Some devices have dedicated units that perform various independent
functions (often timing) that are independent of the primary device unit
which is ATTACHed. This services to help interpret debug information
that may be produced.
Declare output unit to facilitate proper character output completion
scheduling.
Proper completion scheduling removes the need to sleeping waiting for
character I/O completion.
This should fix#521 and #504
These changes facilitate more robust parameter type checking and helps
to identify unexpected coding errors.
Most simulators can now also be compiled with a C++ compiler without
warnings.
Additionally, these changes have also been configured to facilitate easier
backporting of simulator and device simulation modules to run under the
simh v3.9+ SCP framework.
Previously, the input silo was modeled by using the pending input data in
the TMXR line buffer. This was fine when bps rate limiting wasn't happening.
In order to properly pace arriving data from multiple lines the silo is now
implemented in a way which more precisely reflects the original hardware.
Each of the speeds greater than 9600bps deliver a character in less than
1ms. Computing inter-character delays in microseconds therefore can't
be precise enough to be well behaved. Measuring the inter-character
delays in instructions (scalled by the calibrated clock) gets us the needed
precision.
Data arriving on simulated serial ports can arrive faster than the OS running
on the simulated system can deliber it to user mode programs. This happens
when chunks of data are delivered to the mux from a network connection.
This can be due to a file transfer program (kermit) running on the other end
of a network connection and the packet size being delivered exceeds the
simulated OS's type ahead buffer size OR from users who paste arbitrary
blocks of data into a telnet or console session.
The goals here being to simplify calling code while getting consistent output delivered everywhere it may be useful.
Modified most places which explicitly used sim_log or merely called printf to now avoid doing that and merely call sim_printf().
Show IOSPACE doesn't always get the number of devices right due to device creativity.
o The distinction between UNIT and DEVICE has blurred
o MUX devices merge several physical devices into one device/unit
o Dynamic device sizing has made things more volatile.
This edit solves the problem for SHOW IOSPACE by adding an (optional) word to the DIBs.
The word contains the amount of IO space consumed by each instance of the physical device that's being emulated.
E.G., if it's a DZ11, the device is the DZ11 module, or 8 lines, even though the MUX device may support 32.
This enables SHOW IOSPACE to determine the number of physical devices being emulated, which is what folks need when configuring software. The word may have other uses - in a generic dynamic device sizing routine - which is why the amount of IOSPACE per device was chosen rather than the 'number of physical devices.'
The edit should not make any existing device regress. If the new word (ulnt) is zero (not initialized), SHOW IOSPACE will default to the number of units in the device, or if there's no device (CPUs), 1 as before. If it is present, the number of devices is the calculated as total allocation/allocation-per-device.
The edit updates all the devices that seem to require this treatment, and all the processors that define the UNIBUS/QBUS DIBs.