the University of California at Berkeley,
|
|
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
|
is available through the Web page 'http://www.cs.berkeley.edu/~jhauser/
|
|
arithmetic/SoftFloat.html'.
|
|
|
|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
|
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
|
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
|
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
|
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
|
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
|
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
|
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
|
|
|
Derivative works are acceptable, even for commercial purposes, so long as
|
|
(1) the source code for the derivative work includes prominent notice that
|
|
the work is derivative, and (2) the source code includes prominent notice with
|
|
these four paragraphs for those parts of this code that are retained.
|
|
*/
|
|
|
|
#include "alpha_defs.h"
|
|
|
|
#define UFT_ZERO 0 /* unpacked: zero */
|
|
#define UFT_FIN 1 /* finite */
|
|
#define UFT_DENORM 2 /* denormal */
|
|
#define UFT_INF 3 /* infinity */
|
|
#define UFT_NAN 4 /* not a number */
|
|
|
|
#define Q_FINITE(x) ((x) <= UFT_FIN) /* finite */
|
|
#define Q_SUI(x) (((x) & I_FTRP) == I_FTRP_SVI)
|
|
|
|
/* Register format constants */
|
|
|
|
#define QNAN 0x0008000000000000 /* quiet NaN flag */
|
|
#define CQNAN 0xFFF8000000000000 /* canonical quiet NaN */
|
|
#define FPZERO 0x0000000000000000 /* plus zero (fp) */
|
|
#define FMZERO 0x8000000000000000 /* minus zero (fp) */
|
|
#define FPINF 0x7FF0000000000000 /* plus infinity (fp) */
|
|
#define FMINF 0xFFF0000000000000 /* minus infinity (fp) */
|
|
#define FPMAX 0x7FEFFFFFFFFFFFFF /* plus MAX (fp) */
|
|
#define FMMAX 0xFFEFFFFFFFFFFFFF /* minus MAX (fp) */
|
|
#define IPMAX 0x7FFFFFFFFFFFFFFF /* plus MAX (int) */
|
|
#define IMMAX 0x8000000000000000 /* minus MAX (int) */
|
|
|
|
/* Unpacked rounding constants */
|
|
|
|
#define UF_SRND 0x0000008000000000 /* S normal round */
|
|
#define UF_SINF 0x000000FFFFFFFFFF /* S infinity round */
|
|
#define UF_TRND 0x0000000000000400 /* T normal round */
|
|
#define UF_TINF 0x00000000000007FF /* T infinity round */
|
|
|
|
extern t_uint64 FR[32];
|
|
extern uint32 fpcr;
|
|
extern jmp_buf save_env;
|
|
|
|
t_bool ieee_unpack (t_uint64 op, UFP *r, uint32 ir);
|
|
void ieee_norm (UFP *r);
|
|
t_uint64 ieee_rpack (UFP *r, uint32 ir, uint32 dp);
|
|
void ieee_trap (uint32 trap, uint32 instenb, uint32 fpcrdsb, uint32 ir);
|
|
int32 ieee_fcmp (t_uint64 a, t_uint64 b, uint32 ir, uint32 signal_nan);
|
|
t_uint64 ieee_cvtst (t_uint64 op, uint32 ir);
|
|
t_uint64 ieee_cvtts (t_uint64 op, uint32 ir);
|
|
t_uint64 ieee_cvtif (t_uint64 val, uint32 ir, uint32 dp);
|
|
t_uint64 ieee_cvtfi (t_uint64 op, uint32 ir);
|
|
t_uint64 ieee_fadd (t_uint64 a, t_uint64 b, uint32 ir, uint32 dp, t_bool sub);
|
|
t_uint64 ieee_fmul (t_uint64 a, t_uint64 b, uint32 ir, uint32 dp);
|
|
t_uint64 ieee_fdiv (t_uint64 a, t_uint64 b, uint32 ir, uint32 dp);
|
|
uint32 estimateSqrt32 (uint32 exp, uint32 a);
|
|
t_uint64 estimateDiv128 (t_uint64 hi, t_uint64 lo, t_uint64 dvr);
|
|
|
|
extern t_uint64 uemul64 (t_uint64 a, t_uint64 b, t_uint64 *hi);
|
|
extern t_uint64 ufdiv64 (t_uint64 dvd, t_uint64 dvr, uint32 prec, uint32 *sticky);
|
|
t_uint64 fsqrt64 (t_uint64 frac, int32 exp);
|
|
|
|
/* IEEE S load */
|
|
|
|
t_uint64 op_lds (t_uint64 op)
|
|
{
|
|
uint32 exp = S_GETEXP (op); /* get exponent */
|
|
|
|
if (exp == S_NAN) exp = FPR_NAN; /* inf or NaN? */
|
|
else if (exp != 0) exp = exp + T_BIAS - S_BIAS; /* zero or denorm? */
|
|
return (((t_uint64) (op & S_SIGN))? FPR_SIGN: 0) | /* reg format */
|
|
(((t_uint64) exp) << FPR_V_EXP) |
|
|
(((t_uint64) (op & ~(S_SIGN|S_EXP))) << S_V_FRAC);
|
|
}
|
|
|
|
/* IEEE S store */
|
|
|
|
t_uint64 op_sts (t_uint64 op)
|
|
{
|
|
uint32 sign = FPR_GETSIGN (op)? S_SIGN: 0;
|
|
uint32 frac = ((uint32) (op >> S_V_FRAC)) & M32;
|
|
uint32 exp = FPR_GETEXP (op);
|
|
|
|
if (exp == FPR_NAN) exp = S_NAN; /* inf or NaN? */
|
|
else if (exp != 0) exp = exp + S_BIAS - T_BIAS; /* non-zero? */
|
|
exp = (exp & S_M_EXP) << S_V_EXP;
|
|
return (t_uint64) (sign | exp | (frac & ~(S_SIGN|S_EXP)));
|
|
}
|
|
|
|
/* IEEE floating operate */
|
|
|
|
void ieee_fop (uint32 ir)
|
|
{
|
|
UFP a, b;
|
|
uint32 ftpa, ftpb, fnc, ra, rb, rc;
|
|
t_uint64 res;
|
|
|
|
fnc = I_GETFFNC (ir); /* get function */
|
|
ra = I_GETRA (ir); /* get registers */
|
|
rb = I_GETRB (ir);
|
|
rc = I_GETRC (ir);
|
|
switch (fnc) { /* case on func */
|
|
|
|
case 0x00: /* ADDS */
|
|
res = ieee_fadd (FR[ra], FR[rb], ir, DT_S, 0);
|
|
break;
|
|
|
|
case 0x01: /* SUBS */
|
|
res = ieee_fadd (FR[ra], FR[rb], ir, DT_S, 1);
|
|
break;
|
|
|
|
case 0x02: /* MULS */
|
|
res = ieee_fmul (FR[ra], FR[rb], ir, DT_S);
|
|
break;
|
|
|
|
case 0x03: /* DIVS */
|
|
res = ieee_fdiv (FR[ra], FR[rb], ir, DT_S);
|
|
break;
|
|
|
|
case 0x20: /* ADDT */
|
|
res = ieee_fadd (FR[ra], FR[rb], ir, DT_T, 0);
|
|
break;
|
|
|
|
case 0x21: /* SUBT */
|
|
res = ieee_fadd (FR[ra], FR[rb], ir, DT_T, 1);
|
|
break;
|
|
|
|
case 0x22: /* MULT */
|
|
res = ieee_fmul (FR[ra], FR[rb], ir, DT_T);
|
|
break;
|
|
|
|
case 0x23: /* DIVT */
|
|
res = ieee_fdiv (FR[ra], FR[rb], ir, DT_T);
|
|
break;
|
|
|
|
case 0x24: /* CMPTUN */
|
|
ftpa = ieee_unpack (FR[ra], &a, ir); /* unpack */
|
|
ftpb = ieee_unpack (FR[rb], &b, ir);
|
|
if ((ftpa == UFT_NAN) || (ftpb == UFT_NAN)) /* if NaN, T */
|
|
res = FP_TRUE;
|
|
else res = 0;
|
|
break;
|
|
|
|
case 0x25: /* CMPTEQ */
|
|
if (ieee_fcmp (FR[ra], FR[rb], ir, 0) == 0) res = FP_TRUE;
|
|
else res = 0;
|
|
break;
|
|
|
|
case 0x26: /* CMPTLT */
|
|
if (ieee_fcmp (FR[ra], FR[rb], ir, 1) < 0) res = FP_TRUE;
|
|
else res = 0;
|
|
break;
|
|
|
|
case 0x27: /* CMPTLE */
|
|
if (ieee_fcmp (FR[ra], FR[rb], ir, 1) <= 0) res = FP_TRUE;
|
|
else res = 0;
|
|
break;
|
|
|
|
case 0x2C: /* CVTST, CVTTS */
|
|
if (ir & 0x2000) res = ieee_cvtst (FR[rb], ir); /* CVTST */
|
|
else res = ieee_cvtts (FR[rb], ir); /* CVTTS */
|
|
break;
|
|
|
|
case 0x2F: /* CVTTQ */
|
|
res = ieee_cvtfi (FR[rb], ir);
|
|
break;
|
|
|
|
case 0x3C: /* CVTQS */
|
|
res = ieee_cvtif (FR[rb], ir, DT_S);
|
|
break;
|
|
|
|
case 0x3E: /* CVTQT */
|
|
res = ieee_cvtif (FR[rb], ir, DT_T);
|
|
break;
|
|
|
|
default:
|
|
if ((ir & I_FSRC) == I_FSRC_X) ABORT (EXC_RSVI);
|
|
res = FR[rc];
|
|
break;
|
|
}
|
|
|
|
if (rc != 31) FR[rc] = res & M64;
|
|
return;
|
|
}
|
|
|
|
/* IEEE S to T convert - LDS doesn't handle denorms correctly */
|
|
|
|
t_uint64 ieee_cvtst (t_uint64 op, uint32 ir)
|
|
{
|
|
UFP b;
|
|
uint32 ftpb;
|
|
|
|
ftpb = ieee_unpack (op, &b, ir); /* unpack; norm dnorm */
|
|
if (ftpb == UFT_DENORM) { /* denormal? */
|
|
b.exp = b.exp + T_BIAS - S_BIAS; /* change 0 exp to T */
|
|
return ieee_rpack (&b, ir, DT_T); /* round, pack */
|
|
}
|
|
else return op; /* identity */
|
|
}
|
|
|
|
/* IEEE T to S convert */
|
|
|
|
t_uint64 ieee_cvtts (t_uint64 op, uint32 ir)
|
|
{
|
|
UFP b;
|
|
uint32 ftpb;
|
|
|
|
ftpb = ieee_unpack (op, &b, ir); /* unpack */
|
|
if (Q_FINITE (ftpb)) return ieee_rpack (&b, ir, DT_S); /* finite? round, pack */
|
|
if (ftpb == UFT_NAN) return (op | QNAN); /* nan? cvt to quiet */
|
|
if (ftpb == UFT_INF) return op; /* inf? unchanged */
|
|
return 0; /* denorm? 0 */
|
|
}
|
|
|
|
/* IEEE floating compare
|
|
|
|
- Take care of NaNs
|
|
- Force -0 to +0
|
|
- Then normal compare will work (even on inf and denorms) */
|
|
|
|
int32 ieee_fcmp (t_uint64 s1, t_uint64 s2, uint32 ir, uint32 trap_nan)
|
|
{
|
|
UFP a, b;
|
|
uint32 ftpa, ftpb;
|
|
|
|
ftpa = ieee_unpack (s1, &a, ir);
|
|
ftpb = ieee_unpack (s2, &b, ir);
|
|
if ((ftpa == UFT_NAN) || (ftpb == UFT_NAN)) { /* NaN involved? */
|
|
if (trap_nan) ieee_trap (TRAP_INV, 1, FPCR_INVD, ir);
|
|
return +1; /* force failure */
|
|
}
|
|
if (ftpa == UFT_ZERO) a.sign = 0; /* only +0 allowed */
|
|
if (ftpb == UFT_ZERO) b.sign = 0;
|
|
if (a.sign != b.sign) return (a.sign? -1: +1); /* unequal signs? */
|
|
if (a.exp != b.exp) return ((a.sign ^ (a.exp < b.exp))? -1: +1);
|
|
if (a.frac != b.frac) return ((a.sign ^ (a.frac < b.frac))? -1: +1);
|
|
return 0;
|
|
}
|
|
|
|
/* IEEE integer to floating convert */
|
|
|
|
t_uint64 ieee_cvtif (t_uint64 val, uint32 ir, uint32 dp)
|
|
{
|
|
UFP a;
|
|
|
|
if (val == 0) return 0; /* 0? return +0 */
|
|
if (val & FPR_SIGN) { /* < 0? */
|
|
a.sign = 1; /* set sign */
|
|
val = NEG_Q (val); /* |val| */
|
|
}
|
|
else a.sign = 0;
|
|
a.exp = 63 + T_BIAS; /* set exp */
|
|
a.frac = val; /* set frac */
|
|
ieee_norm (&a); /* normalize */
|
|
return ieee_rpack (&a, ir, dp); /* round and pack */
|
|
}
|
|
|
|
/* IEEE floating to integer convert - rounding code from SoftFloat
|
|
The Alpha architecture specifies return of the low order bits of
|
|
the true result, whereas the IEEE standard specifies the return
|
|
of the maximum plus or minus value */
|
|
|
|
t_uint64 ieee_cvtfi (t_uint64 op, uint32 ir)
|
|
{
|
|
UFP a;
|
|
t_uint64 sticky;
|
|
uint32 rndm, ftpa, ovf;
|
|
int32 ubexp;
|
|
|
|
ftpa = ieee_unpack (op, &a, ir); /* unpack */
|
|
if (!Q_FINITE (ftpa)) { /* inf, NaN, dnorm? */
|
|
ieee_trap (TRAP_INV, 1, FPCR_INVD, ir); /* inv operation */
|
|
return 0;
|
|
}
|
|
if (ftpa == UFT_ZERO) return 0; /* zero? */
|
|
ovf = 0; /* assume no ovflo */
|
|
ubexp = a.exp - T_BIAS; /* unbiased exp */
|
|
if (ubexp < 0) { /* < 1? */
|
|
if (ubexp == -1) sticky = a.frac; /* [.5,1)? */
|
|
else sticky = 1; /* (0,.5) */
|
|
a.frac = 0;
|
|
}
|
|
else if (ubexp < UF_V_NM) { /* in range? */
|
|
sticky = (a.frac << (64 - (UF_V_NM - ubexp))) & M64;
|
|
a.frac = a.frac >> (UF_V_NM - ubexp); /* result */
|
|
}
|
|
else if (ubexp == UF_V_NM) sticky = 0; /* at limit of range? */
|
|
else {
|
|
if ((ubexp - UF_V_NM) > 63) a.frac = 0; /* out of range */
|
|
else a.frac = (a.frac << (ubexp - UF_V_NM)) & M64;
|
|
ovf = 1; /* overflow */
|
|
sticky = 0; /* no rounding */
|
|
}
|
|
rndm = I_GETFRND (ir); /* get round mode */
|
|
if (((rndm == I_FRND_N) && (sticky & Q_SIGN)) || /* nearest? */
|
|
((rndm == I_FRND_P) && !a.sign && sticky) || /* +inf and +? */
|
|
((rndm == I_FRND_M) && a.sign && sticky)) { /* -inf and -? */
|
|
a.frac = (a.frac + 1) & M64;
|
|
if (a.frac == 0) ovf = 1; /* overflow? */
|
|
if ((rndm == I_FRND_N) && (sticky == Q_SIGN)) /* round nearest hack */
|
|
a.frac = a.frac & ~1;
|
|
}
|
|
if (a.frac > (a.sign? IMMAX: IPMAX)) ovf = 1; /* overflow? */
|
|
if (ovf) ieee_trap (TRAP_IOV, ir & I_FTRP_V, 0, 0); /* overflow trap */
|
|
if (ovf || sticky) /* ovflo or round? */
|
|
ieee_trap (TRAP_INE, Q_SUI (ir), FPCR_INED, ir);
|
|
return (a.sign? NEG_Q (a.frac): a.frac);
|
|
}
|
|
|
|
/* IEEE floating add
|
|
|
|
- Take care of NaNs and infinites
|
|
- Test for zero (fast exit)
|
|
- Sticky logic for floating add
|
|
> If result normalized, sticky in right place
|
|
> If result carries out, renormalize, retain sticky
|
|
- Sticky logic for floating subtract
|
|
> If shift < guard, no sticky bits; 64b result is exact
|
|
If shift <= 1, result may require extensive normalization,
|
|
but there are no sticky bits to worry about
|
|
> If shift >= guard, there is a sticky bit,
|
|
but normalization is at most 1 place, sticky bit is retained
|
|
for rounding purposes (but not in low order bit) */
|
|
|
|
t_uint64 ieee_fadd (t_uint64 s1, t_uint64 s2, uint32 ir, uint32 dp, t_bool sub)
|
|
{
|
|
UFP a, b, t;
|
|
uint32 ftpa, ftpb;
|
|
uint32 sticky, rndm;
|
|
int32 ediff;
|
|
|
|
ftpa = ieee_unpack (s1, &a, ir); /* unpack operands */
|
|
ftpb = ieee_unpack (s2, &b, ir);
|
|
if (ftpb == UFT_NAN) return s2 | QNAN; /* B = NaN? quiet B */
|
|
if (ftpa == UFT_NAN) return s1 | QNAN; /* A = NaN? quiet A */
|
|
if (sub) b.sign = b.sign ^ 1; /* sign of B */
|
|
if (ftpb == UFT_INF) { /* B = inf? */
|
|
if ((ftpa == UFT_INF) && (a.sign ^ b.sign)) { /* eff sub of inf? */
|
|
ieee_trap (TRAP_INV, 1, FPCR_INVD, ir); /* inv op trap */
|
|
return CQNAN; /* canonical NaN */
|
|
}
|
|
return (sub? (s2 ^ FPR_SIGN): s2); /* return B */
|
|
}
|
|
if (ftpa == UFT_INF) return s1; /* A = inf? ret A */
|
|
rndm = I_GETFRND (ir); /* inst round mode */
|
|
if (rndm == I_FRND_D) rndm = FPCR_GETFRND (fpcr); /* dynamic? use FPCR */
|
|
if (ftpa == UFT_ZERO) { /* A = 0? */
|
|
if (ftpb != UFT_ZERO) a = b; /* B != 0? result is B */
|
|
else if (a.sign != b.sign) /* both 0, subtract? */
|
|
a.sign = (rndm == I_FRND_M); /* +0 unless RM */
|
|
}
|
|
else if (ftpb != UFT_ZERO) { /* s2 != 0? */
|
|
if ((a.exp < b.exp) || /* s1 < s2? swap */
|
|
((a.exp == b.exp) && (a.frac < b.frac))) {
|
|
t = a;
|
|
a = b;
|
|
b = t;
|
|
}
|
|
ediff = a.exp - b.exp; /* exp diff */
|
|
if (ediff > 63) b.frac = 1; /* >63? retain sticky */
|
|
else if (ediff) { /* [1,63]? shift */
|
|
sticky = ((b.frac << (64 - ediff)) & M64)? 1: 0; /* lost bits */
|
|
b.frac = ((b.frac >> ediff) & M64) | sticky;
|
|
}
|
|
if (a.sign ^ b.sign) { /* eff sub? */
|
|
a.frac = (a.frac - b.frac) & M64; /* subtract fractions */
|
|
if (a.frac == 0) { /* result 0? */
|
|
a.exp = 0;
|
|
a.sign = (rndm == I_FRND_M); /* +0 unless RM */
|
|
}
|
|
else ieee_norm (&a); /* normalize */
|
|
}
|
|
else { /* eff add */
|
|
a.frac = (a.frac + b.frac) & M64; /* add frac */
|
|
if (a.frac < b.frac) { /* chk for carry */
|
|
a.frac = UF_NM | (a.frac >> 1) | /* shift in carry */
|
|
(a.frac & 1); /* retain sticky */
|
|
a.exp = a.exp + 1; /* skip norm */
|
|
}
|
|
}
|
|
} /* end else if */
|
|
return ieee_rpack (&a, ir, dp); /* round and pack */
|
|
}
|
|
|
|
/* IEEE floating multiply
|
|
|
|
- Take care of NaNs and infinites
|
|
- Test for zero operands (fast exit)
|
|
- 64b x 64b fraction multiply, yielding 128b result
|
|
- Normalize (at most 1 bit)
|
|
- Insert "sticky" bit in low order fraction, for rounding
|
|
|
|
Because IEEE fractions have a range of [1,2), the result can have a range
|
|
of [1,4). Results in the range of [1,2) appear to be denormalized by one
|
|
place, when in fact they are correct. Results in the range of [2,4) appear
|
|
to be in correct, when in fact they are 2X larger. This problem is taken
|
|
care of in the result exponent calculation. */
|
|
|
|
t_uint64 ieee_fmul (t_uint64 s1, t_uint64 s2, uint32 ir, uint32 dp)
|
|
{
|
|
UFP a, b;
|
|
uint32 ftpa, ftpb;
|
|
t_uint64 resl;
|
|
|
|
ftpa = ieee_unpack (s1, &a, ir); /* unpack operands */
|
|
ftpb = ieee_unpack (s2, &b, ir);
|
|
if (ftpb == UFT_NAN) return s2 | QNAN; /* B = NaN? quiet B */
|
|
if (ftpa == UFT_NAN) return s1 | QNAN; /* A = NaN? quiet A */
|
|
a.sign = a.sign ^ b.sign; /* sign of result */
|
|
if ((ftpa == UFT_ZERO) || (ftpb == UFT_ZERO)) { /* zero operand? */
|
|
if ((ftpa == UFT_INF) || (ftpb == UFT_INF)) { /* 0 * inf? */
|
|
ieee_trap (TRAP_INV, 1, FPCR_INVD, ir); /* inv op trap */
|
|
return CQNAN; /* canonical NaN */
|
|
}
|
|
return (a.sign? FMZERO: FPZERO); /* return signed 0 */
|
|
}
|
|
if (ftpb == UFT_INF) return (a.sign? FMINF: FPINF); /* B = inf? */
|
|
if (ftpa == UFT_INF) return (a.sign? FMINF: FPINF); /* A = inf? */
|
|
a.exp = a.exp + b.exp + 1 - T_BIAS; /* add exponents */
|
|
resl = uemul64 (a.frac, b.frac, &a.frac); /* multiply fracs */
|
|
ieee_norm (&a); /* normalize */
|
|
a.frac = a.frac | (resl? 1: 0); /* sticky bit */
|
|
return ieee_rpack (&a, ir, dp); /* round and pack */
|
|
}
|
|
|
|
/* Floating divide
|
|
|
|
- Take care of NaNs and infinites
|
|
- Check for zero cases
|
|
- Divide fractions (55b to develop a rounding bit)
|
|
- Set sticky bit if remainder non-zero
|
|
|
|
Because IEEE fractions have a range of [1,2), the result can have a range
|
|
of (.5,2). Results in the range of [1,2) are correct. Results in the
|
|
range of (.5,1) need to be normalized by one place. */
|
|
|
|
t_uint64 ieee_fdiv (t_uint64 s1, t_uint64 s2, uint32 ir, uint32 dp)
|
|
{
|
|
UFP a, b;
|
|
uint32 ftpa, ftpb, sticky;
|
|
|
|
ftpa = ieee_unpack (s1, &a, ir);
|
|
ftpb = ieee_unpack (s2, &b, ir);
|
|
if (ftpb == UFT_NAN) return s2 | QNAN; /* B = NaN? quiet B */
|
|
if (ftpa == UFT_NAN) return s1 | QNAN; /* A = NaN? quiet A */
|
|
a.sign = a.sign ^ b.sign; /* sign of result */
|
|
if (ftpb == UFT_INF) { /* B = inf? */
|
|
if (ftpa == UFT_INF) { /* inf/inf? */
|
|
ieee_trap (TRAP_INV, 1, FPCR_INVD, ir); /* inv op trap */
|
|
return CQNAN; /* canonical NaN */
|
|
}
|
|
return (a.sign? FMZERO: FPZERO); /* !inf/inf, ret 0 */
|
|
}
|
|
if (ftpa == UFT_INF) /* A = inf? */
|
|
return (a.sign? FMINF: FPINF); /* return inf */
|
|
if (ftpb == UFT_ZERO) { /* B = 0? */
|
|
if (ftpa == UFT_ZERO) { /* 0/0? */
|
|
ieee_trap (TRAP_INV, 1, FPCR_INVD, ir); /* inv op trap */
|
|
return CQNAN; /* canonical NaN */
|
|
}
|
|
ieee_trap (TRAP_DZE, 1, FPCR_DZED, ir); /* div by 0 trap */
|
|
return (a.sign? FMINF: FPINF); /* return inf */
|
|
}
|
|
if (ftpa == UFT_ZERO) return (a.sign? FMZERO: FPZERO); /* A = 0? */
|
|
a.exp = a.exp - b.exp + T_BIAS; /* unbiased exp */
|
|
a.frac = a.frac >> 1; /* allow 1 bit left */
|
|
b.frac = b.frac >> 1;
|
|
a.frac = ufdiv64 (a.frac, b.frac, 55, &sticky); /* divide */
|
|
ieee_norm (&a); /* normalize */
|
|
a.frac = a.frac | sticky; /* insert sticky */
|
|
return ieee_rpack (&a, ir, dp); /* round and pack */
|
|
}
|
|
|
|
/* IEEE floating square root
|
|
|
|
- Take care of NaNs, +infinite, zero
|
|
- Check for negative operand
|
|
- Compute result exponent
|
|
- Compute sqrt of fraction */
|
|
|
|
t_uint64 ieee_sqrt (uint32 ir, uint32 dp)
|
|
{
|
|
t_uint64 op;
|
|
uint32 ftpb;
|
|
UFP b;
|
|
|
|
op = FR[I_GETRB (ir)]; /* get F[rb] */
|
|
ftpb = ieee_unpack (op, &b, ir); /* unpack */
|
|
if (ftpb == UFT_NAN) return op | QNAN; /* NaN? */
|
|
if ((ftpb == UFT_ZERO) || /* zero? */
|
|
((ftpb == UFT_INF) && !b.sign)) return op; /* +infinity? */
|
|
if (b.sign) { /* minus? */
|
|
ieee_trap (TRAP_INV, 1, FPCR_INVD, ir); /* signal inv op */
|
|
return CQNAN;
|
|
}
|
|
b.exp = ((b.exp - T_BIAS) >> 1) + T_BIAS - 1; /* result exponent */
|
|
b.frac = fsqrt64 (b.frac, b.exp); /* result fraction */
|
|
return ieee_rpack (&b, ir, dp); /* round and pack */
|
|
}
|
|
|
|
/* Support routines */
|
|
|
|
t_bool ieee_unpack (t_uint64 op, UFP *r, uint32 ir)
|
|
{
|
|
r->sign = FPR_GETSIGN (op); /* get sign */
|
|
r->exp = FPR_GETEXP (op); /* get exponent */
|
|
r->frac = FPR_GETFRAC (op); /* get fraction */
|
|
if (r->exp == 0) { /* exponent = 0? */
|
|
if (r->frac == 0) return UFT_ZERO; /* frac = 0? then true 0 */
|
|
if (fpcr & FPCR_DNZ) { /* denorms to 0? */
|
|
r->frac = 0; /* clear fraction */
|
|
return UFT_ZERO;
|
|
}
|
|
r->frac = r->frac << FPR_GUARD; /* guard fraction */
|
|
ieee_norm (r); /* normalize dnorm */
|
|
ieee_trap (TRAP_INV, 1, FPCR_INVD, ir); /* signal inv op */
|
|
return UFT_DENORM;
|
|
}
|
|
if (r->exp == FPR_NAN) { /* exponent = max? */
|
|
if (r->frac == 0) return UFT_INF; /* frac = 0? then inf */
|
|
if (!(r->frac & QNAN)) /* signaling NaN? */
|
|
ieee_trap (TRAP_INV, 1, FPCR_INVD, ir); /* signal inv op */
|
|
return UFT_NAN;
|
|
}
|
|
r->frac = (r->frac | FPR_HB) << FPR_GUARD; /* ins hidden bit, guard */
|
|
return UFT_FIN; /* finite */
|
|
}
|
|
|
|
/* Normalize - input must be zero, finite, or denorm */
|
|
|
|
void ieee_norm (UFP *r)
|
|
{
|
|
int32 i;
|
|
static t_uint64 normmask[5] = {
|
|
0xc000000000000000, 0xf000000000000000, 0xff00000000000000,
|
|
0xffff000000000000, 0xffffffff00000000
|
|
};
|
|
static int32 normtab[6] = { 1, 2, 4, 8, 16, 32 };
|
|
|
|
r->frac = r->frac & M64;
|
|
if (r->frac == 0) { /* if fraction = 0 */
|
|
r->sign = 0;
|
|
r->exp = 0; /* result is 0 */
|
|
return;
|
|
}
|
|
while ((r->frac & UF_NM) == 0) { /* normalized? */
|
|
for (i = 0; i < 5; i++) { /* find first 1 */
|
|
if (r->frac & normmask[i]) break;
|
|
}
|
|
r->frac = r->frac << normtab[i]; /* shift frac */
|
|
r->exp = r->exp - normtab[i]; /* decr exp */
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Round and pack
|
|
|
|
Much of the treachery of the IEEE standard is buried here
|
|
- Rounding modes (chopped, +infinity, nearest, -infinity)
|
|
- Inexact (set if there are any rounding bits, regardless of rounding)
|
|
- Overflow (result is infinite if rounded, max if not)
|
|
- Underflow (no denorms!)
|
|
|
|
Underflow handling is particularly complicated
|
|
- Result is always 0
|
|
- UNF and INE are always set in FPCR
|
|
- If /U is set,
|
|
o If /S is clear, trap
|
|
o If /S is set, UNFD is set, but UNFZ is clear, ignore UNFD and
|
|
trap, because the hardware cannot produce denormals
|
|
o If /S is set, UNFD is set, and UNFZ is set, do not trap
|
|
- If /SUI is set, and INED is clear, trap */
|
|
|
|
t_uint64 ieee_rpack (UFP *r, uint32 ir, uint32 dp)
|
|
{
|
|
static const t_uint64 stdrnd[2] = { UF_SRND, UF_TRND };
|
|
static const t_uint64 infrnd[2] = { UF_SINF, UF_TINF };
|
|
static const int32 expmax[2] = { T_BIAS - S_BIAS + S_M_EXP - 1, T_M_EXP - 1 };
|
|
static const int32 expmin[2] = { T_BIAS - S_BIAS, 0 };
|
|
t_uint64 rndadd, rndbits, res;
|
|
uint32 rndm;
|
|
|
|
if (r->frac == 0) /* result 0? */
|
|
return ((t_uint64) r->sign << FPR_V_SIGN);
|
|
rndm = I_GETFRND (ir); /* inst round mode */
|
|
if (rndm == I_FRND_D) rndm = FPCR_GETFRND (fpcr); /* dynamic? use FPCR */
|
|
rndbits = r->frac & infrnd[dp]; /* isolate round bits */
|
|
if (rndm == I_FRND_N) rndadd = stdrnd[dp]; /* round to nearest? */
|
|
else if (((rndm == I_FRND_P) && !r->sign) || /* round to inf and */
|
|
((rndm == I_FRND_M) && r->sign)) /* right sign? */
|
|
rndadd = infrnd[dp];
|
|
else rndadd = 0;
|
|
r->frac = (r->frac + rndadd) & M64; /* round */
|
|
if ((r->frac & UF_NM) == 0) { /* carry out? */
|
|
r->frac = (r->frac >> 1) | UF_NM; /* renormalize */
|
|
r->exp = r->exp + 1;
|
|
}
|
|
if (rndbits) /* inexact? */
|
|
ieee_trap (TRAP_INE, Q_SUI (ir), FPCR_INED, ir); /* set inexact */
|
|
if (r->exp > expmax[dp]) { /* ovflo? */
|
|
ieee_trap (TRAP_OVF, 1, FPCR_OVFD, ir); /* set overflow trap */
|
|
ieee_trap (TRAP_INE, Q_SUI (ir), FPCR_INED, ir); /* set inexact */
|
|
if (rndadd) /* did we round? */
|
|
return (r->sign? FMINF: FPINF); /* return infinity */
|
|
return (r->sign? FMMAX: FPMAX); /* no, return max */
|
|
}
|
|
if (r->exp <= expmin[dp]) { /* underflow? */
|
|
ieee_trap (TRAP_UNF, ir & I_FTRP_U, /* set underflow trap */
|
|
(fpcr & FPCR_UNDZ)? FPCR_UNFD: 0, ir); /* (dsbl only if UNFZ set) */
|
|
ieee_trap (TRAP_INE, Q_SUI (ir), FPCR_INED, ir); /* set inexact */
|
|
return 0; /* underflow to +0 */
|
|
}
|
|
res = (((t_uint64) r->sign) << FPR_V_SIGN) | /* form result */
|
|
(((t_uint64) r->exp) << FPR_V_EXP) |
|
|
((r->frac >> FPR_GUARD) & FPR_FRAC);
|
|
if ((rndm == I_FRND_N) && (rndbits == stdrnd[dp])) /* nearest and halfway? */
|
|
res = res & ~1; /* clear lo bit */
|
|
return res;
|
|
}
|
|
|
|
/* IEEE arithmetic trap - only one can be set at a time! */
|
|
|
|
void ieee_trap (uint32 trap, uint32 instenb, uint32 fpcrdsb, uint32 ir)
|
|
{
|
|
fpcr = fpcr | (trap << 19); /* FPCR to trap summ offset */
|
|
if ((instenb == 0) || /* not enabled in inst? ignore */
|
|
((ir & I_FTRP_S) && (fpcr & fpcrdsb))) return; /* /S and disabled? ignore */
|
|
arith_trap (trap, ir); /* set Alpha trap */
|
|
return;
|
|
}
|
|
|
|
/* Fraction square root routine - code from SoftFloat */
|
|
|
|
t_uint64 fsqrt64 (t_uint64 asig, int32 exp)
|
|
{
|
|
t_uint64 zsig, remh, reml, t;
|
|
uint32 sticky = 0;
|
|
|
|
zsig = estimateSqrt32 (exp, (uint32) (asig >> 32));
|
|
|
|
/* Calculate the final answer in two steps. First, do one iteration of
|
|
Newton's approximation. The divide-by-2 is accomplished by clever
|
|
positioning of the operands. Then, check the bits just below the
|
|
(double precision) rounding bit to see if they are close to zero
|
|
(that is, the rounding bits are close to midpoint). If so, make
|
|
sure that the result^2 is <below> the input operand */
|
|
|
|
asig = asig >> ((exp & 1)? 3: 2); /* leave 2b guard */
|
|
zsig = estimateDiv128 (asig, 0, zsig << 32) + (zsig << 30 );
|
|
if ((zsig & 0x1FF) <= 5) { /* close to even? */
|
|
reml = uemul64 (zsig, zsig, &remh); /* result^2 */
|
|
remh = asig - remh - (reml? 1:0); /* arg - result^2 */
|
|
reml = NEG_Q (reml);
|
|
while (Q_GETSIGN (remh) != 0) { /* if arg < result^2 */
|
|
zsig = zsig - 1; /* decr result */
|
|
t = (zsig << 1) | 1; /* incr result^2 */
|
|
reml = reml + t; /* and retest */
|
|
remh = remh + (zsig >> 63) + ((reml < t)? 1: 0);
|
|
}
|
|
if ((remh | reml) != 0 ) sticky = 1; /* not exact? */
|
|
}
|
|
return zsig;
|
|
}
|
|
|
|
/* Estimate 32b SQRT
|
|
|
|
Calculate an approximation to the square root of the 32-bit significand given
|
|
by 'a'. Considered as an integer, 'a' must be at least 2^31. If bit 0 of
|
|
'exp' (the least significant bit) is 1, the integer returned approximates
|
|
2^31*sqrt('a'/2^31), where 'a' is considered an integer. If bit 0 of 'exp'
|
|
is 0, the integer returned approximates 2^31*sqrt('a'/2^30). In either
|
|
case, the approximation returned lies strictly within +/-2 of the exact
|
|
value. */
|
|
|
|
uint32 estimateSqrt32 (uint32 exp, uint32 a)
|
|
{
|
|
uint32 index, z;
|
|
static const uint32 sqrtOdd[] = {
|
|
0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
|
|
0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
|
|
};
|
|
static const uint32 sqrtEven[] = {
|
|
0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
|
|
0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
|
|
};
|
|
|
|
index = (a >> 27) & 0xF; /* bits<30:27> */
|
|
if (exp & 1) { /* odd exp? */
|
|
z = 0x4000 + (a >> 17) - sqrtOdd[index]; /* initial guess */
|
|
z = ((a / z) << 14) + (z << 15); /* Newton iteration */
|
|
a = a >> 1;
|
|
}
|
|
else {
|
|
z = 0x8000 + (a >> 17) - sqrtEven[index]; /* initial guess */
|
|
z = (a / z) + z; /* Newton iteration */
|
|
z = (z >= 0x20000) ? 0xFFFF8000: (z << 15);
|
|
if (z <= a) z = (a >> 1) | 0x80000000;
|
|
}
|
|
return (uint32) ((((((t_uint64) a) << 31) / ((t_uint64) z)) + (z >> 1)) & M32);
|
|
}
|
|
|
|
/* Estimate 128b unsigned divide */
|
|
|
|
t_uint64 estimateDiv128 (t_uint64 a0, t_uint64 a1, t_uint64 b)
|
|
{
|
|
t_uint64 b0, b1;
|
|
t_uint64 rem0, rem1, term0, term1;
|
|
t_uint64 z;
|
|
|
|
if (b <= a0) return 0xFFFFFFFFFFFFFFFF;
|
|
b0 = b >> 32;
|
|
z = ((b0 << 32) <= a0)? 0xFFFFFFFF00000000: ((a0 / b0) << 32);
|
|
term1 = uemul64 (b, z, &term0);
|
|
rem0 = a0 - term0 - (a1 < term1);
|
|
rem1 = a1 - term1;
|
|
while (Q_GETSIGN (rem0)) {
|
|
z = z - ((t_uint64) 0x100000000);
|
|
b1 = b << 32;
|
|
rem1 = b1 + rem1;
|
|
rem0 = b0 + rem0 + (rem1 < b1);
|
|
}
|
|
rem0 = (rem0 << 32) | (rem1 >> 32);
|
|
z |= (((b0 << 32) <= rem0)? 0xFFFFFFFF : (rem0 / b0));
|
|
return z;
|
|
}
|