These changes facilitate more robust parameter type checking and helps
to identify unexpected coding errors.
Most simulators can now also be compiled with a C++ compiler without
warnings.
Additionally, these changes have also been configured to facilitate easier
backporting of simulator and device simulation modules to run under the
simh v3.9+ SCP framework.
When a new connection arrives it will be bound to the first line found
which has DTR enabled (considering the line order rules). If none is
available, then all currently unconnected lines will have the RING signal
enabled. If no such lines exist, the incoming connection is rejected with
"All connections busy". If a currently disconnected line (with RING
enabled) raises DTR within 3 seconds, then that line gets the pending
connection and all other lines with RING enabled have RING disabled.
If 3 seconds pass without DTR coming up on any line with RING enabled
coming on, all lines with RING enabled will have RING disabled and the
incoming connection will be rejected with "No answer on any connection"
Many simulators run instructions one or more orders of magnitude faster
than the original systems did. Limiting simulated serial port input speeds
to legacy bits per second values presents the arriving data much slower
than the original systems ever saw it. Given the processing capacity of the
simulated systems and the fact that the software and device interfaces
only know how to deal with the legacy speed values there is a need to
provide a way to allow input to arrive faster. This problem is solved by
providing a speed factor as a part of a speed specification. For example
a speed can be specified as "speed*factor" or "9600*10".
Each of the speeds greater than 9600bps deliver a character in less than
1ms. Computing inter-character delays in microseconds therefore can't
be precise enough to be well behaved. Measuring the inter-character
delays in instructions (scalled by the calibrated clock) gets us the needed
precision.
A SET CONSOLE SPEED=nnn, where legal values for nnn are common serial
port rates. The speed value will attempt to limit the input data rates to a
simulator to approximately the specified bits per second.
- Accept input comments
- Allow leading and trailing spaces in remote console input commands
- Force prompt to be "sim> " or "SIM> " when in a master mode console session. "SIM> " used during single command mode.
- Enhance performance of single command mode input processing by processing all available input characters before actually flushing output buffers
TMXR API extension to add tmxr_input_pending_ln that reports the existence of additional input data
TMXR also now conforms to revised sim_sock API changes
Ideas based on Dave Bryan's console halt efforts.
sim> SEND {<mux>:line} {DELAY=n,}"string"
Where <mux> is the name of the device pointed to by the TMXR structure. If <mux>:line isn't specified, then the console device is implicitly being referenced.
Delay is optional and once set persists for subsequent SEND operations to the same device. Delay defaults to 1000. The DELAY value is a minimum number of instructions which must execute before the next character in the provided string will be injected to the console port. The DELAY value has effect between the characters delivered as well. "string" requires quotes and within the quoted string, common C escape character syntax is available (\r\r\t, etc.).
Each device (console, and each line in each mux) has a separate value for DELAY.
An arbitrary number of 'expect' conditions can be defined. The command syntax is:
sim> EXPECT {<mux>:line} {[cnt]} "matchstring" {actioncommand {; actioncommand ...}}
Where <mux> is the name of the device pointed to by the TMXR structure. If <mux>:line isn't specified, then the console device is implicitly being referenced.
"matchstring" requires quotes and within the quoted string, common C escape character syntax is available (\r\r\t, etc.). The quotes used can be single or double quotes, but the closing quote must match the opening quote. The match string might be extended to allow the use of perl style regular expressions in the "matchstring" when a -R switch is specified on the command line.
sim> EXPECT "Enter Color: " SEND "Red\r"; g
A specific 'expect' condition can be removed with:
sim> NOEXPECT {<mux>:line} "matchstring"
All 'expect' conditions can be removed with:
sim> NOEXPECT {<mux>:line}
'expect' conditions can be examined with:
sim> SHOW EXPECT {<mux>:line}
Expect rules are one-shots (i.e. they disappear once a match has occurred) unless they are explicitly described as persistent with the -P switch.
The -C switch is available when defining expect rules. The effect of a rule defined with the -C flag is that when an expect match occurs for that rule, ALL rules are cleared for that device (console or <mux>:line).
Now all DDCMP capable devices KDP, DUP and DMC/DMR have access to packet corruption generation to simulate real world imperfect data lines for protocol testing.
- Added halfduplex mode for network connections and corrected modem signal DSR to reflect connection status (vs original attach status), and DCD follows DSR (except in halfduplex mode where it follows CTS).
- Enhance tmxr_set_get_modem_bits to also return the modem DTR and RTS state.
- Separate RTS from DTR when manipulating modem state bits
- Minor fixes to loopback functionality after direct testing with the first loopback client device (DMC11).
- Fix clearing of break input buffer now that input buffers are dynamically allocated
- Changed Modem bit logic to have CTS reflect RTS as expected by devices which may expect this.
- Changed receive buffers to be dynamically allocated and the same size as transmit buffers when transmit buffers are non-default sized.
- Added TMXR line attach in loopback mode. Fixed loopback buffer management
- Added loopback support to TMXR lines
- Added functioning connect poll capability to revised DMC
- Added connection destination display to connection status even when a connection has not yet been established.
- Added extended packet sending and receiving semantics to TMXR allowing for an optional frame byte to exist between length prefixed data packets
Added parsing logic to allow tcp port and connect strings to end in either ";notelnet" or ";telnet" as desired to specifically describe a port setup.
Fixed bug in single line multiplexer attach which returned failed status when it should not have if a tcp connect destination was specified.
Relaxed parsing rules to allow a single line multiplexer to have a listen port specified at either the line level or the mux level.
The is to be used when a mux wants to dynamically change the number of lines it supports. It should explicitly detach an previously configured lines which won't exist after the change prior to changing the line count.
- Added functionality to return the lines with attached serial ports by calling tmxr_poll_conn one time after a serial port is attached.
- Added the ability to close a serial port from the sim> prompt if a device implements a SET dev DISCONNECT=line command. A serial port is closed if the -C switch is specified on the DISCONNECT command line.
- Cleaned up the multiplexer status display based on Dave's recommendations.
scp.c, scp.h
- added sim_uname (Unit Name) API to simplify places which might want to display it (mostly debug messages).
- added support for clock co-scheduling
- added debugging to trace event queue activities
sim_defs.h
- added support for clock co-scheduling
- added support for sim_uname (Thread local storage macro)
- added support for debugging to trace event queue activities
- simplified debug code by using sim_uname
- fixed support macro for sim_is_active when asynch timers are in use
sim_rev.h
- fixed nested comments
sim_tmxr.c, sim_tmxr.h
- added support for clock co-scheduling
- simplified debug code by using sim_uname
- added support for devices which poll for output on different units
sim_timer.c, sim_timer.h
- added support for clock co-scheduling
- fixed asynchronous clock calibration to smooth out calibration adjustments
- simplified debug code by using sim_uname
- added ability (when running with asynchronous support) to explicitly disable or enable asynchronous timer support.
- changed sim_timer_inst_per_sec to return a double value since the result is always used in a double expression and integer overflow could occur under strange timing conditions
vax/vax_stddev.c
- converted from simulator specific clock co-scheduling to generic clock co-scheduling.
vax/vax_cpu.c
- added EVENT and ACTIVATE debug flag (SET CPU DEBUG=EVENT;ACTIVATE) support
pdp11/pdp11_dz.c
- converted from simulator specific clock co-scheduling to generic clock co-scheduling.
pdp11/pdp11_vh.c
- converted from simulator specific clock co-scheduling to generic clock co-scheduling.
pdp11/pdp11_xq.c
- converted from simulator specific clock co-scheduling to generic clock co-scheduling.
Added support for per line tcp listen ports.
Added support for per line outgoing tcp/telnet connections.
Removed DEV_NET from pdp11_dz and pdp11_vh emulators to allow proper restore of
scp.c, scp.h
- Change the sim_clock_queue event list to be terminated by the value QUEUE_LIST_END instead of NULL. This allows easy determination of whether a unit is on a list since when it is not on a list the next pointer is NULL.
- standardized the usage of UPDATE_SIM_TIME
- Added support for internal/pseudo devices to support the TIMER and CON-TEL pseudo devices (to enable and disable debugging)
- Reverted to the prior "SET CONSOLE DEBUG" command semantics since the console debug can be manipulated via the generic "SET <dev> DEBUG" command (i.e. SET CON-TEL DEBUG=TRC;XMT;RCV)
- Changed "SHOW TIMERS" to "SHOW CLOCKS" to display the current calibrated timer information
- Added sim_is_active_bool API to return the boolean active status avoiding the potential work walking the list when most callers aren't interested in the event firing time
- Fixed run_boot_prep to properly record the not queued status of any units which are removed from the sim_clock_queue during initialization
- Added display of DEBUG, NODEBUG options to the SHOW SHOW command
sim_timer.c, sim_timer.h
- Added asynchronous timer capabilities with support for calibration and idling
- Added internal/pseudo device to support debugging of Idle, Calibration and asynch timer activites.
- Added suppression of timer calibration when idling has occurred
sim_tmxr.c, sim_tmxr.h
- Added tmxr_activate_after and macro definition for sim_activate_after to invoke it for proper behavior with multiplexer devices
- Added all polling units to the standard timer queue when dropping back to the simulator command prompt to accommodate the potential to disable asynch mode
- Fixed synchronization to operate with pthread synchronized asynch queue and proper stopping of poll when dropping back to the simulator command prompt
- Fixed calls to select to have a timeout with properly ranged tv_usec values and dealt with possible EINTR return from select
sim_console.c, sim_console.h
- Changed internal/pseudo console telnet device name to CON=TEL
- Reverted to the prior "SET CONSOLE DEBUG" command semantics since the console debug can be manipulated via the generic "SET <dev> DEBUG" command (i.e. SET CON-TEL DEBUG=TRC;XMT;RCV)
- Fixed synchronization to operate with pthread synchronized asynch queue and proper stopping of poll when dropping back to the simulator command prompt
- Fixed calls to select to have a timeout with properly ranged tv_usec values
sim_defs.h
- Added necessary unit fields to support asynchronous timing activities
- Added asynchronous macros to support async timing activities
- Fixed asynch pthread only macros (not using AIO_INTRINSICS).
- Fixed the definition of the UDATA macro which was never adjusted to accommodate the insertion of 2 extra fields in the unit structure and thus made the initialization of the unit wait field meaningless.
- Changed the NOQUEUE_WAIT value from 10000 to 1000000. This is only used when the sim_clock_queue is empty, which normally never happens on any simulator since they all have clocks and/or other frequently polling devices. With asynchronous multiplexer and timing support the queue is often empty and this value is then used when calculating idling delays. If it is too small, idling will be inefficient. Being large should not be a problem otherwise.
Interdata/id16_cpu.c
- removed test of sim_idle_enab before calling sim_idle
Interdata/id32_cpu.c
- removed test of sim_idle_enab before calling sim_idle
vax/vax_cpu.c
- removed test of sim_idle_enab before calling sim_idle
vax/vax_stddev.c
- converted CLK device to use the internal timer service API sim_activate_after to leverage asynchronous timing when available